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1. Welcome to COPA-DATA help 

GENERAL HELP 

If you miss any information in this help chapter or have any suggestions for additions, please feel free to 

contact us via e-mail: documentation@copadata.com (mailto:documentation@copadata.com). 

 

 

PROJECT SUPPORT 

If you have concrete questions relating to your project, please feel free to contact the support team via 

e-mail: support@copadata.com (mailto:support@copadata.com) 

 

 

LICENSES AND MODULES 

If you realize that you need additional licenses or modules, please feel free to contact the sales team via 

e-mail: sales@copadata.com (mailto:sales@copadata.com) 

 

2. Project efficiently with the help of zenon 

Is it the first time you are using zenon?  

Here you find information on how to use zenon efficiently. This chapter is recommended even when you 

already gathered some experience with other process control systems You´ll learn which basic ideas are 

behind zenon and how it works; why and how zenon helps you work easier and faster.  

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com
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AN OVERVIEW OF ZENON 

zenon consists of Editor and Runtime.  

Projects are created in the Editor. Operation and monitoring is done in the Runtime. Editor and Runtime 

are compatible across versions from version 6.20 on. A project that was created with version 6.50 for 

example also works with Runtime version 6.22 and vice versa. 

zenon mainly differs from other systems by: 

 Easy operation  (on page 7): Many actions can be achieved with a few mouse clicks; assistants 

and wizards make work easy and fast. You can work using drag&drop with the mouse or the 

keyboard - as you like it. 

 Practical object orientation (on page 8): You work continuously with objects that can be 

parameterized swiftly instead of being programmed rather time-consumingly . Once defined, 

objects can be used across projects. You profit from inheritance and can change properties in 

the blink of an eye. 

 Excellent reusability (on page 20) of objects and elements that have been configured: Many 

elements, from individual variables to complete projects can be very easily and effectively 

reused in zenon. 

 Integrated network (on page 42): Distributed engineering in the network and 100% redundancy 

are no longer a big effort. You can create networks by activating the relevant checkbox. This 

way, you can also network individual stand-alone projects to become efficient, redundant 

systems. 

TIPS AND TRICKS 

You can find useful tips in the forum of www.copadata.com. The best way to learn how get the most out 

of zenon is to visit the COPA-DATA trainings and workshops that are tailored to your priorities and 

projects. Your distributor has more information for you - or drop us a mail at sales@copadata.com 

(mailto:sales@copadata.com).  

 

 

mailto:sales@copadata.com
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3. Easy operation 

zenon makes projecting easier through many small amenities and thus increases your productivity. 

When working with zenon you´ll discover that you can solve many problems according to your 

preferences. For example: 

FAVORITES 

You can define your own favorites in the object properties and in the function dialogue. You can choose 

from them at the beginning of the properties lists. That way you can swiftly access the properties you 

need frequently.   

GENERAL KEYBOARD OPERATION IN THE EDITOR 

The Editor can be easily operated via symbols and menus with the mouse; you can also universally use 

the keyboard. The shortcut keys from Windows also work in zenon. For example: 

 CTRL+C and CTRL+V  forcopy and paste 

 INSERT creates new objects 

 DELdeletes selected objects 

 Arrowkeys navigate in the views 

 Esc terminates the current action 

 Backspace jumps in the directory tree to the next higher level  

 CTRL+Z undoes the last actions with the exception of database operations 

Read more about this in chapter Keyboard shortcuts.  

DRAG&DROP  

In the Editor, it is possible to make worksteps easier by using Drag&Drop. For example: 

 Change the order of menu entries 

 Link fonts with dynamic elements like universal slider, clock, combined element etc.  

 Change the order of structure elements for structure data types 
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 Change the order within a script 

 Copy or move functions using different scripts 

 Copy scripts by moving them onto the master node 

INTELLIGENT ASSISTANTS AND WIZARDS FOR COMPLEX TASKS 

The assistants and wizards integrated in zenon help you to create a base project in no time or to 

purposefully make complex adjustments. We recommend the wizards for the universal slider, the 

combined element and the archiving especially for beginners. 

TOOLTIPS FOR ELEMENTS AND PROPERTIES 

If you move the mouse pointer above a display element (for example, a text button) or a linked property 

(for example the function linked to a text button), a tooltip pops up. It shows information about the 

linked elements, like the linked function and its parameters.  

EXTENDED DRAWING POSSIBILITIES  

The graphical editor offers a broad range of functions that make drawing the equipment easy and also 

offers you a lot of possibilities. From stepless zoom to scaling with a click, locking element corner points 

as well as automatic distribution of elements following rules. You can find details in chapter  Images. 

GO TO LINKED ELEMENT 

For all graphical elements, functions, variables and other elements it´s possible to jump directly to the 

linked element. For example, you can click on a display element and are directly shown the linked 

variable, if you click on it you come directly to the used data type and by clicking on it you can even see 

the used unit. If you need to, you can conveniently take back all these steps up to the starting point with 

some mouse clicks.  

 

4. Object-orientation 

COPA-DATA sees the topic of automatization object-oriented and pragmatically. That´s how zenon 

works; furthermore, it can be largely automatized itself. You don´t need a programming language for 

zenon. You do not have to program one single line of code. Instead, you assign objects with properties 



Object-orientation 

 

 

9 

 

 

using the mouse. That works not only with individual objects but also centrally for a whole project and 

across objects, too.  

If you´re now worried that you can´t individualize zenon and are totally dependent on the object 

properties, the good news is: Of course you can individually adapt the design of zenon. To do so, use 

preferably VBA or the VSTA (.NET) development environment. Additionally, zenon offers many 

interfaces to communicate with hardware and software and boasts zenon Logic with an integrated 

SCADA logic. 

THREE IMPORTANT BASIC PRINCIPLES THAT HELP YOU WITH ZENON 

Three central principles make projecting with zenon easy, reliable and easy to maintain: 

1. Parameterizing instead of programming (on page 9):  

Easily set the required parameters instead of programming or adapting scripts. 

2. Global / central instead of local (on page 11):  

Define objects once and reuse them over and over, also across projects, instead of writing 

or copying scripts over and over again.  

3. Object-oriented parameterization: (on page 12) 

Use all advantages of object-oriented thinking. 

 

 

4.1 Parameterizing instead of programming 

How do you profit if you parameterize projects instead of programming them? 

You dispense with code that is prone to errors and gain flexibility, clear structures, speed and high 

reusability. Four items are particularly in favor of parameterization: 

1. Predefined modules save time 

zenon contains many predefined modules. Instead of programming scripts yourself, you choose 

the suitable module and configure it by selecting the desired properties and parameters. That 

allows you to create executable projects in no time.  

2. The product from the manufacturer is already mature 

the designer concentrates on his projects. The software is developed and tested by the 
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manufacturer, designers don´t have to write their own code. Therefore it´s very easy to operate 

zenon - also for employees with no experience in software engineering. 

3. Easy maintenance and adaptation of the project 

zenon works strictly object-oriented. Combined with the philosophy "parametrization instead of 

programming", that means: simple maintenance and adaptation. For changes and monitoring, 

you only have to verify or change the properties of the individual objects instead of reading and 

adapting long code lines. In the lifetime of the project that ensures 

 A clear structure: Projects can be reproduced even some years later, even by new 

employees.  

 Security: Error-prone scripts and programming is avoided. 

 You save time: Projection, adaptation and maintenance can be realized a lot quicker. 

4. Easy adaptation for different machines 

zenon can be adapted easily and swiftly to new or changed machines. Project adaptations can be 

done with just a few mouse clicks. 

Parameterization prevents errors in scripts from being copied again and again. It prevents tedious 

changes in many individual scripts if you just want to adapt little things. But that doesn´t mean you have 

to be inflexible. zenon, too, gives you opportunities to individually expand and adapt the system.  

 VBA/VSTA: 

With the integrated script language Visual Basic for Applications or C# and VB.NET, you can 

execute any code in the Runtime. This allows the execution of automation tasks, logical tasks 

and interfacing tasks like database access. 

 zenon Logic: 

This completely integrated control environment allows you with its SCADA logic to use all the 

five IEC 61131-3 languages. With it, you can complete all calculations and solve all logic 

problems. 

 PCE:  

The integrated Process Control Engine allows you to use VB-Script and Java Script for automation 

tasks.  

 ActiveX Controls:  

You can integrate standard controls like Flash Player, Acrobat Reader, etc. in zenon. Of course, 

the interface is disclosed so you can include your own ActiveX Controls. 
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 WPF-Elements 

The direct integration of Microsoft´s Windows Presentation Foundation format allows you to 

integrate graphical elements like for example a button, a pointing device and many more things 

in this new graphics format directly in zenon images. These elements can be freely linked with 

variables and functions, which will allow you to implement any graphical effect you like. 

 COM-interface: 

You can access zenon via the completely disclosed COM-interface from outside. For 

communication needs, different programming languages like C++, .NET, Delphi and so on are 

provided.  

 

 

4.2 Global and central instead of local 

Properties can be defined in many ways in zenon, depending on the task: 

 directly on the object 

 centrally 

 globally 

Of course, in zenon you can adjust all settings directly at the object. But that is not always the smartest 

solution.  

DEFINE PROPERTIES CENTRALLY 

Often it makes sense to define settings only once centrally. This way, new objects offer the desired 

properties from the beginning. Changes are really easy: The desired property is changed only in one 

place centrally; all concerned objects adopt it automatically. That means only one click instead of many 

lines of code or many mouse clicks. 

These central settings can be found easily from any position of the editor. Every object that gets settings 

directly from a central location offers the option to show them directly. You simply follow a link and see 

immediately how these elements are linked. 

But you can´t only define properties centrally for a project, you can also define them globally.  



Object-orientation 

 

 

12 

 

 

PROJECT GLOBALLY 

zenon allows you to work with more than one project at a time - and thus saves your most precious 

resource: Working Hours For example, it is really easy to use the same fonts in all projects. Once 

defined, properties like font or font size are instantly available for all projects of a work area. If you need 

another font for all projects, it´ll take you only some seconds to change it in the global project. What if 

you want to provide a project with a different font? Well, then you change this font centrally in that 

project. 

  Info 

In the global project, use a numbering system that is different from the one in the single 

projects.  zenon always prefers the local settings if the numbers are identical.  

And: Use own names for font lists that you keep consistent in the global project and in 

the individual projects. In doing so, you ensure that all fonts are found if the language is 

changed. 

OVERVIEW THE RELATIONS OF OBJECTS:  

Additionally, you can get an overview of your projects and object relations with: 

 Cross reference list:  

It shows cross references in a project and enables you to easily search for the usage of variables 

and functions.  

 Wizard for documentation 

It automatically creates complete project documentation. You can configure exactly what you 

want to be included, down to every single property. 

 

 

 

4.3 Object-oriented parameterization 

"Object-oriented parameterization" is the fundamental philosophy of zenon. This philosophy arranges 

work clearly and saves time for creation and management of variables. 

Each variable in zenon is based on two elements: 
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 Drivers (on page 13)  

 Data type (on page 14)  
 

4.3.1 Drivers 

Drivers are not directly integrated in zenon, they are implemented via a driver object type. This driver 

object type defines the area of the PLC that will be addressed.  

DRIVER OBJECT TYPE 

There are many different driver object types, e.g. standard PLC markers, data blocks, inputs, outputs, 

counters, etc. – but also special types like alarm or driver variables. 

The driver object type determines: 

 the area of the PLC 

 the driver´s granularity in that area 

 it defines the data types that can be created in the memory area 

 

Not any data type can be created in any area. Therefore, always proceed as directed when 

creating a variable: 

 first the driver,  

 then driver object type and  

 lastly the data type 

Granularity is particularly important for numerical adressing PLCs, like for example Siemens S7.  Not 

every PLC has the same resolution, and not every area in a PLC has the same resolution.  

For example, the data block area of a Siemens S5 PLC is word-oriented, whereas its marker area is byte-

oriented. This means that the smallest unit that can be addressed is one byte or word. Now if you want 

to write a bit into such an area, you have to read at least a whole byte/word, mask the desired bit, 

change it, and then write the whole byte/word back to the PLC.  
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The same information is required when addressing the areas, called offset. You start with zero and go on 

counting in byte/word steps. If you use automatic adressing (on page 19)in zenon granularity is 

automatically considered. So, granularity does not depend on the driver but on the driver object type.  

Driver variables are offered by every driver and offer many advantages for projecting. They do not 

communicate with the PLC but read out an internal memory area of the driver which contains mainly 

statistical information. But you can also control special functions with variables like telephone numbers 

for modem connections or dial/hang-up commands.  

You can find more information in the chapter Driver variables. 

A dBase file with the most important driver variables is included on the installation CD of zenon. You can 

use it for the simple and efficient import of these variables into every driver instead of creating them 

manually. 

 

4.3.2 Data types 

Data types are the heart of object-oriented parameterization. As you cannot change anything in the 

driver -object types, they cannot be used for object-orientation. The data types, on the other hand, offer 

many possibilities. 

We distinguish between three types: 

 Simple data types 

 Structure data types 

 Structure elements 
 

Simple data types 

Simple data types are always IEC data types, that means data types defined by the IEC in the 61131-3 

standard, like BOOL, INT, USINT, UDINT, STRING, WSTRING, etc. They help to define the size of an area - 

for example using  

BOOL: 1 Bit 

INT: 16 Bit signed 

UINT: 16 Bit unsigned 
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The data types in zenon allow not only IEC data type, a lot more properties are available. They have the 

same description as the variables´ properties:  

 Identification 

 Unit 

 Value range 

 Limits  

Why this "double accounting"? 

The reason is easy to explain:  

Just as a dynamical element takes over the font type and size from the linked font, the variable also 

takes over the value calculation, the unit and the limits from the data type it is based on. 

As opposed to the linking of dynamic elements and fonts, we are dealing with an object-oriented 

approach here: The data type object inherits its properties to the variable. The difference? 

The linked/derived properties of the variable can be separated/overwritten. This works for every single 

property, but also for all properties at once. This means you can take over the unit from the data type 

centrally, yet overwrite the identification or the address directly at the variable. This is how it works: 

 Change the relevant value of the variable, then the link is separated.  

 You can verify that by looking in the properties: The check is no longer there.  

You can use further functions via the context menu: 

 Link property with datatype:  

If you have separated the link, you can reestablish it. 

 Separate property:  

You can separate a single property without having to change the value. If you change the 

value of the data type later on, the variable will not be modified by this action. This allows 

you to define exactly where the inheritance concept should be applied. 

A useful option: you can also link or separate all properties from the data type with one mouse click. 

This allows you to switch to and from the original state (everything inherited) really quickly. How do I, as 

the user, profit from all this? 
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Increased flexibility: If you have many variables with the same limit, e.g. an alarm for value 1, you can 

simply set it at the data type. The actual limit and other optional parameters can then be set for every 

variable separately. You no longer have to create and update the limit for every single variable, which 

will drastically increase your engineering performance. The default data type BOOL has a predefined 

limit at 0 and 1! 

If you don´t use a limit for each BOOL variable, you don´t have to take care and to manually deactivate 

the limit for each variable. Instead, you can conveniently use a feature of zenon und create your own 

BOOL data type. Proceed as directed: 

 Leave the standard data type as it is  

  Click on button New data type . 

 You will then be offered the list with the already existing data types. 

 Choose Standard BOOL:   

 Assign a name, e.g. MyBOOL  

 All the properties of the new data type are automatically taken over by the old one 

 Delete the limits inMyBool  

Use this new data type MyBool to create all BOOL variables that are not supposed to have limits – this 

removes all unwanted limits. The other limits, which you do want to stay, will remain untouched.  

Of course you can also create more of your own BOOL data types, as many as you like. All variables that 

require the same settings for most of their properties get their own data type. If one of the properties 

changes, you can perform the changes centrally and all derived variables will automatically be updated – 

except the ones whose links you separated. 

 

Structure data types - structure elements - structure array 

STRUCTURE DATA TYPES 

Structure data type designates a group of data types whose sequence and arrangement is exactly 

defined. For example, a structure “Motor” can consist of the elements "Actual speed (RPM)" and "Power 

input". 

A structure can also be nested, different hierarchy levels are possible. 

With structure data types, you can build up your variable pool exactly as it exists in the PLC or in reality. 
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STRUCTURE ELEMENT 

A structure data type is actually just a hull that bears the name of the structure but does not have any 

properties of its own.  

The properties will be assigned only after adding structure elements to the structure data type. We 

differentiate between the following types: 

 Linked structure data type: 

Reference to an existing data type. All properties are taken over except for the name.  

Advantage: If the structure element provides many properties of an already existing data 

type, they can be reused. Of course, you can still change each of the variable properties or 

separate them from the data type. 

 own embedded structure data type: 

allows for individual addressing settings. This new data type is only valid within this 

structure. 

  Info 

Advantage object orientation: If the structure changes somehow, it suffices to 

change the structure data type to adapt all variables in this structure automatically.  

Changes are possible in all specifications: 

 simple properties like the unit of the data type   

 complex properties like adding or deleting a limit  

 Changing the whole structure, e.g. by changing the order of elements or 

adding / deleting unique structure elements in the structure data type 

 

 STRUCTURE ARRAY 

If not only one machine is concerned but many, the structure array is used.  

For example: 100 Pumps instead of 1 pump. 

You simply change the structure variables to a structure array. With a single mouse click, 100 variables 

become 100 structure variables.  
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Sticking to our example, we have to create 12 variables for each of our pumps, which results in a total of 

1200 variables. The method "object-oriented parametrization" makes that possible with just a few 

mouse clicks. As additional advantage, all variables are predefined. Every single variable already comes 

with all the properties it needs, e.g. unit, value calculation, alarms, CEL entries etc. 

  Info 

Structure data types are also suitable for the reuse (on page 32) of variables. 

 

 

Example pump: 

INITIAL SITUATION 

A pump consists of two motors. Each of these motors has some variables like: 

 Actual speed (RPM)  

 Power consumption 

 Output 

 etc.  

Each motor has a slider with the following variables:  

 Nominal speed (RPM) 

 P-share 

 I-share 

You build this constellation as directed: 

1. Create a structure slider from one data type each for 

 Nominal speed (RPM) 

 P-share 

 I-share 

2. Create a structure motor with these data types each: 

 Actual speed (RPM)  
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 Power consumption  

 Output 

 etc.    

3. Adopt the slider  in the structure motor .  

4. Finally, create the pump structure and integrate the motor into it.   

As we have two motors in our pump, you simply add the motor data type to your pump 

structure twice.  

5. Create a variable that is based on this structure data type: 

 Create new variable 

 Choose structure data type pump   

The individual elements of this structure variable are called Structure elements (on page 16) 

.You can use each of these elements everywhere in zenon- in screens, as alarms, in 

archives, in recipes, etc. 
 

4.3.3 Tips for adressing and import / export 

Practical examples:  

 Addressing 

 Import / Export 

ADDRESSING:  

With numeric controls you can choose if adressing shall be automatic or semi-automatic. All properties 

described here can be reached, too, via VBA/VSTA and can thus be used for automatic projecting. 

The offset and, if required, the byte and bit addresses are calculated automatically for structure 

elements, based on the position of the structure elements - for arrays across the whole array. If you 

have created the same structure in the PLC and in zenon, everything works fine and you do not have to 

care about addressing. 
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Here, you assign unique start addresses already with the data type. The other addresses will then be 

determined based on these addresses. Of course, you can also change them later. Details can be found 

in Automatic addressing. 

For symbolically adressed PLCs, you have to use the same name in zenon and in the PLC.  

XML IMPORT / EXPORT:   

Information like data types, structures, inherited properties etc. is also included when importing or 

exporting. This means that, once defined, you can comfortably export structure data types and structure 

variables and import them in other projects to reuse them or adapt them as needed. 

 

5. Reusing elements 

The first time a project is created, you need time for the creation of variables, functions, screens and 

their links. You can reduce this time considerably in following projects. Because with zenon you have the 

possibility to easily transfer elements that have been created to other projects.  

For example, in many projects you need the standard components of every project, such as screens for 

the system status or detail screens for hardware components that are used repeatedly (pumps, valves, 

motors etc.). 

The are different ways for you to reuse components: 
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Topic Reuse of 

Replacing variables and functions (on 

page 21) 

Elements 

Symbols (on page 27) Screens 

Structure data types (on page 32) Variables 

Reaction matrices (on page 35) Variables 

Global project (on page 35) Central elements of a project 

XML (on page 37) Project parts by means of import and export 

Wizards (on page 39) Screens and elements by means of import or individualization 

Reusing projects (on page 40) Projects 

 

  Info 

To be able to reuse elements efficiently, ensure when you create variables, functions and 

screens that they are clearly named (on page 22).  

 

 

5.1 Replacing variables and functions 

Variables and functions that are stored as dynamic elements can be replaced in an automatic manner. 

This can take place at different places: 

 Replacing linking in a screen (on page 23)  

 Replacing linking for screen switching (on page 25) 

 Replace indices  (on page 25)  

 You can also find more about replacement of variables and functions in the Screens manual in 

the Replacing linking of variables and functions section. 
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5.1.1 Naming conventions 

To be able to replace variables and other elements securely, the naming should be systematic and 

standardized if possible. You therefore support not only the reusability, but also maintenance and 

reverse engineering.  

Different systems support you with systematic naming.  

FOR EXAMPLE: ENERGY INDUSTRY 

Germany 

 KKS (Kraftwerk-Kennzeichen-System - Power Plant Classification System), for details (in German), 

see http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem 

(http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem) 

 DIN 6779 (Kennzeichnungssystematik für technische Produkte und technische 

Produktdokumentation - Classification System for Technical Products and Technical Product 

Documentation), for details (in German), see http://de.wikipedia.org/wiki/DIN_6779 

(http://de.wikipedia.org/wiki/DIN_6779)    

 AKZ (Anlagenkennzeichnungssystem - Equipment Classification System), for details (in German), 

see  http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem 

(http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem)   

International 

 KKS (Power Plant Classification System), for details, see 

http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System 

(http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System) 

Such standards exist for all industries. It is recommended that their naming convention is used. 

Variables are to be named in accordance with the KKS in an energy project. A corresponding variable 

with the label C01_MDY10-QA001_QA07 indicates: 

 Wind energy equipment C01 (row C, no. 1) 

 Wind turbine controlMDY10, Power part QA001, 

http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem
http://de.wikipedia.org/wiki/DIN_6779
http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem
http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System
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 Power protection QA07 

 

 

5.1.2 Replacement possibilities 

Replacements can be used at different points in a project: 

 Replace linking in a screen (on page 23): Screens are copied and the links are replaced in the 

copied screen.  

 Replacing linking for screen switching (on page 25): Only one screen is used for different PLCs; 

the links are adapted when switching. 

 Replacing indices (on page 25): Replacement of variables in a process screen using the value of 

index variables. 

 

 

Replacing linking in a screen 

If variables are attached in a screen, these can be easily replaced by means of a replacement dialog. 

Requirement: 

 Clear naming of variables (on page 22) 

With this, screens that have been created can continue to be used by copying & pasting. Replacement is 

is started using the context menu: 

 Right-click on the screen element 

 Click on Replace links 

 

The dialog for replacement is then opened. 
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EXAMPLE 

In our example, the project has a number of variables from different equipment parts. The following are 

on the process screen: 

 10 variables that come from the wind turbine control MDY10, linked to dynamic elements 

 Buttons with screen switching are present at different areas of MDY10 

Using copy & paste, the person configuring the project intends to reuse the screen in its exact form for 

wind turbine control MDY11 and to replace the variables and/or functions by the corresponding ones 

from the new PLC. To do this: 

1. The dynamic elements that the variables and functions are linked to are highlighted  

2. The replacement dialog is opened 

 

3. In the Source field, the equipment identification *MDY10* is entered 

(the first and last * characters are wild cards) 

4. MDY11 is entered in the Target field 

5. Replacement is carried out with Accept, the replace and the dialog is closed with OK 
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The screen can now be used for the new PLC. 

 

 

 

 

 

 

Replacing linking for screen switching 

With this method, the original screen is always used and switched in Runtime with different variables 

and functions. The screen contains different variables, as in the "Replacing linking in the screen (on page 

23)" example. Replacement is carried out during switching. To do this: 

1. Several screen switching functions are configured on this screen 

2. Is offered when the dialog for replacement (on page 23) is created 

3. Each function contains its own replacement process 

 

A variant of this that works with only one screen switching: Replacing indexes (on page 25) for arrays.  

 

Replace indices 

In Arrays, replacement for variables can be carried out via index variables.  

As with Replacing linking for screen switching (on page 25), the screen is only used once. The linked 

variables are replaced during the switching. Screen switching is only configured once (different to 

Replacing linking in the screen (on page 23)) and can be reused multiple times via an index variable.  
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EXAMPLE 

Screen switching is carried out on a process screen, which contains 10 variables for wind turbine control 

MDY10. The objective of the person configuring the project is to reuse this screen 1:1, because the wind 

turbine controls MDY11, MDY12 and MDY13 have the same number of variables.  

 

The indexing rule: 

 Source: C01 MDY10 QA001*  

 Target: C01 MDY{X01} QA001 

the effect of this: 

 With screen switching, the function is informed that it must use the variable value of X01 wind 

turbine control index in the variable names.  

Example: If this variable has a value of 12, then the process screen is displayed with all wind 

turbine control variables MDY12 when screen switching is executed 
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5.2 Symbols 

Symbols offer great potential for reuse. Symbols can be created in very complex forms and support 

inheritance. Symbols can be embedded or linked. With linking, modification at one point is sufficient to 

update all screens that use this symbol. Symbols can also be linked to other symbols. 

EXAMPLE OF A BUTTON BAR 

A symbol (empty rectangle) is linked as the basis in all buttons. 

 

Free-access properties (on page 27) make it possible to issue each button with different graphics. If the 

form or color of the buttons is to be changed, the "empty button" symbol must be changed. All buttons 

automatically accept the new form and/or color. 

 

 

5.2.1 Free access properties 

Linked symbols pass their properties on to the objects in which they were linked. However, individual 

properties can be released from inheritance. The displayed graphics in our button for example. If 

inheritance is released, this property can be set individually for each object. Changes to this detail in the 

initial element no longer influence the other objects.  

REUSING SCREENS 

The combination of symbols and released properties can be an effective solution for the reuse of 

process screens.  
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There is a central dialog for setting parameters in a project, which is to be used for various setting of 

parameters. Because this is used in various areas, there is also a requirement that certain adaptations 

(such as background colors, screens …) should be possible.  

Copy and paste: 

1. Create a process screen that contains this dialog for setting parameters  

2. Duplicate the screen using copy & paste 

3. The process screens that are duplicated can be adapted to the requirements graphically 

Inheritance is not possible here. If the person configuring the project subsequently wishes to 

make changes centrally (in relation to the basic structure of the dialog for setting parameters), they 

must then drag these to each individual process screen.    

Approach using symbols with released properties:  

1. The dialog for setting parameters is created using a symbol 

2. Elements that have to be adapted for different parameter points are decoupled via released 

properties from the inheritance concept  

3. The symbol is linked, positioned and adapted to the corresponding screens.  
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4. If the person configuring the project decides to change the general appearance of the dialog, 

they make this change centrally in the symbol. This change then affects all items in which the 

symbol is linked.  

 

5.  Global symbols can be adapted individually using released properties and corresponding 

replacement (on page 30).  

 

6. In this case, the person configuring the project has decided to change the general graphical user 

interface of the dialog for setting parameters. This change is made centrally at the "Setting 

parameters" symbol. The individual properties of the individual parameter dialogs remain 

unchanged; only the properties that are contained in inheritance are contained. 
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5.2.2 Replacement with symbols 

The process described in the Replacing variables and functions (on page 21) section can also be carried 

out for symbols. Here too, well-thought naming (on page 22) of the objects is a requirement.  

When carrying out replacements for symbols, a distinction must be made between two different 

approaches: A symbol from a library (project/global) can be 

 embedded in a process screen. 

  linked in a process screen  

Depending on the approach, different dialogs are switched for the replacement of variables/functions.  

EMBEDDED SYMBOLS 

Here, variables are replaced directly via the replacement dialog. The dialog offers the possibility to select 

variables via a variable selection dialog. Using symbols in this manner is not ideally suited for reuse.   
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LINKED SYMBOLS 

With this process, work is carried out using replacement strings. These strings are replaced with the 

corresponding variables during compilation. It is not possible, via the dialog called up, to make 

replacements by means of a variable selection dialog. The person configuring the project works using 

individual replacement strings here, which are separated from each other by a semi-colon (;). 

 

The symbol behind this replacement dialog can now be reused in various parts of the equipment. This 

example assumes that similar variables and functions are used in each equipment area (only 

differentiated by the equipment abbreviation in the name) and that these can be replaced quickly and 

with a clear overview.   

You can find more about replacement for symbols in the Screens manual in the Linked symbols section. 

 

 

5.2.3 Global system library 

Symbols are either administered in the project symbol library or in the global symbol library. The most 

important difference: 
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Symbol library Property 

Global system library Symbols are available in all projects. The Global symbol library node is 

in the project manager below the currently-loaded projects 

Global symbols are saved in the zenon program folder and only updated 

when the Editor starts. These symbols are not saved during project backup. 

Project Symbol 

Library 
Symbols are only available in the current project. 

The symbols are saved in the project folder. The project symbol library is in 

the current project in the Screens node and is backed up together with 

project backup. 

EXAMPLE 

 A central configuration point compiles a collection of symbols that are to be used by the configuration 

points distributed around the world in their individualized projects. For example, complex symbols that 

display important parts of process screens are displayed. This collection of symbols is in a folder or a file, 

for example "Global_Used_Symbols.SYM". If central graphical changes are carried out to this 

global collection of symbols, "Global_Used_Symbols.SYM" is simply sent to all configuration 

points and replaced there. Individual adaptation is carried out by means of released properties (on page 

27) and replacement (on page 30).  

It is not always necessary to distribute the whole collection of symbols. An XML export/import (on page 

37) can also be used to distribute individual selected symbols.  

  Attention 

There must be clear rules when the global symbol library is used: Local configuration 

points must not change the symbols from the symbol collection. Each change would be 

overwritten at the next update.00000000000.....................  

 

 

5.3 Structure data types 

Variables can be reused using structure data types. Complex structures can therefore be created and the 

advantages of inheritance can be used.  
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EXAMPLE 

The "Motor" structure data type consists of three elements:  

 Status  

 Speed   

 Temperature 

 

The elements differ in the type of inheritance: 

  „Status" and "Speed" are derived from the INT data type, but their inheritance was broken off 

by the embedding.  

This means: Subsequent updates to INT data type have no effect on these two elements.  

 „Temperature" also comes from the INT data type, the inheritance is intact.  

This means: Subsequent changes to the INT data type also have an effect on the settings of this 

structure element.  

If, for example, 20 motors are now configured, variables based on the same self-created "motor" data 

type can be created. This can, for example, happen by creating an array of this data type. Graphic 

display is solved in this example by means of a symbol. 

 

When this symbol is linked in a process screen, the fill-in variables of the symbol are replaced by those 

of the self-created structure data type. Ensure that the naming (on page 22) is well thought out from the 

start.  
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If a process screen is created as an overview of all motors, the inserted symbol can be easily duplicated 

by copying & pasting. The target variable must still be replaced by the corresponding sequence number 

at each symbol: 

 

If limit values for the "speed" are to be added at a later time, you benefit from the existing inheritance 

relationship between the self-created data type and the variables that are created as a result. For the 

planned change, a new limit value is created for the "speed" structure element of its "motor" data 

type. This change to a position that has been made affects all 20 created motors.  

The person configuring the project is completely free to change this inheritance relationship. A limit 

value for "speed" can be changed for one of the 20 created motor variables.   

 Individual properties or all properties of a variable are disconnected from the data type. 

  Info 

You can read tips for using structure data types in the  Structure data types - structure 

elements - structure array (on page 16) and in the Variables manual in the Structure data 

types section.  
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5.4 Reaction matrices 

Reaction matrixes ensure that a variable is the same throughout the project. In contrast to limit values, 

they have a central approach: A reaction matrix is configured once and then assigned to any number of 

variables. All variables that are linked to the reaction matrix react in the same way. Your advantage: 

Central and simple maintenance. 

 

 

5.5 Global project 

Standards can be defined throughout projects with a global project. With this, it is possible to define 

certain modules or elements for standard locations, whilst local projects define individual parameters. 

The following can be configured in the global project:  

 Alarming:  

Declaration of the alarm groups, alarm classes and alarm areas to be used globally. 

 Equipment modeling:  

This can support central project configuration, because a breakdown into two "plants" can be 

made. In doing so, it must be clearly defined which configuration elements come from the 

central configuration point and which come from the local configuration point.  

 User:  

If a standard is to have certain globally-valid users, these can be defined using the global 

project.  

 Files:  

Graphics can be prescribed by a standard, for example, which have to be used in 

individually-created projects. These can be made available globally.  

 Frames:  

Defining the process screen arrangement and size of the projects to be developed. For 

example, it could be set out clearly in some guidelines that newly-created screens can only 

be created using frames from a global project. A uniform global, graphic appearance is 

therefore created. 

 Fonts and color palettes:  
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To create uniform displayed text and colors, a pre-defined set of font lists and/or color 

palettes can be defined for global use. 

 Language tables:  

If, as a result of a standard, there is a defined set of terms and statements to be used in 

configuration, it is possible to define these using the defined language tables and to carry 

out the corresponding translations at the same time.   

EXAMPLE 

A central configuration point defines standards in the areas of color, fonts, templates, etc. using a global 

project for all people configuring the project. The global project is distributed to all teams as a project 

backup (on page 40). They import it into their workspace. A guideline must clearly stipulate that local 

configuration points must not make changes to a global project, because this would be repeatedly 

overwritten when updates from the central configuration point are made.   

 

A simple equipment model, which only makes a distinction between a central and a local configuration 

group. In an individualized project, this distinction could now be used for assistance when visualizing in 

the editor. In detail, this would look as if each configured element in the Editor was issued with a 

corresponding equipment group. 

 

The existing process screens are displayed after the equipment has been assigned.  

Therefore a local configuration point can clearly recognize which screens are updated by a central 

configuration point by means of an XML import. For people configuring a project locally, it is also clear 

which screens they are not permitted to change. This is because each change to globally-evaluated 

screens is overwritten again during the next update.   
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Hint: To update a global project, it is not always necessary to create and import a complete project 

backup. Individual changes can also be updated locally by exporting and importing via XML (on page 37).  

 

 

 

 

 

 

 

 

 

 

 

5.6 XML 

Import and export via the XML interface offers diverse possibilities for reusing project parts.  

  Attention 

Existing elements with the same name are overwritten during import.  

DEPENDENCIES DURING IMPORT 

If several project parts are to be imported, there are several XML files with different contents 

accordingly. To accept all content of several XML files, existing dependencies must be taken into 

account:  

If, for example, a screen is imported and its associated variables do not exist in the project, the links 

cannot be re-established! To create all variables correctly, it can be necessary to carry out the import of 

a screen or variables twice.  
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The most comprehensive way is to export a screen, because the XML file created contains not only the 

screen and the contained elements, but also the frame, associated variables and functions – everything 

that can be seen in the screen and that is linked directly.  

In screen “A”, we use a button to execute a function “B”, which opens screen “A” again. 

 Function “B” requires screen “A”, in order for this to be linked to function “B”.  

 Screen “A” requires function “B”, in order for this to be linked to the button.  

You must therefore: 

1.  First import the function,  

2. then the screen and then  

3. the same function once again, because otherwise the relationship to the screen cannot be 

created in the function. 

HARMONIZING PROJECTS THROUGHOUT PLANTS 

XML export/import is also suitable for guaranteeing uniformity of projects throughout a plant. If a 

company decides that certain project parts should be designed in a uniform manner, then the uniform 

elements are: 

1. Configured centrally 

2. Exported into an XML file 

3. Distributed as an XML file 

4. Accepted by each local team via XML import 

Alternatively, the export and import can also be carried out with a specific wizard.  

Because existing elements are overwritten are overwritten during XML import, these uniform elements 

must be named clearly and with a binding system. Local changes to these elements are overwritten 

again at the next import.  
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WIZARDS (ON PAGE 39) 

A zenon-based wizard is offered to support the user when importing. In the wizard, the user can then 

select what is to be imported using decision guidance. A possible approach for this wizard is to create an 

XML library that contains different variants of screens and functions as individual data. 

A wizard can also be used to configure standard functions that are present in XML format. A function is 

imported via XML and then adapted to individual requirements by changing certain properties that are 

not the same for each object. For example, there can be a screen switching function in XML format and 

this can be reused many time by individualizing the properties.   

 

 

5.7 Wizards 

The reuse of elements and parts of projects can be simplified and supported with wizards. Examples of 

where wizards are suitable most of all are: 

 Creation of template projects:  

A wizard makes it possible to create certain standard parts of a new project that is to be 

created by means of a few mouse clicks. In contrast to simple loading in of a complete 

project backup (on page 40) of the template project, the person configuring the project now 

has more scope for individualization.  

For example, a wizard can create different project types, depending on the machine.    

 Creation of pre-defined projects:  

Wizards can also help you create certain areas in a project.  

For example: Creation of a "Motor" project area.  

The wizard creates pre-defined elements for this area. With this, appropriate screens, 

functions, variables etc. can be configured with a few mouse clicks. In addition to the shorter 

configuration times, you also obtain a uniform appearance, because the wizards are 

programmed by a central configuration point and used by the local configuration points. 

 Configuration using pre-defined databases or files:  

Project databases or pre-defined files can also support project creation or project expansion. 

In doing so, the elements to be configured are described in a database or an Excel file 
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(function name, function type, function parameters, variable name, offset …). These are 

read off with the help of a wizard and corresponding configurations are undertaken in zenon.   

You can find out more about wizards and the creation of these in the Wizards manual 

 

 

5.8 Reusing projects 

Projects could also be reused in different ways. In doing so, mechanisms from the other chapter of 

reusability sometimes play a significant role. 

Project backup (on page 40) 

Save as (on page 41) 

Multi-project administration (on page 41)  

 

 

5.8.1 Project backup 

Project backups make it possible to accept complete projects.  

For example, a project can be distributed to all teams as a template. These create a project backup and 

individualize the project.  

  Attention 

This method is not suitable for transferring project changes, because all local 

configuration is overwritten when it is accepted.  

To maintain projects that have been created this way consistently throughout all teams, the use of XML 

exports/imports (on page 37) is recommended. 

 In doing so, note that existing elements with the same name are overwritten during import. During 

configuration, the configured elements that may be overwritten during import must be clearly 

identified. For example, a corresponding suffix to the element name is suitable , for example, or the 

procedure using equipment groups, see global project (on page 35) section. 
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5.8.2 Save as 

Save as creates a copy of a project in the active working area under a new name and with a new GUID. 

EXAMPLE 

Individual projects for different machine types are to be created, based on a template project. To do 

this: 

1. The project backup (on page 40) of the template project is loaded in 

2. Several differently-named projects are created in the active workspace using Save as (such as 

Machine 1, Machine 2, … )   

Each machine project has the same initial project situation. However, the projects no longer have any 

connection to a template project. Changes that are made in a template project are not automatically 

accepted into the copied projects. However changes to the template can be introduced into 

individualized projects by means of XML export/import (on page 37).  

 In doing so, note that existing elements with the same name are overwritten during import. During 

configuration, the configured elements that may be overwritten during import must be clearly 

identified. For example, a corresponding suffix to the element name is suitable , for example, or the 

procedure using equipment groups, see global project (on page 35) section. 

 

 

5.8.3 Multi-project administration 

Projects can also be compiled in a workspace in zenon multi-project administration as part of of an 

integration project. This way, a project can be changed centrally, whilst local configuration is carried out 

in another project. 

EXAMPLE 

Graphics are to be reused in a local project by means of a central configuration point, in order to create 

a uniform user interface globally. To do this, the central configuration creates a template project, which 
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displays the graphical basis for all other configuration teams. However, if a change to the user interface 

design is made at the centrally, this must be implemented at all project sites. This can be carried out 

using multi-project administration: A project contains the elements to be administered centrally; 

another project has the local configuration.  

Procedure: 

1. A template project is initially sent to all configuration teams 

2. This is then uploaded to the active workspace 

3. A second empty project is created locally, that contains the specific amendments 

4. There are now two projects in the workspace: The template project and the individualized 

project 

5. The multi-hierarchical arrangement of the projects is carried out in the next step  

6. The template project becomes the integration project, the individualized project becomes the 

sub-project    

  Info 

This method is not suitable for projects that are to run under Windows CE, because only 

one project can be started under CE.  

 

 

6. integrated network 

Distributed engineering in the network and 100% redundancy are no longer a big effort for you using 

zenon  You can create networks by checking the relevant checkbox in the project's properties. Creating 

efficiently networked, redundant systems from isolated standalone projects is just as easy.  

If you have a TCP/IP Windows network, zenon automatically offers network functions with a mouse 

click, either as client / server model or as a multihierarchical system with substations, workspace centers 

and centers. You  

 create projects - also with several users - simultaneously over the network 

 ensure equipment with the 100% zenon circular redundancy perfectly 
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 install distributed systems without any problems 

 have remote access to stations 

 monitor and control equipment via web server 

 see process data in all stations in real time 

 can display actions set on one workstation (e.g. acknowledging alarms) on all others, too 

 have actions be logged and archived centrally 

 use process data instantly for ERP systems like SAP 

zenonwill automatically take care of the required time synchronization on all participating computers. 
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