

1

zenon driver manual
CTI

v.7.00

© 2012 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely

with the written permission of the company COPA-DATA. The technical data contained herein has been

provided solely for informational purposes and is not legally binding. Subject to change, technical or

otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 5

2. CTI .. 5

3. CTI - Data sheet ... 6

4. Driver history .. 7

5. Requirements .. 8

6. Configuration .. 8

6.1 Creating a driver .. 8

6.2 Settings in the driver dialog .. 10

6.2.1 General ... 10

6.2.2 Driver dialog 1 .. 13

7. Creating variables .. 15

7.1 Creating variables in the Editor ... 15

7.2 Addressing ... 17

7.3 Secondary object type .. 18

7.4 Driver objects and datatypes .. 21

7.4.1 Driver objects ... 21

7.4.2 Mapping of the datatypes .. 22

7.5 Creating variables by importing .. 23

7.5.1 XML import of variables from another zenon project .. 24

7.5.2 DBF Import/Export ... 24

7.6 Driver variables ... 30

8. Driver-specific functions .. 35

9. Driver commands .. 37

10. Error analysis ... 38

10.1 Analysis tool .. 39

10.2 Analysis for wrongly addressed variables ... 40

4

10.3 Check list ... 45

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

GENERAL HELP

If you miss any information in this help chapter or have any suggestions for additions, please feel free to

contact us via e-mail: documentation@copadata.com (mailto:documentation@copadata.com).

PROJECT SUPPORT

If you have concrete questions relating to your project, please feel free to contact the support team via

e-mail: support@copadata.com (mailto:support@copadata.com)

LICENSES AND MODULES

If you realize that you need additional licenses or modules, please feel free to contact the sales team via

e-mail: sales@copadata.com (mailto:sales@copadata.com)

2. CTI

Driver for CTI or Texas Instruments TI 505 for protocols CAMP, NITP with packed task codes.

The driver supports:

 several TCP connections (controls) per driver

 Multi block read via packed task codes

 Blockwrite.

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

CTI - Data sheet

6

3. CTI - Data sheet

General:

Driver file name CTI.exe

Driver description CTI driver

PLC types CTI PLCs, Ti505, Simatic 545, Simatic 555

PLC manufacturer Siemens; Texas Instruments; CTI;

Driver supports:

Protocol NITP; CAMP;

Addressing: address based x

Addressing: name based -

Spontaneous

communication

-

Polling communication x

Online browsing -

Offline browsing -

Real-time capable -

Blockwrite x

Modem capable -

Driver history

7

Serial logging -

RDA numerical x

RDA String x

Prerequisites:

Hardware PC Standard networkcard

Software PC -

Hardware PLC -

Software PLC -

Requires v-dll x

Platforms:

Operating systems Windows CE 5.0, CE 6.0; Windows XP, Vista, 7, Server 2003, Server

2008/R2;

CE platforms x86; ARM; Pocket-PC;

4. Driver history

Date Driver version Change

16.03.10 100 Created driver documentation

Requirements

8

5. Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

6. Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Info

Find out more about further settings for zenon variables in the chapter Variables

(main.chm::/15247.htm) of the online manual.

6.1 Creating a driver

In order to create a new driver:

 Right-click on Driver in the Project Manage and select Driver new in the context menu.

main.chm::/15247.htm

Configuration

9

 In the following dialog the control system offers a list of all available drivers.

 Select the desired driver and give it a name:

 The driver name has to be unique, i.e. if one and the same driver is to be used

several times in one project, every time a new name has to be given each time.

 The driver name is part of the file name. Therefore it may only contain characters

which are supported by the operating system. Invalid characters are replaced by an

underscore (_).

 This name cannot be changed later on.

 Confirm the dialog with OK. In the following dialog the single configurations of the drivers are

defined.

 Only the respective required drivers need to be loaded for a project. Later loading of an

additional driver is possible without problems.

Configuration

10

 Info

For new projects and for existing projects which are converted to version 6.21 or higher,

the following drivers are created automatically:

 Internal

 MathDr32

 SysDrv.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

6.2.1 General

Configuration

11

Parameters Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:

A connection to the control is established.

 Simulation static

No communication between to the control is established,

the values are simulated by the driver. In this modus the

values remain constant or the variables keep the values

which were set by zenon Logic. Each variable has its own

memory area, e.g. two variables of the type marker with

offset 79 can have different values in the Runtime and do

not influence each other. Exception: The simulator driver.

 Simulation - counting

No communication between to the control is established,

the values are simulated by the driver. In this modus the

driver increments the values within a value range

automatically.

 Simulation - programmed

N communication is established to the PLC. The values are

calculated by a freely programmable simulation project.

The simulation project is created with the help of the zenon

Logic Workbench and runs in a zenon Logic Runtime which

is integrated in the driver. For details see chapter Driver

simulation (main.chm::/25206.htm).

Keep update list

in the memory

Variables which were requested once are still requested from the control

even if they are currently not needed.

This has the advantage that e.g. multiple screen switches after the screen

was opened for the first time are executed faster because the variables

need not be requested again. The disadvantage is a higher load for the

communication to the control.

Output can be

written

Active: Outputs can be written.

Inactive: Writing of outputs is prevented.

: Not available for every driver.

main.chm::/25206.htm

Configuration

12

Variable image

remanent

This option saves and restores the current value, time stamp and the states

of a data point.

Fundamental requirement: The variable must have a valid value and time

stamp.

The variable image is saved in mode hardware if:

 one of the states S_MERKER_1(0) up to S_MERKER8(7), REVISION(9), AUS(20)

or ERSATZWERT(27) is active

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not programmed simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a

criterion in order to restore the remanent variable image.

Stop at the

Standby Server

Setting for redundancy at drivers which allow only on

communication connection. For this the driver is stopped at the

Standby Server and only started at the upgrade.

 If this option is active, the gapless archiving is no longer

guaranteed.

Active: Sets the driver at the not-process-leading Server

automatically in a stop-like state. In contrast to stopping via driver

command, the variable does not receive status switched off

(statusverarbeitung.chm::/24150.htm) but an empty value. This

prevents that at the upgrade to the Server irrelevant values are

created in the AML, CEL and Historian.

Global Update time Active: The set Global update time in ms is used for all

variables in the project. The priority set at the variables is not used.

Inactive: The set priorities are used for the individual variables.

Priority Here you set the polling times for the individual priorities. All variables with

the according priority are polled in the set time. The allocation is taken

statusverarbeitung.chm::/24150.htm

Configuration

13

place for each variable separately in the settings of the variable properties.

The communication of the individual variables are graduated in respect of

importance or necessary topicality using the priorities. Thus the

communication load is distributed better.

UPDATE TIME FOR CYCLICAL DRIVER

The following applies for cyclical drivers:

For Set value, Advising of variables and Requests, a read cycle is immediately triggered for all drivers -

regardless of the set update time. This ensures that the value is immediately available for visualization after

writing. Update times can therefore be shorter than pre-set for cyclical drivers.

6.2.2 Driver dialog 1

Configuration of the connections to the PLCs.

Configuration

14

Parameters Description

Connections Contains the configured connections. Select a connection to display the connection settings on the right side.

Net address The net address identifies the connection. Therefore, every connection must have a unique net address. Variables are

assigned to a connection via the net address.

Connection name Freely definable name for the easier distinction of connections.

IP address IP address of the PLC that you are communicating with.

Timeout [ms] Timeout time in milliseconds.

CREATE NEW CONNECTION

1. click on the button New

2. Enter the connection details.

3. click on Save

EDIT CONNECTION

1. select the connection in the connection list

2. click on the button Edit

3. change the connection parameters

4. finish with Save

DELETE CONNECTION

1. select the connection in the connection list

2. click on the button Delete

3. the connection will be removed from the list

Creating variables

15

7. Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays main.chm::/15262.htm

 as structure variables main.chm::/15278.htm

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

2. The dialog for configuring variables is opened

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

16

3. configure the variable

4. The settings that are possible depends on the type of variables

Property Description

Name Distinct name of the variable. If a variable with the same name already

exists in the project, no additional variable can be created with this name.

 The # character is not permitted in variable names. If non-

permitted characters are used, creation of variables cannot be completed

and the Finish button remains inactive.

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for internal

variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is

automatically loaded.

Driver object type

(cti.chm::/28685.h

tm)

Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm
cti.chm::/28685.htm

Creating variables

17

Data type Select the desired data type. Click on the ... button to open the selection

dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays

chapter.

Addressing options Expanded settings for arrays and structure variables. You can find details

in the respective section.

Automatic element

activation

Expanded settings for arrays and structure variables. You can find details

in the respective section.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

 If a change is made to a data type that does not support the set signal range, the

signal range is amended automatically. For example, for a change from INT to SINT, the signal

range is changed to 127. The amendment is also carried out if the signal range was not inherited from

the data type. In this case, the measuring range must be adapted manually.

7.2 Addressing

Group/Property Description

General

Name Freely definable name.

 For every zenon project the name must be unambiguous.

Identification Freely assignable identification, e.g. for resources lable, comment ...

Addressing

Secondary

object

States the secondary object type (on page 18) for Time/Counter, Drum, Loop

variable and Alarm variable.

Net address Bus address or net address of the variable.

This address refers to the bus address in the connection configuration of the

Creating variables

18

driver. This defines the PLC, on which the variable resides.

Data block Not used.

Offset Offset of the variable, the storage address of the variable in the PLC or the

element number of the variable in the PLC. Adjsutable from 0 to 4294967295.

Alignment Alignment of a byte within a word (only for VMEMORY and KMEMORY)

Bit number Number of the bit within the configured offset.

POSSIBLE ENTRIES: 0 ... 65535

String length Only available for String variables: Maximum number of characters that the

variable can take.

Driver

connection/Driv

er object type

Depending on the employed driver, an object type is selected during the creation

of the variable; the type can be changed here later.

Driver

connection/Data

type

Data type of the variable. Is selected during the creation of the variable; the type

can be changed here later.

 If you change the data type later, all other properties of the

variable must be checked and adjusted, if necessary.

7.3 Secondary object type

 For driver object types time/counter, drum, loop variable or alarm variable the following data types and

secondary object types are available:

Creating variables

19

Driver object type Data type

Timer/Counter

Preset (TCP) INT

Current (TCC) INT

Drum

Step Preset (DSP) INT

Step Current (DSC) INT

Count Preset (DCP) INT

Count Current (DCC) INT*

Loop Variable

Gain (LKC.) REAL

Reset Time - min (LTI.) REAL

Rate Time – min (LTD.) REAL

Sample Rate – sec (LTS) REAL

Process Variable (LPV) REAL, INT

PV High Limit (LPVH) REAL

PV Low Limit (LPVL) REAL

Set Point (LSP) REAL, INT

SP High Limit (LSPH) REAL, INT

SP Low Limit (LSPL) REAL, INT

Output (LMN) REAL, INT

Bias (LMX) REAL, INT

Error (empty) REAL, INT

High-High Alarm Limit (LHHA) REAL, INT

High Alarm Limit (LHA) REAL, INT

Low Alarm Limit (LLA) REAL, INT

Low-Low Alarm Limit (LLLA) REAL, INT

Creating variables

20

Alarm Deadband (LADB) REAL, INT

Orange Dev Alarm Limit (LODA) REAL, INT

Yellow Dev Alarm Limit (LYDA) REAL, INT

Rate of Change Alarm Limit (LRCA) REAL

Alarm Acknowledge Flags (LACK) UINT

Deriv Gain Limiting Coeff (LKD) REAL

Loop Status UINT

Loop Mode UNIT

Loop V-Flags (LVF) UINT

Control Flags – MSW (LCFH) UINT

Control Flags – LSW (LCFL) UINT

Ramp/Soak Status Flags (LRSF) UINT

Ramp/Soak Step Number (LRSN) INT

Alarm Variable

Sample Rate – sec (ATS) REAL

Process Variable (APV) REAL, INT

PV High Limit (APVH) REAL

PV Low Limit (APVL) REAL

Set Point (ASP) REAL, INT

SP High Limit (ASPH) REAL, INT

SP Low Limit (ASPL) REAL, INT

Error (AERR) REAL, INT*

High-High Alarm Limit (AHHA) REAL, INT

High Alarm Limit (AHA) REAL, INT

Low Alarm Limit (ALA) REAL, INT

Low-Low Alarm Limit (ALLA) REAL, INT

Alarm Deadband (AADB) REAL, INT

Creating variables

21

Orange Dev Alarm Limit (AODA) REAL, INT

Yellow Dev Alarm Limit (AYDA) REAL INT

Rate of Change Alarm Limit (ARCA) REAL, INT

Alarm Acknowledge Flags (AACK) UINT*

Alarm V-Flags (AVF) UINT*

Alarm Control Flags – MSW (ACFH) UINT

Alarm Control Flags – LSW (LCFL) UINT

* Read only

7.4 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out

which driver objects are provided by the driver and which IEC data types can be assigned to the

respective driver objects.

7.4.1 Driver objects

The following object types are available in this driver:

Creating variables

22

Driver object type Channel
type

Read /
Write

Supported data
types

Description

V memory 64 R / W BOOL, SINT, USINT,

INT, UINT, DINT,

UDINT, REAL, STRING

K memory 65 R BOOL, SINT, USINT,

INT, UINT, DINT,

UDINT, REAL, STRING

STW memory 66 R / W INT,UINT

WX memory 67 R / W INT,UINT

WX memory 68 R / W INT,UINT

X memory 69 R / W BOOL

Y memory 70 R / W BOOL

C memory 71 R / W BOOL

Time/Counter 72 R / W INT

Drum 73 R / W INT

Loop variable 74 R / W INT,UINT,REAL

Alarm variable 75 R / W INT,UINT,REAL

Driver variable 35 R / W BOOL, SINT, USINT,

INT, UINT, DINT,

UDINT, REAL, STRING

Variables for the statistical

analysis of communication.

Find out more in the chapter

about the Driver variables (on

page 30)

7.4.2 Mapping of the datatypes

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes

with the datatypes of the PLC.

Creating variables

23

PLC zenon Data type

BOOL BOOL 8

- USINT 9

- SINT 10

UINT UINT 2

INT INT 1

- UDINT 4

- DINT 3

- ULINT 27

- LINT 26

REAL REAL 5

- LREAL 6

STRING STRING 12

- WSTRING 21

- DATE 18

- TIME 17

- DATE_AND_TIME 20

- TOD (Time of Day) 19

 The property Data type is the internal numerical name of the data type. It is also used

for the extended DBF import/export of the variables.

7.5 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every driver.

Creating variables

24

7.5.1 XML import of variables from another zenon project

For the import/export of variables the following is true:

 The import/export must not be started from the global project.

 The start takes place via:

 Context menu of variables or data typ in the project tree

 or context menu of a variable or a data type

 or symbol in the symbol bar variables

 Attention

When importing/overwriting an existing data type, all variables based on the existing

data type are changed.

There is a data type XYZ derived from the type INTwith variables based on this data

type. The XML file to be imported also contains a data type with the name XYZ but

derived from type STRING. If this data type is imported, the existing data type is

overwritten and the type of all variables based on it is adjusted. I.e. the variables are now

no longer INT variables, but STRING variables.

7.5.2 DBF Import/Export

Data can be exported to and imported from dBase.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down menu of Extended export/import... select the Import dBase command

3. follow the import assistant

Creating variables

25

The format of the file is described in the chapter File structure.

 Info

Note:

 Driver object type and data type must be amended to the target driver in the DBF file in order for

variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down menu of Extended export/import... select the Export dBase command

3. follow the export assistant

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for name, 3

character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file name length including

path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Info

dBase does not support structures or arrays (complex variables) at export.

File structure of the dBase export file

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

26

 Attention

dBase does not support structures or arrays (complex variables) when exporting.

DBF files must:

 correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for name, 3 character

suffix, no spaces)

 Be stored close to the root directory (Root)

DESIGN

Description Type Field size Comment

KANALNAME Char 128 Variable name.

The length can be limited using the MAX_LAENGE entry in

project.ini .

KANAL_R C 128 The original name of a variable that is to be replaced by the new

name entered under "KANALNAME" (field/column must be

entered manually).

The length can be limited using the MAX_LAENGE entry in

project.ini .

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has to be

created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE entry in

project.ini .

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)

corresponds to the driver object type.

HWKANAL Num 3 Bus address

BAUSTEIN N 3 Datablock address (only for variables from the data area of the

PLC)

ADRESSE N 5 Offset

Creating variables

27

BITADR N 2 For bit variables: bit address

For byte variables: 0=lower, 8=higher byte

For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables

ATTENTION: Only the first variable is fully available. All others

are only available for VBA or the Recipe Group Manager

LES_SCHR R 1 Write-Read-Authorization

0: Not allowed to set value.

1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object

comprises KANALTYP and DATENART

SIGMIN Float 16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values

(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one decimal

possible)

not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s], one decimal

possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

Creating variables

28

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable is not

requested from the server but from the standby-server in

redundant networks

RESOURCE C 128 Resource label.

Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry in

project.ini .

ADJWVBA R 1 Non-linear value adaption:

0: Non-linear value adaption is used

1: non linear value adaption is not used

ADJZENON C 128 Linked VBA macro for reading the variable value for non-linear

value adjustment.

ADJWVBA C 128 Linked VBA macro for writing the variable value for non-linear

value adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

 Attention.

When importing, the driver object type and data type must be amended to the target

driver in the DBF file in order for variables to be imported.

LIMIT DEFINITION

Limit definition for limit values 1 to 4, and status 1 to 4:

Creating variables

29

Description Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 Technical value or ID number of a linked variable for a dynamic

limit (see VARIABLEx)

(if VARIABLEx is 1 and here it is -1, the existing variable linkage

is not overwritten)

SCHWWERT1 F 16 Threshold value for limit

HYSTERESE1 F 14 Hysteresis in %

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking

the limit is defined by an absolute value (see field GRENZWERTx).

FUNC1 R 1 Function linking

ASK_FUNC1 R 1 With interrogation before execution

FUNC_NR1 N 10 ID number of the linked function

(if “-1” is entered here, the existing function is not overwritten

during import)

A_GRUPPE1 N 10 Alarm/event group

A_KLASSE1 N 10 Alarm/event class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the

definition of variables. For more information, see chapter Variable definition.

Creating variables

30

7.6 Driver variables

The driver kit implements a number of driver variables. These are divided into:

 Information

 Configuration

 Statistics and

 Error messages

The definitions of the variables defined in the driver kit are available in the import file drvvar.dbf (on

the CD in the directory: CD_Drive:/Predefined/Variables) and can be imported from there.

Variable names must be unique in zenon. If driver variables are to be imported from drvvar.dbf

again, the variables that were imported beforehand must be renamed.

 Info

Not every driver supports all driver variants.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Driver variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one connection at

a a time

Creating variables

31

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon service pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection stopped

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

Creating variables

32

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and

no OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver

simulation.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically

reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial

interface. Writing to this variable

immediately results in the method

SrvDrvVarApplyCom being called (which

currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the

modem. Writing this variable immediately

calls the method SrvDrvVarApplyModem.

This closes the current connection and

opens a new one according to the settings

PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone

number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be

kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Creating variables

33

Device STRING 8 Name of the serial interface or name of the

modem

ComPort UINT 9 Number of the serial interface.

Baud rate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize SINT 14 Number of bits per character of the serial

interface

Value = 0 if the driver cannot establish any

serial connection.

StopBit SINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be

established automatically for

reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone

number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer

occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem

connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is

accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UDINT 54 Time in seconds (s) to establish a

connection.

Creating variables

34

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is

required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is

required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required

to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required

to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read

all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read

all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group

Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group

Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group

High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group

Highest in milliseconds (ms).

Driver-specific functions

35

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

ERROR MESSAGES

Name from import Type Offset Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error

occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error

occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error

occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error

occurred.

RdErrHwAdresse UDINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError SINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8. Driver-specific functions

This driver supports the following functions:

Driver-specific functions

36

PACKED TASK CODES

The driver uses CAMP packets with packed task code. This means: Several read or write requests are

grouped in one CAMP/TCP packet. This increases the performance at reading and writing. In contrast to

blockwrite the write order is not lost.

BLOCKWRITE

The driver supports blockwrite for driver object types V memory and not string variables.

Blockwrite allows for the efficient sending of multiple set values (e.g. recipes). Variables that lie next to

each other in the PLC memory will be written to with a single write telegram or combined into a few

telegrams (for larger areas).

 if blockwrite is activated, the write sequence of the variables does not necessarily have to

match their sending sequence.

Blockwrite can be activated with an entry in the project.ini file:

1. select the project in Project Manager

2. press the short cut Ctrl+Alt+E

3. the SQL folder of zenon opens in the Windows Explorer

4. C:\ProgramData\COPA-DATA\SQL\...\FILES

5. navigate to \zenon\system\

6. open the file project.ini with a text editor.

7. add the following entry:

[CTI]

BLOCKWRITE=1

Driver commands

37

9. Driver commands

This chapter describes standard functions that are valid for most zenon drivers. Not all functions

described here are available for every driver. For example, a driver that does not, according to the data

sheet, support a modem connection also does not have any modem functions.

Driver commands are used to influence drivers using zenon; start and stop for example.

The engineering is implemented with the help of function Driver commands. To do this:

 create a new function

 select Variables -> Driver commands

 The dialog for configuration is opened

Parameters Description

Drivers Drop-down list with all drivers which are loaded in the project.

Current state Fixed entry which has no function in the current version.

Driver commands Drop-down list for the selection of the command.

 Start driver (online

mode)

Driver is reinitialized and started.

 Stop driver (offline

mode)

Driver is stopped. No new data is accepted.

 If the driver is in offline mode, all variables that were

created for this driver receive the status switched off

(OFF; Bit 20).

 Driver in simulation Driver is set into simulation mode.

The values of all variables of the driver are simulated by the

Error analysis

38

mode driver. No values from the connected hardware (e.g. PLC, bus

system, ...) are displayed.

 Driver in hardware

mode

Driver is set into hardware mode.

For the variables of the driver the values from the connected

hardware (e.g. PLC, bus system, ...) are displayed.

 Driver-specific

command

Enter driver-specific commands. Opens input field in order to

enter a command.

 Activate driver write

set value

Write set value to a driver is allowed.

 Deactivate driver

write set value

Write set value to a driver is prohibited.

 Establish connection

with modem

Establish connection (for modem drivers) Opens the input fields

for the hardware address and for the telephone number.

 Disconnect from modem Terminate connection (for modem drivers)

Show this dialog in the

Runtime

The dialog is shown in Runtime so that changes can be made.

If the computer, on which the driver command function is executed, is part of the zenon network,

additional actions are carried out. A special network command is sent from the computer to the project

server, which then executes the desired action on its driver. In addition, the Server sends the same

driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby

both have a working and independent connection to the hardware.

10. Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

Error analysis

39

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display

them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also

installed with zenon. You can find it under Start/All programs/zenon/Tools 7.00 -> Diagviewer.

zenon driver log all errors in the log files. The default folder for the log files is subfolder LOG in directory

ProgramData, example: C:\ProgramData\zenon \zenon700\LOG for zenon version 7.00

SP0. Log files are text files with a special structure.

 With the default settings, a driver only logs error information. With the Diagnosis Viewer

you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the

driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 follow currently created entries live

 customize the logging settings

 change the folder in which the log files are saved

1. In Windows CE even errors are not logged per default due to performance reasons.

2. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

3. The Diagnosis Viewer does not display all columns of a log file per default. To display more

columns activate property Add all columns with entry in the context menu of the column

header.

4. If you only use Error logging, the problem description is in column Error text. For other

diagnosis level the description is in column General text.

5. For communication problems many drivers also log error numbers which the PLC assigns to

them. They are displayed in Error text and/or Error code and/or Driver error

parameter(1 and 2). Hints on the meaning of error codes can be found in the driver

documentation and the protocol/PLC description.

6. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and

Deep Debug there are a great deal of data for logging which are saved to the hard drive and

main.chm::/12464.htm

Error analysis

40

which can influence your system performance. They are still logged even after you close the

Diagnosis Viewer.

 Info

You can find further information on the Diagnosis Viewer in the Diagnose Viewer

(main.chm::/12464.htm) chapter.

10.2 Analysis for wrongly addressed variables

If storage areas have status I bit, a reason can be that variables are wrongly addressed. With the help of

the Diagnosis Viewer (main.chm::/12464.htm) you can figure this out. The log files of the Diagnosis

Viewer should contain a message similar to this:

Connection '0': Reading variable block failed. TT '1', offset '2094', count '2'

In this case the following things are important:

 Offset of variables: 2094

 TT number: 1

Via the TT number from the log message it is possible to find out the driver object type of the variable.

main.chm::/12464.htm
main.chm::/12464.htm

Error analysis

41

LIST OF TT NUMBERS WITH DRIVER OBJECT TYPES

TT Driver Object Type Secondary Object Data Type

01 V Memory UINT

01 INT

01 DINT

01 Real

01 String

02 * K Memory UINT

02 * INT

02 * DINT

02 * Real

02 * String

03 * Discrete Input (X) BOOL

4 Discrete Output (Y) BOOL

5 Control Relay (C) UINT

09 * WX Memory UINT

09 * INT

Error analysis

42

0A WY Memory UINT

0A INT

1A * Status Word (STW)

UINT 1A *

 DINT

0E Timer/Counter Preset

(TCP) INT 0E

Preset (TCP) INT

0F Current (TCC) INT

10 Drum Step Preset (DSP) INT

11 Step Current (DSC) INT

12 Count Preset (DCP) INT

1B * Count Current (DCC) INT

20 Loop Variable Gain (LKC.) Real

21 Reset Time - min (LTI.) Real

22 Rate Time – min (LTD.) Real

2A Sample Rate – sec

(LTS)

Real

25 Process Variable (LPV) Real

3A INT

26 PV High Limit (LPVH) Real

27 PV Low Limit (LPVL) Real

2B Set Point (LSP) Real

3E INT

35 SP High Limit (LSPH) Real

4A INT

36 SP Low Limit (LSPL) Real

49 INT

2C Output (LMN) Real (%)

3D INT

Error analysis

43

31 Bias (LMX) Real

48 INT

30 Error (empty) Real

3F INT

32 High-High Alarm Limit

(LHHA)

Real

40 INT

23 High Alarm Limit (LHA) Real

38 INT

24 Low Alarm Limit (LLA) Real

39 INT

33 Low-Low Alarm Limit

(LLLA)

Real

41 INT

37 Alarm Deadband

(LADB)

Real

42 INT

28 Orange Dev Alarm

Limit (LODA)

Real

3B INT

29 Yellow Dev Alarm

Limit (LYDA)

Real

3C INT

34 Rate of Change Alarm

Limit (LRCA)

Real

4F * Alarm Acknowledge

Flags (LACK)

UINT

4D Deriv Gain Limiting

Coeff (LKD)

Real

1E Loop Status UINT

Error analysis

44

1F Loop Mode UNIT

2D * Loop V-Flags (LVF) UINT

4B Control Flags – MSW

(LCFH)

UINT

4C Control Flags – LSW

(LCFL)

UINT

2F * Ramp/Soak Status

Flags (LRSF)

UINT

4E Ramp/Soak Step

Number (LRSN)

INT

57 Alarm Variable Sample Rate – sec

(ATS)

Real

52 Process Variable (APV) Real

64 INT

53 PV High Limit (APVH) Real

54 PV Low Limit (APVL) Real

58 Set Point (ASP) Real

67 INT

5F SP High Limit (ASPH) Real

70 INT

60 SP Low Limit (ASPL) Real

6F INT

5B * Error (AERR) Real

69 * INT

5C High-High Alarm Limit

(AHHA)

Real

6A INT

50 High Alarm Limit

(AHA)

Real

62 INT

Error analysis

45

51 Low Alarm Limit (ALA) Real

63 INT

5D Low-Low Alarm Limit

(ALLA)

Real

6B INT

61 Alarm Deadband

(AADB)

Real

68 INT

55 Orange Dev Alarm

Limit (AODA)

Real

65 INT

56 Yellow Dev Alarm

Limit (AYDA)

Real

66 INT

5E Rate of Change Alarm

Limit (ARCA)

Real

73 * Alarm Acknowledge

Flags (AACK)

UINT

59 * Alarm V-Flags (AVF) UINT

71 Alarm Control Flags –

MSW (ACFH)

UINT

72 Alarm Control Flags –

LSW (LCFL)

UINT

* Read Only Variable

10.3 Check list

Checks after communication errors:

 Is the PLC connected to the power supply?

 Are the participants available in the TCP/IP network?

Error analysis

46

 Can the PLC be reached via the Ping command?

 Can the PLC be reached at the respective port via TELNET?

 Did you configure the net address correctly, both in the driver dialog and in the address

properties of the variables?

 Did you use the right object type for the variable?

 Does the offset addressing of the variable match the one in the PLC?

 Analysis with the Diagnosis Viewer: Which messages are displayed?

	1. Welcome to COPA-DATA help
	2. CTI
	3. CTI - Data sheet
	4. Driver history
	5. Requirements
	6. Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Driver dialog 1

	7. Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Secondary object type
	7.4 Driver objects and datatypes
	7.4.1 Driver objects
	7.4.2 Mapping of the datatypes

	7.5 Creating variables by importing
	7.5.1 XML import of variables from another zenon project
	7.5.2 DBF Import/Export

	7.6 Driver variables

	8. Driver-specific functions
	9. Driver commands
	10. Error analysis
	10.1 Analysis tool
	10.2 Analysis for wrongly addressed variables
	10.3 Check list

