zenon manual

COPADATA

©2014 Ing. Punzenberger COPA-DATA GmbH
All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. The technical data contained herein has been
provided solely for informational purposes and is not legally binding. Subject to change, technical or
otherwise.

Contents

1. Welcome to COPA-DATA help ... 5
7R o 11 N 5
R 1= 1= | N 6
3.1 ACCESS ZENON APttt e s a e s 6

3.2 MBS .ttt bt bt e bt bRt e h e e bt e bt et e et s aee st sheenbeebeenreens 8
3.2, CanUSEVAriables.....couiiuiiiiiiiieieeee ettt s bbbttt et b e b b s 8

3.2.2 Y DAY T T o] L= TP 9

3.23 VarTADIETYPES ettt ettt ettt st st st e st sttt e bt e s be e e nee s beeenee et 9

3.24 ZENONEXIT 1oiiiiiiiiiiiiiii e 10

3.25 P21 oo 0] =5 (1 4 =T [PSSP 10

3.2.6 P21 0T] o1 [oV PP PSPPI 10

3.2.7 ZENONINTEED...ciiiiiii et s st s s re e 11

L Y o 1) G 11
4.1 DeVElOP ACLIVEX BIEMENTES oo e e e e e st e e e e s e s et b a e e e e e e e sanbbaaeeaeeesnnraaraeeens 12
4.1.1 IMBENODS ...t s ettt sr e b e s sreeenee s 12

4.2 Example LAatCh@ASWITCN (CHH) woeiiiiii ettt ettt e e ette e e et e e e st b e e e ette e e sabaaeesatbeeeensaeeennnaeas 15
4.2.1 INTEITACE e s e st 15

B.2.2 CONEIOLaiiiiiiiiieee et sttt e et n e e e st saeeneeneen 16

4.2.3 IMBENODS ...ttt s st bbb e e s b e enee s 19

4.2.4 Operate and diSPlayoooceeeieiiiiee e s et sae e s ba e saee e 21

4.2.5 ZENON INTEITACE ...ttt e st 24

4.3 EXQAMPIE CD_SIA@ITIIT (CH4) ureeeiiiiieeeiiie ettt ettt e eete e ettt e e e e te e e e ette e e setteeeesabbeeeesseeeessaaeessseeeansssesennsenns 24
43.1 INEEITACE 1.ttt ettt b e bbb st a e she e sh e e bt et eabeeaaeebeenbeebeas 24

B.3.2 CONEIOL ittt sttt ettt et n e s s s saeen e neene 25

433 T34 g o Te TSP P TSRO PT PP 27

43.4 (0] X< =1 (=YY e Ie [o =1V SR SPPRN 30

4.3.5 ZENON INTEITACE. ettt et e s s s b e e re e s b e ree e 32

4.4 Example :NET control @s ACHIVEX (CH) ..uueiiiiieeeeiiieeeeies e seee sttt e et e s eaee e e sntae e e e sn e e e ssnsaaessnnseesennneesnnnnnas 32
4.4.1 Creat Windows FOrm CONTIOL.......cooiiiiiiriiiieienie ettt s s 32

4.4.2 Change .NET User Control to dual coNtroleeeeiiiiiiiiiiiie et eerrree e e 36

5.

6.

4.4.3 Work via VBA with ActiveX in the Editor.......ccooiiiiiiiiiie e 41
4.4.4 Connect zenon variables with the .NET USer controlc.ccecveviirienienieeiecnenc e 42
NET USEI CONTIOIS. ... 46
5.1 Different use .NET Control in Control Container or ACHIVEXccceeuierieiiiieiieeniee e 47
5.2 Example .NET CONTrol CONTAINET ..c...iiiiiieiieit ettt sttt 47
5.2.1 GENEIAL ettt r e bt et s n e s ae e sreesreenneene e e ene 47
5.2.2 Create NET USEI CONTIO ..coiiiiiiieiiieeie ettt ettt ettt b e s e bt e sabeeesneeeaee 50
5.2.3 add a CD_DotNetControlContainer and a .NET User Controlcccceecverrviieeeeniieeeeecieeesveeenns 59
5.2.4 Accessing the user control via VSTA Or VBAoo ittt tree et e s eaae e e avee e 64
5.3 Example :NET cONrol s ACHIVEX (CH) ..eeeiuiieeeiiiie ettt e ettt e eette e st e e e sate e e s e aae e e s stveeeesataeeesanaaeesanreeeans 68
53.1 Creat Windows FOImM CONTIOl......ocuii ittt et sttt s e 68
5.3.2 Change .NET User Control to dual CoONrolc.coeveiiiiiiiiiiiiieeeeee e 71
5.3.3 Work via VBA with ActiveX in the Editorc.cccieeiieniiiiiiieereeeee e 76
5.3.4 Connect zenon variables with the .NET USer CONtrolcceceeeenieneniennenenie e 77
L = =T 1 1= 4 NS 81
6.1 2T 1 ol PP 82
6.1.1 WPF in Process VISUGHZATIONcccuveiiiiiie ettt eetre e et e e e ta e e s etae e e s tr e e e e eataeeeennaeas 82
6.1.2 Transfer of values from zenon tO WPFco it 84
6.1.3 2] (=T g T Tol=Te o] o] [=T o1 4T URUUU PSRRIt 85
6.1.4 Allocation of zenon 0bject 10 WPF CONTENT.......cc.ueiiiiiieeeieee ettt et 86
6.1.5 WOIKFIOWS ..coneiiiieiiiit ettt et st st sneen e e ene 87
(T A V- T TU T 1B o oo [=T = o 1=l SRR 88
6.2.1 Workflow with Microsoft EXpression BIENGccocuiiiieiiiiiiciiiee ettt e 89
6.2.2 Workflow with AdObe HTUSErator........coieiiiieiieiieieeeeeeeeeee et 93
6.3 ENGINEEIING IN ZENON . ..iiiiiiiiiii ittt et e e e e e sttt et e e e se et b teeeessesansaateeeesesnsssnseaenesssanssnnnes 101
6.3.1 Create WPF @lemMeNntcooiiiiiiiiiieeeceece ettt 102
6.3.2 CDWPF files (COIECTIVE FIlES) ..iiiuriiiiiiiie ettt et e e e e e et e e e e eate e e eeanaeas 103
6.3.3 Configuration of the INKING......cccueriiiecc e e 104
6.3.4 Validity Of XAML FIlES ..eeeieeieeeciiee e ctiee ettt e te e s et e e st e e e st e e e e nee e e sanaeeeesntaeesnnnaneesnneeaans 118
6.3.5 Pre-bUIlt @lEMENTSceiiieeee e s s 120
6.3.6 Examples: Integration of WPF iN ZENONuiiiiiiiiiiiieee ettt e e e e annees 133
LT T8 A 1 ¢ 1W1 o] F=T o T Yo 1 V-SSR 155

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. Controls

In zenon you can integrate own controls. For this following is available:

» .NET user controls (on page 46) (For implementing in zenon see also .NET controls in manual

Screens.)
» ActiveX (on page 11) (For implementing in zenon see also ActiveX in manual Screens.)

» WPF (on page 81)

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

¥ Information

You can find information about how to use the zenon programming interfaces (PCE, VBA,

VSTA) in manual Programming Interfaces.

3 License information

Part of the standard license of the Editor and Runtime.

Disconnector boxes

& Attention

Note that errors in applications such as ActiveX, PCE, VBA, VSTA, WPF and external
applications that access zenon via the API can also influence the stability of Runtime.

3. General

Controls for zenon can be implemented via ActiveX, .NET and WPF. Via VBA/VSTA you can access the
zenon API.

3.1 Access zenon API

Under zenon you can enhance an ActiveX control with special functions in order to access the zenon API.

ACCESS THE ZENON API
» InProject References, select Add References... the zenon RT object library

» add the enhanced functions to the class code of the control

ENHANCED ZENON ACTIVEX FUNCTIONS

// Is called during the initializing of the control in the zenon Runtime.

public bool zenon>Init (zenon.Element dispElement)..

// Is called during the destruction of the control in the zenon Runtime.
public bool zenonExit ()

// Supports the control variable linking

public short CanUseVariables()..

// Com control supports data types.

public short VariableTypes()..

// Maximum number of variables which can be linked to the control.

public short MaxVariables()...

EXAMPLE

The COM object of a zenon variable is temporarily saved in a Member in order to access it later in the
Paint Event of the control.

zenon.Variable m cVal = null;
public bool zenon>Init (zenon.Element dispElement)
{
if (dispElement.CountVariable > 0) {
try f
m cVal = dispElement.ItemVariable (0);
if (m_cval != null) {
object obRead = m cVal.get Value((object)-1);
UserText = obRead.ToString();
}
}catch { }
}
return true;
}
public bool zenonExit ()
{
try |
if (m_cval != null) {
System.Runtime.InteropServices.Marshal.FinalReleaseComObject (m_cVal) ;

m cVal = null;

}
catch { }

return true;

public short CanUseVariables ()

{

return 1; // the variables are supported

public short VariableTypes ()
{

return short.MaxValue; // all data types are supported

public short MaxVariables ()
{

return 1; // as maximum one variable should be linked to the control

private void SamplesControl Paint (object sender, PaintEventArgs e)

{
// zenon Variables has changed
try |
if (m_cval != null) {
object obRead = m cVal.get Value((object)-1);
UserText = obRead.ToString();

}
}catch { }

3.2 Methods

ActiveX and .NET controls which use zenon variables need certain methods.

3.2.1 CanUseVariables
Prototype: short CanUseVariables() ;

This method either returns 1 or 0

General

Zzenon

1: The control can use zenon variables.

For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method variableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

3.2.2 MaxVariables
Prototype: short MaxVariables() ;
Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

3.2.3 VariableTypes
Prototype: short VariableTypes() ;

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anD relation from the following values (defined in zenon32/dy type.h):

Value 1 Value 2 Equivalent

WORD 0x0001 Position 0
BYTE 0x0002 Position 1
BIT 0x0004 Position 2
DWORD 0x0008 Position 3
FLOAT 0x0010 Position 4
DFLOAT 0x0020 Position 5
STRING 0x0040 Position 6
IN OUTPUT 0x8000 Position 15

3.24 zenonExit
Prototype: boolean zenonExit() ;
This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

3.25 zenonExitEd
Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.
Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

3.2.6 zenonlnit

Prototype: boolean zenonInit (IDispatch*dispElement) ;

10

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or up.

The Element Input dialog appears after double-clicking the ActiveX element or after selecting property
ActiveX settings inthe element propertiesin node Representation.

3.2.7 zenonlnitEd

Equals zenonlnit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4. ActiveX

With ActiveX the functionality of the zenon Runtime and Editor can be enhanced autonomously.

In this manual you can find:

» Develop ActiveX elements (on page 12)
» Example LatchedSwitch (C++) (on page 15)
» Example CD_SliderCtrl (C++) (on page 24)

» Example :NET control as ActiveX (C#) (on page 32)

You can find information about the dynamic element ActiveX in manual Screens in chapter ActiveX.

ACTIVEX FOR WINDOWS CE

If an ActiveX Control should run under Windows CE, the apartment model must be set to Threading.
If it is set to Free, the control will not run in zenon Runtime.

11

4.1

Develop ActiveX elements

The dynamic element ActiveX in zenon can forward variables to the ActiveX control without using VBA
to operate the control.

The control now defines by itself, how many zenon variables it can use and of what type they may be.
Additionally the properties of the control can also be defined by the dynamic element.

For this the interface (dispatch interface) of the control must support a number of certain methods (on
page 12) .

4.1.1

Methods

Each ActiveX control which can use zenon variables must contain the following methods:

>

>

CanUseVariables (on page 8)
MaxVariables (on page 9)
VariableTypes (on page 9)
zenonkExit (on page 10)
zenonExitEd (on page 10)
zenonlnit (on page 10)

zenonlnitEd (on page 11)

It does not matter, which dispatch ID the methods have in the interface. On calling the methods zenon
receives the correct ID from the interface.

CanUseVariables

Prototype: short CanUseVariables() ;

This method either returns 1 or 0

12

Valu Description

e

1: The control can use zenon variables.
For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method VariableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

MaxVariables

Prototype: short MaxVariables() ;
Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

VariableTypes

Prototype: short VariableTypes() ;

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anD relation from the following values (defined in zenon32/dy type.h):

13

Value 1 Value 2 Equivalent

WORD 0x0001 Position 0
BYTE 0x0002 Position 1
BIT 0x0004 Position 2
DWORD 0x0008 Position 3
FLOAT 0x0010 Position 4
DFLOAT 0x0020 Position 5
STRING 0x0040 Position 6
IN OUTPUT 0x8000 Position 15
zenonExit

Prototype: boolean zenonExit() ;
This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

zenonExitEd
Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.
Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

zenonlnit

Prototype: boolean zenonInit (IDispatch*dispElement) ;

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or up.

14

The Element Input dialogappears after double-clicking the ActiveX element or after selecting property
ActiveX settings inthe element propertiesin node Representation.

zenonlnitEd

Equals zenonlnit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4.2 Example LatchedSwitch (C++)

The following example describes an ActiveX control, that realises a latched switch with two bit variables.
The first variable represents the switch, the second variable the lock. The value of the switching variable
of the ActiveX control can only be changed, if the locking variable has the value 0.

The status of the element is displayed with four bitmaps which can be selected in the properties dialog
of the control in the zenon Editor.

4.2.1 Interface

The control LatchedSwitch has the following dispatch interface:

[uuid (EB207159-D7C9-11D3-B019-080009FBEAA2) ,
helpstring (Dispatch interface for LatchedSwitch Control), hidden]
dispinterface DLatchedSwitch

{
properties:
// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFX_ODL PROP (CLatchedSwitchCtrl)
[id(1)] boolean SollwertDirekt;
[id(2)] IPictureDisp* SwitchOn; // container for the bitmaps
[id(3)] IPictureDisp* SwitchOff;
[id (4 IPictureDisp* LatchedOn;
[1id (5 IPictureDisp* LatchedOff;
//}}AFX_ODL PROP

)]
)]

15

methods:

// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.

//{{AFX_ODL METHOD (CLatchedSwitchCtrl)

//}}AFX_ODL METHOD

[id(6)] short CanUseVariables () ;

[1d(7)] short VariableTypes();

[1id(8)] short MaxVariables () ;

[1d(9)] boolean zenonInit (IDispatch* dispElement) ;
[1id(10)] boolean zenonExit ();

[1d(DISPID ABOUTBOX)] void AboutBox();

}i

The properties SwitchOn to LatchedOf f contain the bitmaps for displaying the four different states
of the control. The bitmaps themselves are stored in objects of the class CScreenHolder. The property
SollwertDirekt defines if the input of set values is done via a dialog or directly by clicking the
control.

4.2.2 Control

Implementing the control is done with the class cLatchedswitchCtrl. As members this class has the
CScreenHolder Objects for the storage of the bitmaps. Additionally three dispatch drivers for the
dynamic element and the variables are generated:

class CLatchedSwitchCtrl : public COleControl

{

DECLARE DYNCREATE (CLatchedSwitchCtrl)

// Constructor

public:

CLatchedSwitchCtrl () ;

// Overrides

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CLatChedSWitCthrl)

public:

virtual void OnDraw (CDC* pdc, const CRecté& rcBounds, const CRect& rcInvalid);

virtual void DoPropExchange (CPropExchange* pPX);

16

virtual void OnResetState ()
virtual DWORD GetControlFlags();

//}}AFX_VIRTUAL

// Implementation

protected:

~CLatchedSwitchCtrl () ;

DECLARE OLECREATE EX (CLatchedSwitchCtrl) // Class factory and guid
DECLARE OLETYPELIB (CLatchedSwitchCtrl) // GetTypelnfo
DECLARE_PROPPAGEIDS (CLatchedSwitchCtrl) // Property page IDs

DECLARE OLECTLTYPE (CLatchedSwitchCtrl) // Type name and misc status

// Message maps

//{{AFX_MSG (CLatchedSwitchCtrl)
afx msg void OnLButtonDown (UINT nFlags, CPoint point);
//}}AFX_MSG

DECLARE MESSAGE MAP ()

// Dispatch maps

//{{AFX_DISPATCH(CLatChedSwitCthrl)

BOOL m_sollwertDirekt;

afx msg void OnSollwertDirektChanged() ;

afx msg LPPICTUREDISP GetSwitchOn();

afx msg void SetSwitchOn (LPPICTUREDISP newValue);
afx msg LPPICTUREDISP GetSwitchOff ();

afx msg void SetSwitchOff (LPPICTUREDISP newValue);
afx msg LPPICTUREDISP GetLatchedOn () ;

afx msg void SetLatchedOn (LPPICTUREDISP newValue);
afx msg LPPICTUREDISP GetLatchedOff ();

afx msg void SetLatchedOff (LPPICTUREDISP newValue);
afx msg short CanUseVariables();

afx msg short VariableTypes();

afx msg short MaxVariables();

afx_msg BOOL zenonInit (LPDISPATCH dispElement) ;

afx msg BOOL zenonExit();

17

//}}AFX DISPATCH

CScreenHolder m SwitchOn;
CScreenHolder m SwitchOff;
CScreenHolder m LatchedOn;

CScreenHolder m LatchedOff;

DECLARE DISPATCH MAP ()

afx msg void AboutBox();

// Event maps

//{{AFX_EVENT (CLatchedSwitchCtrl)

//}}AFX_EVENT

DECLARE EVENT MAP ()

double VariantToDouble (const VARIANT FAR *v);

void VariantToCString (CString *c,const VARIANT FAR *v);

BOOL IsVariantString(const VARIANT FAR *v);

BOOL IsVariantValue (const VARIANT FAR *v);

// Dispatch and event IDs

public:

CString szVariable[2];
IElement m dElement;

IVariable m dLatchVar, m dSwitchVar;

enum {

//{{AFX DISP ID(CLatchedSwitchCtrl)
dispidSollwertDirekt = 1L,
dispidSwitchOn = 2L,

dispidSwitchOff 3L,
dispidLatchedOn = 4L,
dispidLatchedOff = 5L,
dispidCanUseVariables = 6L,

dispidvVariableTypes = 7L,

18

dispidMaxVariables = 8L,
dispidZenOnInit = 9L,
dispidZenOnExit = 10L,
//}}AFX DISP ID

}i

}i

4.2.3 Methods

The following methods are used:

» CanUseVariables (on page 19)
» VariableTypes (on page 19)

» MaxVariables (on page 20)

» zenonlnit (on page 20)

» zenonExit (on page 21)

CanUseVariables
This method returns 1, so zenon variables can be used.

short CLatchedSwitchCtrl::CanUseVariables ()
{

return 1;

}

VariableTypes

The control only can work with bit variables, so 0x0004 is returned.

short CLatchedSwitchCtrl::VariableTypes ()
{

return 0x0004; // Only bit variables

19

MaxVariables

Two variables can be used. Therfore 2 is returned.

short CLatchedSwitchCtrl::MaxVariables ()
{

return 2; // 2 variables

}

zenonlnit

This method gets the dispatch drivers of the variables via the dispatch pointer of the dynamic element.

With this pointer the variable values are read and written when clicking and drawing the control.

BOOL CLatchedSwitchCtrl: :zenonInit (LPDISPATCH dispElement)

m_dElement = IElement(dispElement) ;

if (m_dElement.GetCountVariable() >= 2)

short iIndex = 0;
m_dSwitchvVar = IVariable (m_dElement.ItemVariable (COleVariant(iIndex)))
m_dLatchVar = IVariable (m_dElement.ItemVariable (COleVariant (++iIndex))) ;

return TRUE;

20

zenonExit
This method releases the dispatch driver.

BOOL CLatchedSwitchCtrl::zenonExit ()
{

m dElement.ReleaseDispatch();
m_dSwitchVar.ReleaseDispatch();
m_dLatchVar.ReleaseDispatch();
return TRUE;

}

4.2.4 Operate and display

Setting values

A value can be set by clicking the control with the left mouse button.

Ifm iSollwertDirekt is 0, a dialog for the selection of the set value is opened, otherwise the
current value of the switching variable is inverted.

If the locking variable has the value 1, only a MessageBeep is executed. No value can be set via the
control.

void CLatchedSwitchCtrl::OnLButtonDown (UINT nFlags, CPoint point)
{

CRect rcBounds;

GetWindowRect (&rcBounds) ;

COleVariant coleValue ((BYTE) TRUE) ;

BOOL bLatch = (BOOL)VariantToDouble ((LPVARIANT) &m dLatchVar.GetValue())
BOOL bSwitch = (BOOL)VariantToDouble ((LPVARIANT) &m dSwitchVar.GetValue());
if (bLatch) // Locked!!!

MessageBeep (MB ICONEXCLAMATION) ;

else

21

if (m _sollwertDirekt)

{

bSwitch = !bSwitch;
}

else

CSollwertDlg dlg;
dlg.m iSollwert = bSwitch ? 1 : 0;

if (dlg.DoModal () == IDOK)

{

if (dlg.m _iSollwert == 2) // Toggle
bSwitch = !'bSwitch;

else

bSwitch = (BOOL)dlg.m iSollwert;

}

}

coleValue = (double)bSwitch;

m_dSwitchVar.SetValue (coleValue);

}
COleControl::OnLButtonDown (nFlags, point);

}

Drawing

On drawing the control the values of the variables are read via their dispatch drivers, and accordingly
one of the four defined graphics is displayed. When the value of a variable changes, the control is
updated by the onDraw routine.

void CLatchedSwitchCtrl: :0OnDraw (CDC* pdc, const CRect& rcBounds, const CRecté& rcInvalid)
{

CRect rcBitmap = rcBounds;

22

rcBitmap.NormalizeRect () ;

if (!m dElement)

{

m SwitchOn.Render (pdc, &rcBounds, &rcBounds);
return;

}

BOOL bvall = 0, bvVal2 = 0;
VARIANT vRes;
if (m_dSwitchVar) // Variable exists?

{

vRes = m_dSwitchVar.GetValue();
bvall = (BOOL)VariantToDouble (&vRes) ;

}
if (m_dLatchVar) // Variable exists?

{

vRes = m dLatchVar.GetValue();
bvall = (BOOL)VariantToDouble (&vRes) ;
}

if (bvall && bVal2)

m_ SwitchOn.Render (pdc, rcBitmap, rcBitmap);

else 1if (!bVall && bVal2)

m SwitchOff.Render (pdc, rcBitmap, rcBitmap):

else if (bvall && 'bval?)

m LatchedOn.Render (pdc, rcBitmap, rcBitmap);

else

m LatchedOff.Render (pdc, rcBitmap, rcBitmap);
}

23

4.2.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the

Class Wizard of the development environment (button Add Class, select From a type library, select
zenrt32.tlb).

For our control theses are the classes IElement and Ivariable. They are defined in zenrt32.h and
zenrt32.cpp.

4.3 Example CD_SliderCtrl (C++)

The following example describes an ActiveX control which equals the Windows s1iderctrl. This
component can be linked with a zenon variable. The user can change the value of a variable with this
slider. If the value of the variable is changed with some other dynamic element, the slider is updated.

4.3.1 Interface

The control cb_sliderctrl has the following dispatch interface:

[uuid (5CD1B01D-015E-11D4-A1DF-080009FD837F),
helpstring(Dispatch interface for CD SliderCtrl Control), hidden
]
dispinterface DCD SliderCtrl
{

properties: //*** Properties of the controls

[id(1)] short TickRaster;
[1d(2)] boolean ShowVertical;

[1d(3)] short LineSize;

methods: //*** method of the control (for zenon ActiveX)
[id(4)] boolean zenonInit (IDispatch* pElementInterface);
[1id(5)] boolean zenonExit();

[1id(6)] short VariableTypes();

[id(7)] short CanUseVariables ()

24

[1id(8)] short MaxVariables () ;

[id (DISPID ABOUTBOX)] void AboutBox();
bi

4.3.2 Control

Implementing the control is done with the class CD_SliderCtrICtrl. This class has a standard Windows
csliderctrl as a member, with which the control is subclassed. The interfaces Ivaribale and
IElement contain zenon interfaces which had to be integrated. These are deduced from

COleDispatchDriver.

class CCD SliderCtrlCtrl : public COleControl
{

DECLARE DYNCREATE (CCD SliderCtrlCtrl)

private: //*** member variables

BOOL m bInitialized;

BOOL m bShowVertical;
BOOL m_bTicksBoth;

long m nRangeStart;

long m nRangeEnd;

long m nTickOrientation;

IVariable m_interfaceVariable;
IElement m interfaceElement;

CSliderCtrl m wndSliderCtrl;

public:

CCD_sliderCtrlCtrl();

//{{AFX_VIRTUAL (CCD SliderCtrlCtrl)

public:

virtual void OnDraw (CDC* pdc, const CRecté& rcBounds, const CRect& rcInvalid);
virtual BOOL PreCreateWindow (CREATESTRUCTS& cs);

virtual void DoPropExchange (CPropExchange* pPX);

virtual void OnResetState ()

//}}AFX VIRTUAL

protected:

~CCD_SliderCtrlCtrl();

//*** methods for the conversion from variant

double VariantToDouble (const VARIANT FAR *vValue):;

DECLARE OLECREATE EX (CCD SliderCtrlCtrl) // Class factory and guid
DECLARE OLETYPELIB (CCD_SliderCtrlCtrl) // GetTypeInfo
DECLARE_PROPPAGEIDS (CCD SliderCtrlCtrl) // Property page IDs

DECLARE OLECTLTYPE (CCD SliderCtrlCtrl) // Type name and misc status

//*** methods for the functionality of the SliderCtrl
BOOL IsSubclassedControl ();

LRESULT OnOcmCommand (WPARAM wParam, LPARAM lParam);

//{{AFX_MSG(CCD_SliderCtrlCtrl)

afx msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
afx msg void HScroll (UINT nSBCode, UINT nPos);

afx msg void HScroll (UINT nSBCode, UINT nPos);

afx msg void OnLButtonDown (UINT nFlags, CPoint point);
afx msg void OnLButtonUp (UINT nFlags, CPoint point);
//}}AFX_MSG

DECLARE MESSAGE MAP ()

//{{AFX_DISPATCH(CCD SliderCtrlCtrl)

afx msg BOOL GetTickOnBothSides () ;

afx msg void SetTickOnBothSides (short nNewValue);
afx msg BOOL GetShowVertical();

afx msg void SetShowVertical (BOOL bNewValue) ;

afx msg short GetTickOrientation();

afx msg void SetTickOrientation (short nNewValue);
afx_msg BOOL zenonInit (LPDISPATCH pElementInterface);

afx msg BOOL zenonExit();

26

afx msg short VariableTypes();
afx msg short CanUseVariables();
afx msg short MaxVariables () ;
//}}AFX_DISPATCH

DECLARE DISPATCH MAP ()

afx msg void AboutBox();

//{{AFX_EVENT (CCD SliderCtrlCtrl)
//}}AFX_EVENT

DECLARE EVENT MAP ()

public:

enum {

//{{AFX_DISP ID(CCD SliderCtrlCtrl)
dispidShowVertical = 1L,
dispidTicksOnBothSides = 2L,

dispidTickOrientation = 3L,

dispidZenOnInit 4L,
dispidZenOnExit = 5L,
dispidvVariableTypes = 6L,
dispidCanUseVariables = 7L,
dispidMaxVariables = 8L,
//}}AFX DISP ID

}i

}i

4.3.3 Methods

The following methods are used:

» CanUseVariables (on page 28)

» VariableTypes (on page 28)
» MaxVariables (on page 28)
» zenonlnit (on page 29)

» zenonExit (on page 30)

CanUseVariables
This method returns 1 so zenon variables can be used.

short CCD_SliderCtrlCtrl::CanUseVariables ()
{

return 1;

}

VariableTypes

The control can work with word, byte, doubleword and float variables. You will find a list of the possible
data types in the general description (on page 9) of this method.

short CCD_SliderCtrlCtrl::VariableTypes ()
{

return 0x0001 | // Word

0x0002 | // Byte
0x0008 | // D-Word
0x0010 | // Float
0x0020; // D-Float
}

MaxVariables
Only one variable can be linked to this control.

short CCD _SliderCtrlCtrl::MaxVariables()
{

return 1; // 1 variables

}

28

zenonlnit

The parameter dispElement contains the interface for the dynamic element. With this element the
linked zenon variable determined. If it is valid, the area of the slidectrl is set. Additionally the settings
for the display (number of ticks, ...) are set. If no variable is linked, the display range is set to 0 to 0. Thus
the SliderCtrl cannot be changed. The variablem bInitialized defines that values can be set from
now on.

BOOL CCD_SliderCtrlCtrl::zenonInit (LPDISPATCH dispElement)
{

//*** Determine the variable using the zenon element

m interfaceElement = IElement (pElementInterface);
if (m interfaceElement.GetCountVariable() > 0) {
short nIndex = 0;

m interfaceVariable = IVariable

(m_interfaceElement.ItemVariable (COleVariant (nIndex)));

}

//*** Initialize the area of the Slider-Ctrl

if (m_interfaceVariable) {

//*** Define range

m nRangeStart = (long) VariantToDouble (&m interfaceVariable.GetRangeMin()) ;
m nRangeEnd = (long) VariantToDouble (&m_ interfaceVariable.GetRangeMax());
m _wndSliderCtrl.SetRange (m_nRangeStart,m nRangeEnd, TRUE) ;

//*** Define sub ticks

m wndSliderCtrl.SetTicFreq(m nTickCount);

m wndSliderCtrl.SetPageSize (m nTickCount);

m wndSliderCtrl.SetLineSize (m nLineSize);

} else {

m wndSliderCtrl.SetRange (0,0, TRUE) ;
return FALSE;

}
m bInitialized = TRUE;

return TRUE;

}

29

zenonExit
In this method the zenon interfaces are released again.

BOOL CCD_SliderCtrlCtrl::zenonExit ()

{

m interfaceElement.ReleaseDispatch();
m_interfaceVariable.ReleaseDispatch();
return TRUE;

}

4.3.4 Operate and display

Drawing

With DoSuperclassPaint the SliderCtrl is drawn (as is is a subclassed control). If at the moment of
drawing the slider is moved, the variable m_bInitialized gets the value FALSE. This makes sure that
the value can be changed. Normally the value of the variable is read and displayed with the method
SetPos of the SliderCtrl.

void CCD_SliderCtrlCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRecté& rcInvalid)

{

//*** update view
DoSuperclassPaint (pdc, rcBounds) ;

if (m_interfaceVariable && m bInitialized) {

COlevVariant cValue(m interfaceVariable.GetValue());
int nValue = (int) VariantToDouble (&cValue.Detach()) ;
m wndSliderCtrl.SetPos (nValue);

}

}

30

Setting values

In the method LButtonDown the variable m bInitialized is setto FALSE, and in the event LbuttonUp
it is set to TRUE again. This makes sure that the value can be changed. Otherwise the routine onDraw
would be executed and the old value would be displayed.

void CCD_SliderCtrlCtrl::OnLButtonDown (UINT nFlags, CPoint point)
{
m bInitialized = FALSE;

COleControl::OnLButtonDown (nFlags, point);

void CCD_SliderCtrlCtrl::0OnLButtonUp (UINT nFlags, CPoint point)
{

m bInitialized = TRUE;

COleControl::OnLButtonUp (nFlags, point);
}

A value is sent to the hardware, when the slider is moved. In the methods Hscroll or Vscroll the value
is sent to the hardware (depending if it is a horizontal or a vertical slider).

void CCD_SliderCtrlCtrl::HScroll (UINT nSBCode, UINT nPos)
{

switch (nSBCode) {

case TB LINEUP:
case TB PAGEUP:
case TB LINEDOWN:
case TB_ PAGEDOWN:
case TB THUMBTRACK:

case TB THUMBPOSITION: {

//*** Set value without dialog ?

int nValue = m wndSliderCtrl.GetPos();
COlevariant cValue ((short) nValue,VT I2);
m_interfaceVariable.SetValue (cValue);

}

}

}

31

4.3.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the

Class Wizard of the development environment (button Add Class, select From a type library, select
zenrt32.tlb).

For our control theses are the classes IElement and Ivariable. They are defined in zenrt32.h and
zenrt32.cpp.

4.4 Example :NET control as ActiveX (C#)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1. Creat Windows Form Control (on page 32)
2. Change .NET user control to dual control (on page 36)
3. Work via VBA with ActiveX in the Editor (on page 41)

4. Connect zenon variables with the .NET user control (on page 42)

4.4.1 Creat Windows Form Control

To create a Windows Form Control:

32

ActiveX

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

New Project

:Apmhctfu mmwmhmmwm (‘.IE'I' Framework 3.5)

Broject types: Templates: T Framework 35 v |E|E
g T R
& wﬂ:ﬂ Irkeligence Projects (A& EE_IWPF 5 Appcation ~
& Visusl C# (7% Console Application
Windows [Empty Project
Web Awindows Service
Smart Device &% WPF Custom Control Library
& Office ¥ WPF User Control Library
Reporting
5515 _ScriphComponent My Templates
5515 _ScripkTask M - _ v

=) Co

Hame: zenOnDothetContral
Location: E:: v
Solution: | Create new Solution » | [Create directary for solution

2. Rename the default control to the desired control name.

In our example: sampesControl.cs.

File Edit Miew Project Build Debug Data Tools Test Window

o % B[E 5| b v

Help

{208 8112 2 %] a aT an

:_._@ zenOnDotMNetControl
[[=d] Properties

@Soluti... @CIass |\-§Macro

|Resou... |

Properties

SamplesControl.cs File Properties

> 0 x

|IE Output| |L‘3 Error List| 5 Find Results 1

Ready

Zzenon

3.

% zenOnDotNetControl - Microsoft Yisual Studio

File Edt WView Project Buld Debug Data Tools Test Window Help

Open the Control Designer and add the desired control; in our case a text box:

TextBox
Version 2.0.0.0 from Microsoft Corporation
NET Component

Enables the user to enter text, and provides multiine
eding and password character masking,

e I —
(3 output] | Error List S Find Resuks 1

Y REE R~ - NP Ser o A I i S W T ~ Any CPU -l
T T T W e 0 I8~ o T 0 1= 0 e T W B O VN SN e
v X | Solution Explorer >3 x

N B s s

4 zenOnDotNetControl
® 54 Properties
@ (= References
® (8 SsmplesControl.cs

| textBox1 System.Windows.Forms. TextBox -
(BTN A
Text -
Textakgn Left
UseWakCursor False
|8 Behavior
AcceptsReturn False
AcceptsTab False 3
 UsewaitCursor

‘When this property is true, the Cursor property of
the control and s child controls is set to WaikCursor.

Ready

ActiveX

Zzenon

4. Normally controls have properties. Open the Code Designer via view Code and ass the desired

properties which should be available externally.
In our example: Externally visible property , UserText" with get and set access which contains

the text of the text box:

#% zenOnDotNetControl - Microsoft Visual Studio

File Edk ‘iew Project Buld Debug Data Took Test Window Help
[FARSEER A== I R -) - Lo 3| b Debug - Any CPU
o s ALLS S 5 aT al - s
% SamplesControl.cs® samplesControl, cs [Design]* s
= 2] | [B
£ || “tgzenOnDotietControl SamplesCortral % | UserText v| 2| F]E R &
2 [Husing System; — ;E zenO X nDnl:ﬂell:mlml
using System.Collections.Generic; H " Rreofl:;n?es
using System.ComponentModel: & =
using System.Drawving: ' J Cpen
using System.Data; Open With. .
using System.Ling:
using System.Text; ﬂ Refresh
“using System.Windows.Forms: view Cade
[namespace zenOnDotNetControl \E— VW Uesger
{ & Wiew Class Disgram
E public partial class SamplesControl @ UserControl _i\Soluh... _Ti-'a-.: Exclude From Project
{
=) public SamplesControl() ELopertes # Cut
{ SamplesControlcs | 1y cqpy
InitializeComponenti); =
L y il =i ¥ Delete
—— T =] Rename
-
=] //hfhl.lc string UserText R\\ Bulld Actian . P .
ya N Copy to Output Dirg =1 Properties
(get { return textBoxl.Text; } :l Custom Toal
\ set { textBoxl.Text = wvalue; } / Custom Toal Namespac
AN / =]
| Ry /./" File Name SamplesControl.cs
Ly T =
Advanced
v
< >
=) oukpuk| |53 Error List| 5 Find Resuts 1
Ready

5. Compile the project.

The Windows Forms Control can now be used in other Windows Forms projects.

Important: The control must be inserted manually in the control tool box via choose Items.

@2 zenOnDotNetControl - Microsoft Visual

File Edit View

HL LIS 2 S

Project Build Debug D

EnRACE R = NP WE= N Y

T

o ol

L Lioi G

trol.cs |

5
;).— (2b] Button
o
2
g Checl
—";ﬁ
b=
A Label X
A LinkL.

i Monk
=] MotiF
[13] mMume
|8 Pictu
M1 Prog)
() Radid

25 RichT

Cut

Copy

Paste

Delete

Rename Iterm
List Wiew

Show All
Choose Items...
Sart Ikems Alphabetically
Reset Toolbox
Add Tab

Move Up

Move Down

[abl] TestET

K ToolTip

T Treeview

k Painter

4.4.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

:‘j WebBrowser
= Containers

36

1. Open the project and activate property Register for COM interop in the Build settings:

#% zenOnDotMetControl - Microsoft Visual Studia

Fle Edt Vew FProjct Buld Debug Data Took Test Window el
He -Gl & x % - - T LR Debg = Ay CPU - | [#) AbmErsueansosdintisiostion » | £ A 8 b
] - saTosi LG 5 "
» 5 [Dessign] DRl Schstion Explorer - zen... w B X
B L FL&
g Agpication | :enompotietcontrol
Corfimation: ctive {Debug) ¥ Plsfors: |active (fy CPU) w ® 1 (3] nehesh
d® & 4
Gerwrdl @ [& o
Buid Everts Rusbud
Ceendtional complation symbols: han
2 [] Define DEBUG constart =
Resources [] Defire TRACE constant e
P Pl Larget: Any CPU A Service Reference..
Settings 0 s - 7y View Class Diagram
Optenize code
Reefsrerce Paths -
erence Ervises and warmings B8 addProject to Sowce C
Signirg Warring level: + b oz
SUPEBSS WATINGS: _\—.‘|s..
Trest warmings a5 enmors Lo R
© e 0t (3 ol eds
. . Properties
O st aress ERG e >
(o] Project File penOnDothietContr
Cutgut
S =
’I;_i_ﬂ_mm.ab_m_@_:ﬂ\
Q‘__Bnmﬂuconmio/
Gersraks serokastion assebly: |42 L
Misc
3 ouput] | 2 Ervor List|] Frnd Rests |
Ready

2. Open the file AssemblyInfo.cs and
e set attribute ComvVisible to true
e add attribute ClassInterface

[assembly: ComVisible(true)]

[assembly: Classinterface(ClassinterfaceType.AutoDual)]

%% zenOnDotNetControl - Microsoft

sual Studio
Bde Edt Wew Project Bud Debug Data Took Teg Windw Heb
e = ™ N N N R R R
2 aLLa o s aT a0l @ & e
| Assemblylnfo.cs SavplesControlcs | SamplesCortrol.cs [Design] |
[o)

Elusing Jystem.Reflection:

l using Syscem.Runtime.CompilerServices:

using System.Runtime. IntercpServices:

oo)

// General Information about an assembly iz controlled through the following
/{ set of attributes. Change these attribute values to modify the informatio
/f associated with an assembly.

[assembly: AssemblyTitle ("zenOnbotMetControl™))

[assembly: AssesmblyDescription{™)]

[as=sembly: AssesblyConfiguration{™")]

[as=enbly: AssemblyCompany(™T)]

[a==enbly: AssesblyProduct (MzendnDotNetControl™)]

(azsenbly: AssesblyCopyright ("Copyright @ 2008"))

(a=sembly: AssesblyTrademark(”")]

(sasenbly: AssemblyCulture (™))

gs... "j;cl...'fm - --H""' |
/1 Setting Cosisible to false makes the types in this assembly not visible | o sl
Properties. x
/i to com T T a type in this assembly frem —
| Assemblylnfo.cs File Properties =

.21 =

, =et the ComVisible attribute to true on t
[as=embly: ComVisible (erue)]

[assembly: ClassInterface(ClassInterfaceType.Aucobual))
B Advanced
Budd Action Corgie
// The following GUID is for the ID of the typelib if this project is exposes Copy 'w': Donck copy
[nasenbly: Guid("41b695h7-c9L5-4Tce-bb17-541bLa65740e")] Custom T
Custom Tool b
B Misc
#f Version information for an assembly consists of the following four values
17 File Name: Assemblylrfo.cs
" Major Version APath | E\ZENONCSOIVEL
i Minor Version
I Build Number
I Revision L
A | Advanced
/f You can specify all the valueas or you can default cthe Build and Revision I
£ 3

@ output| | 2 Ervor List|] Find Resuks 1
Ttem(s) Saved

ActiveX

Zzenon

3.

Open the code designer via view Code and add the necessary ActiveX attributes and using

entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

“ zenOnDotMetControl - Microsoft Visual Studio

EIEX

File Edit Wiew Projpct Buld Debug Data| Teols |Test Window Help
(R e g R I B R b Debug - Ay CPU - [# AfmEnsureManagedinkislzation -
2a'a b Lad o a_aT al) PR = iE) & ol (3 47 3h L
b= Asseniblyinfo.cs SamplesContrakes samplescontrol.cs [Design] - X
E i i ¥ " v a3 FlLELEL A
- S oins svecem: — & i zenOnDotNetControl
: Al @) Properties
using System.Collections.Gensric:
#- = References
using System.ComponentHodel; &
using System.Drawing: %
using System.Daca; | den
using System.Ling: Open Wih...
using Syatem. Textc: 2] Refresh
using Syscem, Windows, Forms:
using Syatem.Runtime,InteropServices; [[E] Ve Code
using System.Reflection: W
{uatng Microsoft.Winia: 2, View Class Disgram
| namespace zendnbotNetControl Esechyde From Project
i ¥ o
[Progld("zentnbotNetConcrol. SamplesControl™)] = [
[FF0BD1-A3IDC-4a37-BOBA-A0B022CADETA™)] g5 | Ua | copy
| [ComVisible (true), CL & 21 aceType . Autobual)]l | ¥ Dekte
[public partisl class 1
t Renams
] public SamplesControl() 4 Properties
]
Initialisec . Choose the desited foemeat below, then select “Copy'” ta o
' pitializeComponent () cooylh_elewlxhnlhsciptﬂad[ﬁlelssﬂlscanﬂmtel tion Compile
mdlmyw souwce code]. Choass "Ext” when] Mew GUID 1| b cutps Do net copy
| oot
1 1:\;1: lic string UserTexc GUID Fomat Toclh
get { return textBoxl.Text: } (1 IMPLEMENT_OLECREATE].| - -
et { textBaxi.Text = values | © 2 DEFINE_GUIDL.) [Seplestonia.ce
) H (03 stadic const stuct GUID = (...}
Ly) 4 Regsty Format [ie. boosoocnn won)]
Resl
A CFFS0BD1 AIDC 4297 BOBAANBIZZCADETA)
P IMPLEMENT_DLECREATE[«cclasty, <<endmnal_ namass,
— OwvciFIbd! . Dwaddc. DedaS7. O=bD, Oxba. Dwal. (=30, 0x22. Duca, (8.
3 Cutput| |3 Eror List| B Find Resuks 1 OPel:

4. For the control to be selectable as Active X user interface control, you must add the functions to

the following control classes:

¢ RegisterClass

39

e UnregisterClass

%% zennllotietContral - Microsaft Visual Studic

Bl G Yew Poje Buld Debuy Dgfa ok Tt Widow Hep

P A - I b Debug = Ay CRU = | [# AfmEroueMaragedintisioation = | 3 5 [ok i]
L =) " t E F J ol

3| Assembiyiniocs Sangiesi - x

g 2en0rDothet Conteul SavghsControl | [Lrwgister Class(string ey v B @ F] E M A

' i enOnDotMetComtral
Al @ Properties
o Refererces

@

namespace zenfnbotHetdontrol
0
[Frogld("zentnlotierContral . Sampleat
[Guid ("CFFROEDL-AIDC-4
mif1xible (truel .
o public parzial class

sceType, Autobusl]]

public SamplesControl ()

InitializeCamponent |)

= string UserText

wen centBoxl, Texe: |
textBoxl, Text = value: |

- o B
Properties -0 x
SamplesContrals Fie Propert -
pensubkey [=b. ToScring|), true): -
ralm: |l
/ a
seg -y inprocServerdZ = k.OpenSubey|"InprocServerIZ®, true)s Fuid Action Congie
inprocServeri?.Setvalue [*CodeBase”, Assenhly.GetExecutinghssesbly|).CodeBase) Copy bo Ok B0 hok €opy
inpracServeriz. Close () : Custom Tool
E.Clomel): Custom Toal b,
) s
File Mo Samplesontrol o5
[ConUncegistacy ion ()]
public static void Uncegisterdlass(string key)
yEuilder (key) ;
BOOT\®, %)
LassesRoot. OpenSubley =k, ToString|), trus);
falze) s
' ibprocSeeveriz = k.OpandubRey |"Inprocerver3z”, ceus):
k. DeleteSubKey ("Codebase”, false):
x.Clasel)s
. Misc
Sandeagion) @
« »
] outt| [Ervow Lt S, P R 1
Retudd Al screeded

After that you can register the control in the registry.

5. Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenonDotNetcontrol.tlb Was created in the output
directory.

6. To use the control on another computer:

a) copy the DLL file and the TLB file to the target computer

b) register the files via the command line:
$windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll
/tlb:zenOnDotNetControl. tlb

40

ActiveX
Zenon

7. Add the extended Windows Form Control as ActiveX control to the zenon Editor:

¥ Qotes Pearbaten Bjder Yebtor-Elemente QOptionen fenster Hife
@@ LA HDY Qe SV =Pk (22
~ A AL ' % {ll '; t. & @*5'& ‘V 5 I
s LA E]
[S H Abetiberech T \Dokumer & [#
= [ACTIVEX1 (Stantpro T anX s e
I i z0n0n Net Contol
z et
9 Rezepte : T Ay B
& Zetsiomnung / 0
® & Skipirg
PEC 6N : ae
e ag
Vemegehungen rmme— = 4.y
Message Corticl Acvex K'\ y-
Marile L= __|f|"=&
e e g
Berutzes
- == T
TR £ wreq Cortrol {E6E518AC-5... -
< > |eomemjéd | xseckoCotra (NG9, e]
g Control {BEE2AI-252.,
x 1 Xeead Compressin Cortrol {4CB3S12687..
R aw a2 Yeood 2o, Cortrdt—_______{peroresoce..
é 12 Rebenen um Element Dustiogt 1| i = m>
~) Schtbarker/Brken Actree €] (Controlont sner Coces, LT O
San
1) Position v
< > Veriablenzuordung
M -
Jomm BEX R
J IR
VBA: Schreibberechtigung fur
Projekt: ‘ACTIVEX1' einfugen
Projekt: 'ACTIVEX1' laden
i [voristle... | [machunten | [Nechoten |
oot T A L T L)

4.4.3 Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

1. Inthe zenon Editor in node Programming interfaces/VBA macros create a new Init macro

with the name Init ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

ActiveX
Zenon

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX

element.

mn

* QX
) Darstellung
i) Rahmen/Schatten ’_ o 9 N
3 Sichtbarkeit/Blinken Init. Init_Init_ActiveX [] SetFocus: =)
i Allgemein Draw: [KillFocus: =
=) Position
) GroBe und Drehen dynamisch E DS Basic - C:\Prog Data\COPA-D \SQL2008R2\9888419d-251 e-1595-b396-Obe 9 ren... | =
1__'2 :;’:'me 4 Datei Bearbeiten Ansicht Einfogen Format Debuggen Ausfihren Extras Add-Ins Fenster 2 -8 %
9 -
) Sollwest absetzen 2 E-H R oy ek MEYW O 2451 c
Piéjekt = ZCDLDOTNETCO!X] [icemeim v InLInit_Activex v
& E E - Public Sub Init_ActiveX (ocbElem As Element)]
obElem.AktiveX.Usertext = "Den String auf das Control setzen"
End Sub
E
’l! + [ng] "

EXAMPLE INIT MACRO

Public Sub Init ActiveX(obElem As Element)
obElem.AktiveX.Usertext = "Set the string to the control"

End Sub

444 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS
» public bool zenOnlnit (on page 44) (Is called up during control initializing in the zenon Runtime.)

» public bool zenOnInitED (on page 45) (Is used in the Editor.)

» public bool zenOnExit() (on page 45) (Is called up during control destruction in the zenon

Runtime.)
» public bool zenOnExitED() (on page 45) (Is used in the Editor.)
» public short CanUseVariables() (on page 45) (Supports linking variables.)
» public short VariableTypes() (on page 45) (Supported data types by the control)

» public MaxVariables() (on page 46)(Maximum number of variables which can be linked to the

control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under add References the zenon Runtime object library in

order to be able to access the zenon API in the control.

* QTR AR R e e ey
a _E zenon_CD_DotNetControlContainer
=d| Properties
g] References
a ﬂzen0n_CD_DotNetCUHtrDICDHtainer.cs
) zenon_CD_DotMetControlContainer.Designer.cs
"-g zenon_CD_DotMetControlContainer.resx

00 Add Reference I PR
| MET | com |Projects | Browse | Recent|
Component Name : Typelib Version Path o
WSHControllerLibrary 1.0 CA\Windows\SysWOV
wiv2dvrms 1.0 Type Library 1.0 CA\Windows\eHome\
WUAPI 2.0 Type Library 20 CA\Windows\SysWOV I
H5Editor ActiveX Control module 1.0 C\Program Files (x86
X5Monitoring ActiveX Control module 1.0 C\Program Files (x86.
XGo OLE Control module 20 C\Program Files (x86
XPS_SHL_DLL 1.0 Type Library 1.0 CA\Windows\system3
zenDBSrv 2.0 Type Library 20 C\Program Files (x86.
ZenMsgSrv 1.0 Type Library 1.0 C\Program Files (x86.
zenMetSrv 2.0 Type Library 20 C\Program Files (x86.
zenon programming interface library 1.0 C\Program Files (x86
zenOnDotMetControl 1.0 D:\Eigene DokumenttI |
zenonDotNetDATAGRIDControl 1.0 D:\Eigene Dokumente _
4 | i b
’ OK] ’ Cancel]
" —r

2. Add the enhanced functions in the class code of the control in order to access the whole zenon

API.

43

In our example the COM obiject of a zenon variable is temporarily saved in a Member in order

to access it later in the paint event of the control.

R . BUCHE: 3- Sh-ah-ape s b

v | J9SamglesContral_Particbyct sender, PartE vertiegs e -

publie b rendnlnit (zendn diapk Lement

zenonExit

opServices. .FinalReleaseComibyect (m_cVal):

public bool zenOnlnit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

X Assenbiyinfo.cs SemplesControles Sanpiesontrol.cs [Design] ~ X Sohion Explorer - 2000, w 8 X

)\ B F o138

2 zenOnDotNetControl
& [Propertes
& i Refererces
® 3 Ssnplestortrol.cs

Propertios *3 X

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down

or up. The dialog "element input" opens if:

» you double click the ActiveX element or

» select Properties in the context menu or

» selectthe ActiveX settings propertyinthe Representation node of the property

window

44

public bool zenOnInitED(zenOn.Element dispElement)

Equals public bool zenOnlnit (on page 44) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 45) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button variable) you can only state zenon variables with the

type stated via method variableTypes in the number stated by method Maxvariables.

» O:If canusevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can

be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anD relation from the following values (defined in zenon32/dy_type.h):

45

Parameters Value Description

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN OUTPUT 0x8000 corresponds to position 15

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5. .NET user controls

With .NET control the functionality of the zenon Runtime and Editor can be enhanced autonomously.
In this manual you can find:
» Difference between control container and ActiveX (on page 47)

» Example .NET control container (on page 47)

» Example :NET control as ActiveX (C#) (on page 32)

You can find information about .NET controls in ActiveX in manual Screens in chapter .NET controls.

46

5.1 Different use .NET Control in Control Container or ActiveX

A .NET user control can:

» beintegrated directly in the zenon ActiveX element via the CD_DotNetControlContainer control

» be used as ActiveX control and be integrated directly in the zenon ActiveX element

Above all the differences between container control and ActiveX control are:

CD_DotNetControlContainer control ActiveX control
» Does not have to be registered at the computer. > Must be registered as Active X at the computer (regsrv32).
> For changes at the controller only the DLL must > For changes at the controller the TLB must be registered
be changed. again.
> Access via VBA and VSTA only possible via the > Easy access via VBA and VSTA.

CD_DotNetControlContainer method.

5.2 Example .NET control container

In this tutorial you get to know how to create a simple .NET user control in Visual Studio 2010
(programming language c#) and how to integrate it with the help of the zenon
CD_DotNetControlContainer control as ActiveX in a zenon ActiveX element.

5.2.1 General

The CD_DotNetControlContainer therefore acts as a wrapper between the user control and the zenon
ActiveX element. All methods used in the following example and all public methods and properties are
passed on via the CD_DotNetControlContainer from the user control to the ActiveX and can be used by
zenon; also in VBA and VSTA.

47

If there is a reference to the zenon programming interface in the user control, you can directly access

zenon objects.

1 1
O zenen Programming
.NET User Control interface
A
R i
CD_DotNetControl
Container
F Y
1 ¥]
zenon Active X P | zenon Objects
Element * »

In the following example we will:

» create .NET user control (on page 50)
» adda CD_DotNetControlContainer and a .NET User Control (on page 59)

» enable the access to the user control via VSTA (VBA) (on page 64)

public bool zenOnlInit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down

or up. The dialog "element input" opens if:

» you double click the ActiveX element or
» select Properties in the context menu or

» selectthe ActiveX settings propertyinthe Representation node of the property

window

48

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button variable) you can only state zenon variables with the

type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns O or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anp relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position O
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN OUTPUT 0x8000 corresponds to position 15

49

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5.2.2 Create .NET user control

The user control is a simple control which can set a new value via an input field (text box). After clicking
the button, the value is written to the desired zenon variable.

An additional function should automatically detect the change of value of the variable in zenon and
display the new value automatically in the control.

[SetZencn Variatle |

WORK STEPS

1. First you create a new project in VS and use project type , Windows Forms Control Library”

Important: Set framework to 3.5!

=
—— — - - —— I
T framencd 35 | Sert by Defut -} 15 [0) = ed Tomgince 7 |
- Types Viswal Co
oF| Vindous Foms Appicamon Visua CO Jiretapn

A prejectfor cremting control 18 vie i
Pindows Forms sppications
&| vt sppicuson Viuni Co

B o pcnin s

Chass Lbeary Visuat Co

i

WS Booaner Apsicaton Vivus! Co

Empty Preject Visusl C#

&l o] & B

] Wndws Senvce Vst Ce

@F WIF Cuttom Control Libeary Vinus! Co

€ W8 e Cormt iy Veusico

p—
3] Windows Fomms Contrel ey Visusi C# i

thame sensn CD_DesielContrek entainer
i Lecason: &\ mgane dobsmente’nusl ado X0 Pesjects < | Wowe. l
Sehven [Creste new sehton -
Sehsicamume tenn CD DosetConmekentaner 7 Create grectery fossebeticn
Add te sogrce centrel

50

After that rename the CS file from "UserControl" to "zenon CD DotNetControlContainer.cs".

The files Designer.cs and the . resx are renamed automatically.

Schution Exphoser
I i [s Y
= Soksion
+ (7 zenon (D DothetControXontainer

o0 CD_DethetControlContainer 1 prcject)

In the next step you create the user control. For this use two text boxes one each for the input

and the output and a button for writing new values to the zenon variable.

Name:

e the first text box "txtGetZenonvVariable"

e the second text box "txtSetZenonvVariable"

e the button "btnSetZenonvariable"

CD DotNetControlContainer

In order to access zenon objects you need a reference to the <CD_PRODUCNAME> Programming

Interface. To do this:

e click on node "references" in the Solution Explorer

e open the context menu

e select aAdd References. ..

e switch to tab com

[select zenon programming interface library

A3 zeman €D _DothetControlContaimer '
i Propesties

ontrolCentsner.cs

YetControiContainer Designer.cs

0 Add Reference 1
NET | COM | Projects | Browse | Recent

Comporint Hae
WiHControberd ibrary
whiddvrens 1.0 Type Library
WUAR 20 Type Libanry

G arel module
5 SHL DAL 1.0 Type Libeary
2enDBSev 200 Type Library
ZenMsgSew 1) Type Library
zenhetiry 210 Type Library

sence programeming interface lbrary
zenOnDothetControl
zenonlotNetDATAGRID ontrol

Typelib Version
10
10
20
10
10
1
10
2
10
20
10
10
10

¥

Path
CAWindows\Sys WOV

AW e
C\Program Files (86
CAProgram Files (86
CProgram Files (86
C\Progrem Files (86
Di\figene Dokumenty
D\ Eigene Dokuments .

oK Cancel

51

After that the "zenon" reference should be visible in the reference list.

s a riopEiues
4 | References

<3 stdole

<3 System

+3 System.Core

«3 System.Data

+3 System.Data.DataSetExtensions

«3 System.Drawing

<3 System.Windows.Forms

<3 System.Xml

<3 System.Xml.Ling

<3 zenOn

5. Inthe next step create a global variable of type zenon.variable in the code of the

zenon_CD_DotNetControlContainer.cs:

using System;

using System.Collections.Generic;
using Systes.Componentiodel;
using System.Orawing;

using Systes.Data;

using Systes.Ling;

using System.Text;

using System.windows.Forms;
using zenOn;

“nasespace zenon_CD_DotNetControlContainer

public partisl class

zen0n

1= null;

public zenon_CD_DotNetControlContainer()

InitializeComponent();

}

6. This variable is initialized via public method zenoninit:

public bool zenOnInit(zenOn. t dispElement)

Check if zenon Variables are added to the

if (dispElement.CountVarisble > @)

ey
{
on Variable and
arisble
®_cval = dispElesent.ItesVarisble(0);
Set Valu TextBox

txtGetZenonvariable.Text = m_cval.get_Value(®).Tostring();

catch { }

}

return true;

}
and enabled via public method zenonExit:

will be calles by the release of the control during

public bool zenOnExit()

tey
{

if (m_cval 1= null)

Release the zenon Varisble (Com-Object
Systes.Runtise. InteropServices. s .FinalReleaseConObject (m_cvol);
m_cval = null;

}

catch { }
return true;

)

In the following methods we define whether <CD_PRODUTCNAME> variables and data
types are used and how many variables may be handed over:

7. Inthe next step define in the click-Event of button btnSetZenonvariable that when you click
the button the value of text box txtSetZenonvVariable is written to the zenon variable and then
the content of the text box is deleted.

private void btnSetZenonVarisble Click(cbject sender, ¢)
- saeni el met e e
8. To react to a value change of the variable, you need the Paint Event of the control. The Paint
Event is also triggered if the value of the initialized zenon variable changes and it can therefore
be used to update values. As variables which are referenced in the zenon ActiveX element are

automatically advised, you can generally refrain from using the zenon.onlinevariable

container in the control.

rivate void zenon_CD_DotletControlContainer_Paint(object sender, t &)

this. txtGetZenonVariable. Text = =_cVal.get_Value(@).Tostring();
turn;

THE CODE AT A GLANCE

Here is the whole code as review:

53

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using zenOn;

namespace zenon_CD_DotNetControlContainer

public partial class zenon_CD_DotNetControlContainer : UserControl

//This will be needed to get the zenon Variable Container

zenOn.Variable m_cVal = nuli;

public zenon_CD_DotNetControlContainer()

InitializeComponent();

/// <summary>

/// This public Method will be called by the initialization of the control during

/// the zenon Runtime.

/// </summary>

/// <param name="dispElement"></param>

54

/// <returns></returns>

public bool zenOnlnit(zenOn.Element dispElement)

//Check if zenon Variables are added to the

//Control

if (dispElement.CountVariable > 0)

try

//Take the first zenon Variable and added

//to the global Variable

m_cVal = dispElement.ltemVariable(0);

catch {}

return true;

/// <summary>

/// This public Method will be calles by the release of the control during
/// the zenon Runtime.

/// </summary>

/// <returns></returns>

public bool zenOnExit()

try

55

/17

/17

/17

/17

/17

if (m_cVal = nul1)

{
//Release the zenon Variable (Com-Object)
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(m_cVal);
m_cVal = null;
}
}
catch{}

return true;

<summary>

This public Method is needed to link zenon Variables
to the control.

</summary>

<returns></returns>

public short CanUseVariables()

return 1; // Only tis Variable is supported

/// <summary>

/// This public Method returns the Type of
/// supported zenon Variables

/// </summary>

/// <returns></returns>

56

public short VariableTypes()

return short.MaxValue; // all Data Types supported

/// <summary>

/// This public Method returns the number of
/// supported zenon Variables

/// </summary>

/// <returns></returns>

public short MaxVariables()

returnl; // Only 1 Variable should linked to the Control

/// <summary>

/// This will be triggert by clicking the Button. The new Value will
/// be set to the zenon Variable

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void btnSetZenonVariable Click(object sender, EventArgs e)

{
//Set Value from TextBox to the zenon Variable
m_cVal.set_Value(0,txtSetZenonVariable.Text.ToString());
this.txtSetZenonVariable.Text = string.Empty;

}

57

/// <summary>

/// This will be triggert by painting the User Control or the Value of the Variable
changed.

/// Bfter the value of the Variable changed the Control will be new painted and
the new Value

/// will be set to the Textbox.
/// </summary>
/// <param name="sender"></param>

/// <param name="e"></param>

private voidzenon_CD_DotNetControlContainer_ Paint(object sender, PaintEventArgs e)

{
if (m_cVal !=null)
{
this.txtGetZenonVariable.Text = m_cVal.get_Value(0).ToString();
return;
}
else
{
this.txtGetZenonVariable.Text = "Variable Value";
return;
}
}

58

CREATE RELEASE

AT last create a Release in order to integrate the completed DLL in zenon or in the
CD_DotNetControlContainer.

Sohson Erplorer ~ 9%
4
F] (3 5ot 1enon (0 DeehietC nntimk natamer 0 nanect)

Calculate Code Metrics
Add
Set StatUp Projects.

8 Add Sohuon to Source Centrol

o Wl Dra
:]‘; Open Folder in Windews Explecer
) Propeties At Eoter

For this it is necessary that you switch from Debug to Release in the settings.

am Data Tools Test Analyze Window Help
t b | P | Release || Any CPU 2
4 #l Bl s

. zenon_CD_DotNetControlContainer.cs X

ontrolContainer.zenon_CD_DotNetControlContainer
T

5.2.3 add a CD_DotNetControlContainer and a .NET User Control

To prepare the zenon project and to add the cD_DotNetControlContainer and the .NET User Control,
carry out the following steps:

1. Create an internal variable of type String and set the string length to 30.

Users'Puble'\Document ~ oo = ., . 2 - By v B 2 o :2 - W7 L OF a7
LY_SMIRR St | e A T L=
EREL =

ELUMINIUM_DATAG Varisble_CO_DotMetContrelContainer Intern - Treiber fiir interne Variablen

®

ETCONTROLCONTAL

59

2. Inthe zenon project node Project/Files/Others add the DLL of the created .NET user

2 Open

©\/r' « zenon_CD_DotNetControX ontainer » bin » Relesse

Organce v New folder

¢ Favortes % Documents library
B Desktop Release

8 Downioads

2 MySee

1 Recent Places @) zenon_CO_DotNetControlContainer

4, zenon_CD_DotNetControlContainer.dil
Libearies %) Interop.zenOn.dil
- g

+ Documents
& Music

= Pictures

B Videos

& Computer

& Local Disk (C)

a Dita (0)

G PROG_G (\CDSBGI12) (G)

File name:

controls. =

o
1% || ‘Seavch Releose ?
ie®
v | Alie Dateien (") \
|_Open | Cancel

The DLL is located in the Visual Studio Project folder under
bin\Release\zenon CD DotNetControlContainer.dll.

4 & R e rn e

zenon 0 DothetCentrodC onaines.dil

3. Inthe project select the ActiveX element and drag it in a zenon screen.

e The dialog configuration iS Opened

e Select the CD_DotNetControlContainer.Container control.

— | J
Canfiguration =
Actvex
o

ActveX cements
Centros aso Good
CaltegiEdnCr! Class (47926034, e

| € _Button Contal (ST 4452

| @ _ComboBox (308708 652.
©_DothietControlContaner, Contsner {¥or272001
@ _Edt Convol (xos7I04652. ~
Propertes...

e
Variobie assgrment
b Oown w
[S——

4. Toembed the .NET user control in the cD_DotNetControlContainer control:

¢ click on button properties. ..

60

e anew dialog is opened

p Al

e Edisc

A —
Cafig Windcws Fom Control = B 8
HK
IET) | SelectliseeCermel
.
i el pguration
. = —
o] | Preview ——
X] =
' AchveX elements
b | Conols aso Sovel
e NoCee D _Teves Contrel (EDaELBa5L.. e
in Crldentity Chent (00020000-000...
e ComerorDisiog Class (300101870,
o Corgitewer Cinss (HBACHFEE...
M Contact Selector {S1E40031-993...
Ll Confentiost Contral {oseacas-®., -
]
g Vanabie sssgrment
Variabie D Dothiet

i
L=
o
e
ey
-
A
back o e Varstie e o
|

|

1
e e o e e T

e click on button road in order to select the path of the project folder, for example:
C:\ProgramData\COPA-DATA\SQL\9888419d-251e-4595-b396-90e423679
97c\FILES\zenon\custom\additional\zenon CD DotNetControlContai

ner.dll

By adding the DLL to folder additional, the control is automatically transferred when
copying or loading the Runtime files to another computer. With this the link is lost.

Canti Windows Farm Contrl
|
| SesctiseCome

[—__ -
r bgurarn 2)
< 1} b
-
7
{ -
| .
| Y S —
{
{
| .
'
{
|
«)
e ot | e CO_DomietCompeiCantanes o | Emcutabis (80 ™
{ Open |v Concel
JEE—
—l ——

Now the .NET user control should be displayed.

61

Confirm the dialog by clicking ox

“2¢n0n_CD_DotNetControlContainer” Config Windows Form Controll R Lo) ey
e —~ - g
I {l
SelectUserControl
[
[2en00_CD_DotNetControlContaner zencn_CD_DatNetControiCortaner v [Losd
Preview: C:\ProgramData/COPA-DATAISQLI9838419d-251e-4595-b396- 9e42357997c FILESzencncustomiadditionalizencn_CD_D{
D=
B Accessibility -
AccessibleDescription F
AccessibleName
AccessibleRole Defaut E
D DetNetControiCortaner e
BackColoe) Control
Backgroundimage 3 tone)
Backgroundimagelayo Tie
Vadebls Volus BorderStyle None |
Cursor Defavk
@ Font Mcrosch Sars Sert. 82 | |
ForeColor Wl CortroiTest
RightToleft No
UselaitCursor Faise
© Behavior
AllowDrep False A
Accessibility i

Gt 00

.NET user controls

Zzenon

The variable selected first is automatically linked with our globally defined variable (.NET
UserControl) via public method zenoninit. The linking with the control is carried out after

the Runtime start.

© Vaiabie seecion R— = =]
[5 B WoAspace C \Users \Publc\Doc 7
& GLOB_TEST | 0D
THALES_(TALY_SMIRR [0t Name A | Kerthcaton Measur. | Nt address
TESTS GENEREL ¥ orte | . Vite ¥| fowe ¥
& NEUMANN_ALUMINIUM_D« >V = ’ CAGHE = T T =
et /srisble_CD_DotNetControlContain_-]
&, FACTORYLINK
4 CO_DOTNETCONTROL(
L P F— ’
< lame] * | 1total /1 filtered / 1 selected | 0 tags used / unlimited tags avadable |
Nome Identification Address Project
Varable_CD_DothetContr.... S (0) 0000.00 CD_DOTNETCONTROLCONTAINER
[ad][remove | [Moseecson | ok J[come][heo |

.NET user controls

Zzenon

Then link the internal variable with a text element.

6. After the Runtime start the control is initially empty.

CD DotNetCortrolContainer

Set Zenon Variable

If you enter a value in the second text box and then confirm it with button set zenon
variable, the value is written to the zenon variable. (The btnsetZenonvariable Click event
is carried out.)

This is also displayed in the zenon text element.

.NET user controls

Zzenon

If the value is directly changed in the zenon text element,

the value is directly written in the first text box via the paint event of the .NET control.

CD DotNetCortrolContainer

5.2.4 Accessing the user control via VSTA or VBA

This examples shows the access via VSTA. The procedure is the same as with VBA.

1. Enhance the control with a label (1abel) and name it Ib1zenoniInfo. In this label the value of

another zenon variable should be displayed. The new value should be set via a VSTA macro.

Enhance the code by a property (Information) and add the properties get and set to the

2.
property. They allow you to read and write the text of the label.
public partial class zencn CD_Dothet
be needed to get the zenon Variable Container
zen0n. le m_cval = null;
public zenon_CO_DotMetControlCentainer()
InitialireComponent();
}
public string Information
set{this.lblZenonInfo.Text = value;}
get { return this.lblZenonInfo.Text; }
}
3. Create a new release for our user control and copy it to folder additional of the zenon
project.
Do not forget: Close the zenon Editor before you do this!
Delete the old DLL and restart the zenon Editor. If the DLL is still in the folder, just delete it a
second time. Now you can import the changed DLL. The cD_DotNetContainerControl and the
ActiveX are updated automatically.
4. Inthe zenon Editor click on the ActiveX and open the property window.
Configuration » &
ActiveX =) |
ActveX glements
Controls Qasm - Cancel
Calendar Adapter Class [Sv‘H?JBI--iG-L. el
Calendar Sy Class. {ABATDADO B4,
CaldrgefditCtl Class {4CTR9260-3A...
ediuiny Ceowon..
CD_DothetControiContaner.Container {FOF2572-D01...
Propertes...
Wariable assgrment
Varabie, Down Up

65

.NET user controls

Zzenon

Now you can see the new property Information in the selection window of the control and

you can also set a value.

“zenon_CD_DotNetControiContainer Config Windows Form Control — SRION=X
SelectUserCoetrol
2enon_CD_DotNetCortroiContanes zenon_CD_DotNetControlContainer v [Losd
Preview: C:ProgramData\COPA-DATAISQLISEES4184-251e-4535-b396 - 3be42367997c FILES zencalcustomiadditionalizencn_CO_DY
B0l | = :
f Anchor Top. Left |
| AutoSeroll Faise
B AutoScrollMargin 0.0
B AutoScrollMinSize 0.0
| CD DotNetControlContainer Wem Falso
AutoSizel GB‘IM
poihocesics Dock None
8 Location 0.0
Yodblo Yo & Margin 3333
= @ MaximumSize 0.0
@ MemnSze 00 i
8 Padding 0:0:0:0
& Size 318; 158 E
8 Misc
| DTN myied omation]
Informaton
- |

This value is also set in the control ("mylnformation")

CD DotNetCortrolContainer
mylnformation

Variable Value

| | [SetZenon Variable

5. Inorder to able to work with the cD_DotNetControlContainer in VSTA or VBA, you first need
the reference to the control. After VSTA has been opened for the project (Projectaddin), you

must add the reference of the cb_DotNetControlContainer.

@ psareeee T R e,

[| COM | prepects | srowse | Recent

Component Name Typelib Vession Path a
POCube 20 Type Libeary 1 CAProgram Files (86 DEMSA
Microsoft OLAP Designer Serves Driver80 10 C\Program Fies (G86I\C OBMSA
MSOLP 30 Type Library 1) C\Program Fies (486]\Common Files\System|cle db\msocley
Micreseft OLE DB provider for OLAP Servi... 10 C\Program Fies (86]\Common Files SYSTEN OLE DBVMSC
mokuB0 1.0 Type Libeary 10 Capr (86 7 "
Microseft OLE DB Service Componert 10 .. 10 C Files (:86)\Ce W DS\oledt
OLE DB Errees Type Library e C:\Program Fies (86]\Common Files\SysterOle DFoledb.
DothetControlContaines 10 Ci\Program Fies (386]\COPA-DATA\zenon 6.50 SPO\CD_Dot
K5Clouds ActiveX Control module 10 C:\Program Files (:36]\COPA-DATA\zencn 6.50 SPOWSClous
StratOnCem 1 CA\Program Fies (6]\COPA-DATA\zenen 6.50 SPOWSCOM
$PC_Hast ActiveX Control 10 CA\Program Files (86]\COPA-DATA\zencn 6.50 SPO\SPC_Hir
COC Tomad Acto ¥ £ anteal in £ Bemmrnon Edar AN FADANATA) samnc &) CONCOC Too
< v

[o][cmca]

.NET user controls

In addition you must also add the Assembly system.Windows . Forms.

o 2| BETINGS.LUESIGNEr.CS
E| | References
e «@ CD_DotMetControlContainer
-« Microsoft.VisualStudio. Tools.Applications.Runtimev8.0
-« System
-« System.AddIn
-« System.Data
-« Systern.Windows.Forms
-« Systermn.Xml
.. 3 zenonVSTAProxy6510

m

6. With the following code you can set the value of our property Information anew.

public void Macro_Test()
(

Tzy

i

t= zELements = this.DynPictures().Item("START").Elements();
Element = zELements.Item("ActiveX 1%):

zenOn.1
zenOa.

ziveX Elemenc

// Create a Variable of Type CD
// with a cast
€D_DotNetControlContainer

ontainer.Container and get the zex

)zElement.AktiveX():

r zAktiveX = (CD_DotNetControlContainer.

//WsTh using 1Property of the Property oh® we can set
// a new Value * o the
if (zAktiveX 1 perty("Information®) .Equals ("myInformacion®))

1 ("Information®, “"New Information®);

1UserControlProperty(“Information®, "myInformaticn®);

}
catch (Exception ex)
{
System.Diagnostics.Debug.Print ("ERROR : * + ex.Message + " " + ex.Scurce);
}
)

7. Finally:
e create a new zenon function Execute VSTA macro

¢ link the function to a button

Zzenon

In the Runtime the label is changed from myInformation O New Information by clicking on

the button.

CD DotNetControlContainer
New Information

And back when you click the button again.

CD DotNetControlContainer
mylnformation

5.3 Example :NET control as ActiveX (CH)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1. Creat Windows Form Control (on page 32)
2. Change .NET user control to dual control (on page 36)
3. Work via VBA with ActiveX in the Editor (on page 41)

4. Connect zenon variables with the .NET user control (on page 42)

5.3.1 Creat Windows Form Control

To create a Windows Form Control:

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

New Project E]El

Project bypes: Templates: NET Framewark 3.5 v |E|E
T TR
i ;Mg;e;::‘mlgence Projects A = WPF B Appication ~
= Visual C# 7% Console Appication
Windows 3] Erpty Project
web FAwindows Service
Stmart Device &% WPF Custom Control Library
& Office % WPF User Control Library
Database 7 Windows Forms Control Library
Reporting
5515 _ScriphComponent My Templates
5515_Script Task ~ . v

A project for creating controls o use in Windows Forms applcations {NET Framework 3.5)

ame: zenOnDotietControl
Lot 3
Zolution: Create new Solution % | [] Create directory for sohution

[[]Add to Soyrce Control

=) Co

.NET user controls ﬂ

Zzenon

2. Rename the default control to the desired control name.

In our example: sampesControl.cs.

File Edit Miew Project Build Debug Data Tools Test

Window

Help

{208 8112 2 %] a aT an

|=d| Properties
[s3] References

. |\-§Macro... |Resou... |

@Soluti. o @CIass 00

Properties

SamplesControl.cs File Properties -

> 0 x

|IE Output| |L‘3 Error List| 5 Find Results 1

Ready

3.

¥ zenOnDotNetControl - Microsoft Yisual Studio
Fle Edt View Projec Buld Debug Data Tools Test Window Help

Open the Control Designer and add the desired control; in our case a text box:

(=1t

=G-8 s L B9 - 0 - D)D) Debug ~ Any CPU - |Los o
lo Ao L3R ab i Lo B B8 | oge e 0 T | 8 T Bt a0 | [[B] Las 3 (G L 3 S te T 2 =
[Design]* v X | Solution Explorer -2 X
: \% 23,5038
-4 zenOnDotNetControl
8% ChackeduistBox 2en0n Net Control @ 58 Pr
&8 ComboBox s ®, @ = References
T2 DateTmePicker - ® (5 SemplesControl.cs
A Label
A Unkiabel
®5 ListBox
737 Listview
=] MaskedTextBox [
72! MonthCalendar |csoti... g Class ... [Macro... [EResou... |
= 1 i
?Wyton |Properties <0 x
i ; textBox1 System.Windows.Forms. TextBox -
E5) ProgressBar
@ RadioButton ~
2, RichTextBox LeR
TextBox Ease
TextBox False
False

Version 2.0.0.0 from Microsoft Corporation
NET Companent

Enables the user to enter text, and provides multline
eding and password character masking,

4

2 Floud auniDanal A
(3 Cutput] |5 Error List| S Find Resuks |

v

When this property is true, the Cursor property of
the control and s child controls is set to WaitCursor.

Ready

4. Normally controls have properties. Open the Code Designer via view Code and ass the desired

properties which should be available externally.
In our example: Externally visible property , UserText" with get and set access which contains

the text of the text box:

#% zenOnDotNetControl - Microsoft Visual Studio

File Edk ‘iew Project Buld Debug Data Took Test Window Help
[FARSEER A== I R -) - Lo 3| b Debug - Any CPU
o s ALLS S 5 aT al - s
% SamplesControl.cs® samplesControl, cs [Design]* s
= 2] | [B
£ || “tgzenOnDotietControl SamplesCortral % | UserText v| 2| F]E R &
2 [Husing System; — ;E zenO X nDnl:ﬂell:mlml
using System.Collections.Generic; H " Rreofl:;n?es
using System.ComponentModel: & =
using System.Drawving: ' J Cpen
using System.Data; Open With. .
using System.Ling:
using System.Text; ﬂ Refresh
“using System.Windows.Forms: view Cade
[namespace zenOnDotNetControl \E— VW Uesger
{ & Wiew Class Disgram
E public partial class SamplesControl @ UserControl _i\Soluh... _Ti-'a-.: Exclude From Project
{
=) public SamplesControl() ELopertes # Cut
{ SamplesControlcs | 1y cqpy
InitializeComponenti); =
L y il =i ¥ Delete
—— T =] Rename
-
=] //hfhl.lc string UserText R\\ Bulld Actian . P .
ya N Copy to Output Dirg =1 Properties
(get { return textBoxl.Text; } :l Custom Toal
\ set { textBoxl.Text = wvalue; } / Custom Toal Namespac
AN / =]
| Ry /./" File Name SamplesControl.cs
Ly T =
Advanced
v
< >
=) oukpuk| |53 Error List| 5 Find Resuts 1
Ready

5. Compile the project.

The Windows Forms Control can now be used in other Windows Forms projects.

Important: The control must be inserted manually in the control tool box via choose Items.

@2 zenOnDotNetControl - Microsoft Visual

File Edit View

HL LIS 2 S

Project Build Debug D

EnRACE R = NP WE= N Y

T

o ol

L Lioi G

trol.cs |

5
;).— (2b] Button
o
2
g Checl
—";ﬁ
b=
A Label X
A LinkL.

i Monk
=] MotiF
[13] mMume
|8 Pictu
M1 Prog)
() Radid

25 RichT

Cut

Copy

Paste

Delete

Rename Iterm
List Wiew

Show All
Choose Items...
Sart Ikems Alphabetically
Reset Toolbox
Add Tab

Move Up

Move Down

[abl] TestET

K ToolTip

T Treeview

k Painter

5.3.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

:‘j WebBrowser
= Containers

71

1. Open the project and activate property Register for COM interop in the Build settings:

#% zenOnDotMetControl - Microsoft Visual Studia

Fle Edt Vew FProjct Buld Debug Data Took Test Window el
He -Gl & x % - - T LR Debg = Ay CPU - | [#) AbmErsueansosdintisiostion » | £ A 8 b
] - saTosi LG 5 "
» 5 [Dessign] DRl Schstion Explorer - zen... w B X
B L FL&
g Agpication | :enompotietcontrol
Corfimation: ctive {Debug) ¥ Plsfors: |active (fy CPU) w ® 1 (3] nehesh
d® & 4
Gerwrdl @ [& o
Buid Everts Rusbud
Ceendtional complation symbols: han
2 [] Define DEBUG constart =
Resources [] Defire TRACE constant e
P Pl Larget: Any CPU A Service Reference..
Settings 0 s - 7y View Class Diagram
Optenize code
Reefsrerce Paths -
erence Ervises and warmings B8 addProject to Sowce C
Signirg Warring level: + b oz
SUPEBSS WATINGS: _\—.‘|s..
Trest warmings a5 enmors Lo R
© e 0t (3 ol eds
. . Properties
O st aress ERG e >
(o] Project File penOnDothietContr
Cutgut
S =
’I;_i_ﬂ_mm.ab_m_@_:ﬂ\
Q‘__Bnmﬂuconmio/
Gersraks serokastion assebly: |42 L
Misc
3 ouput] | 2 Ervor List|] Frnd Rests |
Ready

2. Open the file AssemblyInfo.cs and
e set attribute ComvVisible to true
e add attribute ClassInterface

[assembly: ComVisible(true)]

[assembly: Classinterface(ClassinterfaceType.AutoDual)]

* sual Studio

= zenOnDotNetControl - Micrasoft
Ble £t Wew Project Buld Debug Data ook Teg Windew Help
RN RN N I R = R T
Lahtllae o aaTanl@ o] =T

| Assemblylnfo.cs SavplesControlcs | SamplesCortrol.cs [Design] |

oo |

Elusing Jystem.Reflection:
l using Syscem.Runtime.CompilerServices:
using System.Runtime. IntercpServices:

// General Information about an assembly iz controlled through the following
/{ set of attributes. Change these attribute values to modify the informatio
/f associated with an assembly.

[assembly: AssemblyTitle ("zenOnbotMetControl™))

[assembly: AssesmblyDescription{™)]

[as=sembly: AssesblyConfiguration{™")]

[as=enbly: AssemblyCompany(™T)]

[a==enbly: AssesblyProduct (MzendnDotNetControl™)]

(azsenbly: AssesblyCopyright ("Copyright @ 2008"))

[aasembly: AssesblyTrademari(™")]

[mazenbly: AssemblyCulture (™))

§5... ‘ch...'fh..'ﬂ]

// Setting ComVisible to false makes the types in this assembly not visible gt =0 K|
-

A to COM

T Tt a type in this assembly from
| Assemblylnfo.cs Fis Properties =

¢ =et the ComVisible attribute to true on t
Elua

[as=embly: ComVisible (erue)]
[assembly: ClassInterface(ClassInterfaceType.Aucobual))

B Advanced
Budd Action Corgie
// The following GUID is for the ID of the typelib if this project is exposes Copy 'w': Donck copy
[mazembly: Guid("41bE85hT-cot5=4Tce=bh17=-541btas8740e")] Custom T
Custom Tool b
B Misc
#f Version information for an assembly consists of the following four values
17 FleName Assemblylrfo.cs
" Major Version APsth |EZENCHESOIVELL
i Minor Version
i Build Number
i Revision !
i Advanced
// You can specify all the values or you can default the Build and Revision I3
3 ¥

@ output| | 2 Ervor List|] Find Resuks 1
Ttem(s) Saved

.NET user controls

Zzenon

3.

Open the code designer via view Code and add the necessary ActiveX attributes and using

entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

“ zenOnDotMetControl - Microsoft Visual Studio

EIEX

File Edit Wiew Projpct Buld Debug Data| Teols |Test Window Help
(R e g R I B R b Debug - Ay CPU - [# AfmEnsureManagedinkislzation -
2a'a b Lad o a_aT al) PR = iE) & ol (3 47 3h L
b= Asseniblyinfo.cs SamplesContrakes samplescontrol.cs [Design] - X
E i i ¥ " v a3 FlLELEL A
- S oins svecem: — & i zenOnDotNetControl
: Al @) Properties
using System.Collections.Gensric:
#- = References
using System.ComponentHodel; &
using System.Drawing: %
using System.Daca; | den
using System.Ling: Open Wih...
using Syatem. Textc: 2] Refresh
using Syscem, Windows, Forms:
using Syatem.Runtime,InteropServices; [[E] Ve Code
using System.Reflection: W
{uatng Microsoft.Winia: 2, View Class Disgram
| namespace zendnbotNetControl Esechyde From Project
i ¥ o
[Progld("zentnbotNetConcrol. SamplesControl™)] = [
[FF0BD1-A3IDC-4a37-BOBA-A0B022CADETA™)] g5 | Ua | copy
| [ComVisible (true), CL & 21 aceType . Autobual)]l | ¥ Dekte
[public partisl class 1
t Renams
] public SamplesControl() 4 Properties
]
Initialisec . Choose the desited foemeat below, then select “Copy'” ta o
' pitializeComponent () cooylh_elewlxhnlhsciptﬂad[ﬁlelssﬂlscanﬂmtel tion Compile
mdlmyw souwce code]. Choass "Ext” when] Mew GUID 1| b cutps Do net copy
| oot
1 1:\;1: lic string UserTexc GUID Fomat Toclh
get { return textBoxl.Text: } (1 IMPLEMENT_OLECREATE].| - -
et { textBaxi.Text = values | © 2 DEFINE_GUIDL.) [Seplestonia.ce
) H (03 stadic const stuct GUID = (...}
Ly) 4 Regsty Format [ie. boosoocnn won)]
Resl
A CFFS0BD1 AIDC 4297 BOBAANBIZZCADETA)
P IMPLEMENT_DLECREATE[«cclasty, <<endmnal_ namass,
— OwvciFIbd! . Dwaddc. DedaS7. O=bD, Oxba. Dwal. (=30, 0x22. Duca, (8.
3 Cutput| |3 Eror List| B Find Resuks 1 OPel:

4. For the control to be selectable as Active X user interface control, you must add the functions to

the following control classes:

¢ RegisterClass

74

e UnregisterClass

%% zennllotietContral - Microsaft Visual Studic

Bl G Yew Poje Buld Debuy Dgfa ok Tt Widow Hep

P A - I b Debug = Ay CRU = | [# AfmEroueMaragedintisioation = | 3 5 [ok i]
L =) " t E F J ol

3| Assembiyiniocs Sangiesi - x

g 2en0rDothet Conteul SavghsControl | [Lrwgister Class(string ey v B @ F] E M A

' i enOnDotMetComtral
Al @ Properties
o Refererces

@

namespace zenfnbotHetdontrol
0
[Frogld("zentnlotierContral . Sampleat
[Guid ("CFFROEDL-AIDC-4
mif1xible (truel .
o public parzial class

sceType, Autobusl]]

public SamplesControl ()

InitializeCamponent |)

= string UserText

wen centBoxl, Texe: |
textBoxl, Text = value: |

- o B
Properties -0 x
SamplesContrals Fie Propert -
pensubkey [=b. ToScring|), true): -
ralm: |l
/ a
seg -y inprocServerdZ = k.OpenSubey|"InprocServerIZ®, true)s Fuid Action Congie
inprocServeri?.Setvalue [*CodeBase”, Assenhly.GetExecutinghssesbly|).CodeBase) Copy bo Ok B0 hok €opy
inpracServeriz. Close () : Custom Tool
E.Clomel): Custom Toal b,
) s
File Mo Samplesontrol o5
[ConUncegistacy ion ()]
public static void Uncegisterdlass(string key)
yEuilder (key) ;
BOOT\®, %)
LassesRoot. OpenSubley =k, ToString|), trus);
falze) s
' ibprocSeeveriz = k.OpandubRey |"Inprocerver3z”, ceus):
k. DeleteSubKey ("Codebase”, false):
x.Clasel)s
. Misc
Sandeagion) @
« »
] outt| [Ervow Lt S, P R 1
Retudd Al screeded

After that you can register the control in the registry.

5. Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenonDotNetcontrol.tlb Was created in the output
directory.

6. To use the control on another computer:

a) copy the DLL file and the TLB file to the target computer

b) register the files via the command line:
$windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll
/tlb:zenOnDotNetControl. tlb

75

533

.NET user controls

Zzenon

7. Add the extended Windows Form Control as ActiveX control to the zenon Editor:

To access the properties of the control in the zenon Editor:

¥ Qotes Pearbaten Bjder Yebtor-Elemente QOptionen fenster Hife
B LA HDH Qg (SO =P 22
~ A AL y % {ll i“ t. %7-@.’5‘.6 " 5 I
g %
ﬂlmt\b& E
sﬂmvmmf;“"&nxg“’ .o
I i z0n0n Net Contol
o et
9 Rezepte : T Ay B
Qiuu-m / P
* o Shipirg
PECEN31Y - | 2 ®
o H
Veregehungen — 4. g
Message Corticl Acvex K'\ o
Meriis L]
&) Report Generator ActeX Eemente P
B8 Deachon Controh aso -
@GR Datven v |¢ weeq Cortrd (EsEs1AC-88... -
< > |eomemjéd | xseckoCotra (NG9, e]
9 Control {BEE2A19F-252.,
[S e [o] < =i
§ Smm Actrvexe] memm:::,_mum o
=
12 Postion ~
< 2 Varisblerzuordnung
o M E% R
K i)
VBA: Schreibberechtigung fur
Projekt: ‘ACTIVEX1' einfugen
Projekt: 'ACTIVEX1' laden
i [voristle... | [machunten | [Nechoten |
[t T A L T L
Work via VBA with ActiveX in the Editor

1. Inthe zenon Editor in node Programming interfaces/VBA macros create a new Init macro

with the name Init ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

.NET user controls

Zzenon

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX

element.

) Darstellung

i) Rahmen/Schatten ’_ o 9 N
3 Sichtbarkeit/Blinken Init. Init_Init_ActiveX [] SetFocus: =)
i Allgemein Draw: [KillFocus: =
=) Position
) GroBe und Drehen dynamisch E DS | .COP) SQL2 0838419d-251 e-4595-b396-0bed 2367997 ¢\ FILES\ze
— :;"’"‘ 4% Dotei Bestbeiten Ansicht Einfogen Format Debuggen Ausfuhren Extres Add-ns Fenster 2 -8 %
9 -
) Sollwest absetzen 2 E-H R oy ek MEYW O 2451 c
Projekt - ZCD_DOTNETCOI x| (Allgemein) > Init_Init_ActiveX -
Fublic Sub Init_ActiveX(obElem As Element) T‘
obElem.AktiveX.Usertext = "Den String auf das Control setzen"
End Sub
E
’l! + [ng] "

EXAMPLE INIT MACRO

Public Sub Init ActiveX(obElem As Element)
obElem.AktiveX.Usertext = "Set the string to the control"

End Sub

5.3.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS
» public bool zenOnlnit (on page 44) (Is called up during control initializing in the zenon Runtime.)

» public bool zenOnInitED (on page 45) (Is used in the Editor.)

» public bool zenOnExit() (on page 45) (Is called up during control destruction in the zenon

Runtime.)
» public bool zenOnExitED() (on page 45) (Is used in the Editor.)
» public short CanUseVariables() (on page 45) (Supports linking variables.)
» public short VariableTypes() (on page 45) (Supported data types by the control)

» public MaxVariables() (on page 46)(Maximum number of variables which can be linked to the

control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under add References the zenon Runtime object library in

order to be able to access the zenon API in the control.

* QTR AR R e e ey
a _E zenon_CD_DotNetControlContainer
=d| Properties
g] References
a ﬂzen0n_CD_DotNetCUHtrDICDHtainer.cs
) zenon_CD_DotMetControlContainer.Designer.cs
"-g zenon_CD_DotMetControlContainer.resx

00 Add Reference I PR
| MET | com |Projects | Browse | Recent|
Component Name : Typelib Version Path o
WSHControllerLibrary 1.0 CA\Windows\SysWOV
wiv2dvrms 1.0 Type Library 1.0 CA\Windows\eHome\
WUAPI 2.0 Type Library 20 CA\Windows\SysWOV I
H5Editor ActiveX Control module 1.0 C\Program Files (x86
X5Monitoring ActiveX Control module 1.0 C\Program Files (x86.
XGo OLE Control module 20 C\Program Files (x86
XPS_SHL_DLL 1.0 Type Library 1.0 CA\Windows\system3
zenDBSrv 2.0 Type Library 20 C\Program Files (x86.
ZenMsgSrv 1.0 Type Library 1.0 C\Program Files (x86.
zenMetSrv 2.0 Type Library 20 C\Program Files (x86.
zenon programming interface library 1.0 C\Program Files (x86
zenOnDotMetControl 1.0 D:\Eigene DokumenttI |
zenonDotNetDATAGRIDControl 1.0 D:\Eigene Dokumente _
4 | i b
’ OK] ’ Cancel]
" —r

2. Add the enhanced functions in the class code of the control in order to access the whole zenon

API.

78

In our example the COM obiject of a zenon variable is temporarily saved in a Member in order

to access it later in the paint event of the control.

R . BUCHE: 3- Sh-ah-ape s b

v | J9SamglesContral_Particbyct sender, PartE vertiegs e -

publie b rendnlnit (zendn diapk Lement

zenonExit

opServices. .FinalReleaseComibyect (m_cVal):

public bool zenOnlnit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

X Assenbiyinfo.cs SemplesControles Sanpiesontrol.cs [Design] ~ X Sohion Explorer - 2000, w 8 X

)\ B F o138

2 zenOnDotNetControl
& [Propertes
& i Refererces
® 3 Ssnplestortrol.cs

Propertios *3 X

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down

or up. The dialog "element input" opens if:

» you double click the ActiveX element or

» select Properties in the context menu or

» selectthe ActiveX settings propertyinthe Representation node of the property

window

79

public bool zenOnInitED(zenOn.Element dispElement)

Equals public bool zenOnlnit (on page 44) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 45) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button variable) you can only state zenon variables with the

type stated via method variableTypes in the number stated by method Maxvariables.

» O:If canusevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can

be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anD relation from the following values (defined in zenon32/dy_type.h):

80

Parameters Value Description

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN OUTPUT 0x8000 corresponds to position 15

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

6. WPF Element

With the WPF dynamic element, valid WPF/XAML files in zenon can be integrated and displayed.

Y Information

All brand and product names in this documentation are trademarks or registered trade

marks of the respective title holder.

81

6.1 Basics

XAML

XAML stands for Extensible Application Markup Language. The description language developed by
Microsoft and based on XML defines the syntax in Silverlight applications and WPF user interfaces.
XAML makes it possible to separate design and programming. The designer prepares the graphical user
interface and creates basic animations that are then used by the developers/project planners. The
project planner can control these .xaml files in a purposeful manner and animate them accordingly.

WPF

WPF stands for Windows Presentation Foundation and describes a graphics framework that is part of
the Windows .NET framework:

» WPF displays the programming environment.

» XAML describes, based on XML, the interface hierarchy as a markup language. Depending on the
construction of the XAML file, there is the possibility to link properties, events and
transformations of WPF elements with variables and functions of
CD_PRODUCTNAME<.

» The framework unites the different areas of presentation such as user interface, drawing,
graphics, audio, video, documents and typography.

WPF is, according to Microsoft, supplied with Windows 8, Windows 7, Windows Vista and Windows
Server 2008. Microsoft .NET 3.5 is required for execution.

6.1.1 WPF in process visualization

XAML makes different design possibilities possible for zenon. Display elements and dynamic elements
can be adapted graphically regardless of the project planning. For example, laborious illustrations are
first created by designers and then imported into zenon as an XAML file and linked to the desired logic.
There are many possibilities for using this, for example:

82

DYNAMIC ELEMENTS IN ANALOG-LOOK

Graphics no longer need to be drawn in zenon, but can be imported directly as an XAML file. This makes
it possible to use complex, elaborately illustrated elements in process visualization. Reflections, shading,
3D effects etc. are supported as graphics. The elements that are adapted to the respective industry
environment make intuitive operation possible, along the lines of the operating elements of the
machine.

INTRICATE ILLUSTRATIONS FOR INTUITIVE OPERATION

The integration of XAML-based display elements improves the graphics of projects and makes it very
easy to display processes clearly. Elements optimized for usability make operation easier. A clear display
of data makes it easier to receive complex content. The flexible options for adapting individual elements
makes it easier to use for the operator. It is therefore possible for the project planners to determine
display values, scales and units on their own.

CLEAR PRESENTATION OF DATA AND SUMMARIES

o\ Engine No 1
-'}""\“ ot "
L L r—r
\ 4%’ - o

Grouped display elements make it possible to clearly display the most important process data, so that
the equipment operator is always informed of the current process workflow. Graphical evaluations,
display values and sliders can be grouped into an element and make quick and uncomplicated control
possible.

INDUSTRY-SPECIFIC DISPLAYS

83

Elements such as thermometers, scales or bar graphs are part of the basic elements of process
visualization. It is possible, using XAML, to adapt these to the respective industry. Thus equipment
operators can find the established and usual elements that they already know from the machines in
process visualization at the terminal.

ADAPTATION TO CORPORATE DESIGN

&8s

Illustrations can be adapted to the respective style requirements of the company, in order to achieve a
consistent appearance through to the individual process screen. For example, the standard operation
elements from zenon can be used, which can then be adapted to color worlds, house fonts and
illustration styles of the corporate design.

6.1.2 Transfer of values from zenon to WPF

zenon always works internally with the double or string. These are sent to the WPF element. The WPF
element is embedded in a .NET container. It usually needs to be converted so that the data type can be
used. This conversion can automatically be carried out by .NET.

The values are sent in accordance with the following rules:

» If the .NET type (system.0Object) for zenon is not evident, the value is sent as it is to .NET. .NET

must take care of the display or conversion itself.

» Ifthe .NET type is a Boolean type (System.Boolean), then zenon writes according to the .NET

convention O or —1.

» If the .NET type is known, a check is carried out to see if .NET can convert the value. The

converter from .NET is used for this.
e Yes: The value is sent.

e« No: The value is sent nevertheless. If .NET reacts with an error message, the value
of zenon is converted into a string and sent again.

84

6.1.3 Referenced objects

In WPF not only standard objects such as rectangles, buttons, text fields, etc. can be used, but also WPF
user controls, which are referenced as assemblies.

WPF user controls are individually created objects. For example, this element can look like a tacho and
provide special properties and optical effects, such as a "Value" property, which causes the pointer of
the tacho to move and display the value when it is set.

The workflow for this:

» The appearance of a user controls is labeled with standard objects, which are offered by WPF.
» The properties and interactions are programmed.

» The whole package is compiled and present in the form of a .NET assembly.

This assembly can also be used for WPF projects. To do this, it must be referenced (linked) in the WPF
editor (for example: Microsoft Expression Blend). To do this, select the assembly in the zenon file
selection dialog:

v 135 DemoApplication

References
o], AddReference.
=), Add Project Reference.. *

From this point in time, the WPF user controls of the assembly in the tool box can be selected under
Custom user controls and used in the WPF project.

USED REFERENCED ASSEMBLIES IN ZENON

To use an assembly in zenon, this must be provided as a file.
Collective files in . cdwpf format administer these independently; no further configuration is necessary.
Assemblies must be added to the Fi1les folder for .xaml files:

» Clickon Files on the project tree

» Select Other

» Selectadd file... inthe context menu
» The configuration dialog opens

» Insert the desired assembly

85

When displaying a WPF file in the wpF element (Editor and Runtime), the assemblies from this folder are
loaded. It is thus also ensured that that when the Runtime files are transferred using Remote Transport,
all referenced assemblies are present on the target computer.

A collective file (.cdwp£) can exist alongside an XAML file with the same name. All assemblies (*.dll)
from all collective files and the Other folder are copied to the work folder. Only the highest file version
is used if there are several assemblies with the same name.

A Attention

Assemblies are only only removed after loading when the application is ended. That

means:

If a WPF file with a referenced assembly in zenon is displayed, then this assembly is
loaded is in the memory until zenon is ended, even if the screen is closed again. If you
would like to remove an assembly from the Files/Other folder, the Editor must first

be restarted, so that the assembly is removed.

MULTI-PROJECT ADMINISTRATION

With multi-project administration, the same assembly must be used in all projects. If an assembly is replaced
by another version in a project, it must also be replaced in all other projects that are loaded in the Editor or in

Runtime.

6.1.4 Allocation of zenon object to WPF content
zenon objects are allocated to WPF content using the name of the WPF object. In doing so, note:

Visual objects do not have a RuntimeNamePropertyAttribute property. Therefore at the time when the
WPF content is loaded and created, the additional information of name is not available.

Thus a clear allocation of zenon objects to WPF objects is not possible. Therefore only logical objects are
listed in the configuration dialog of zenon. Which WPF objects the RuntimeNamePropertyAttribute has
available is visible in MSDN or on the Microsoft website.

WORKAROUND

Nevertherless, the following workaround is possible to animate visual objects:

86

For visual elements, the animateable property is linked to the text property of an invisible text box using
a data connection.

Because the text box as a logical object supports the name property, this is displayed in zenon.
The textbox property can also be animated with zenon.

This visual object is also indirectly animated as a result.

6.1.5 Workflows

The WPF/XAML technology makes new workflows in process visualization possible. The separation of
design and functionality ensures a clear distinction of roles between the project planners and designers;
design tasks can be easily fulfilled by using pre-existing designs, which no longer need to be modified by
the project planner.

The following people are involved in the workflow to create WPF elements in zenon:

» Designer
o llustrates elements

o takes care of the graphics for MS Expression Design

» MS Expression Blend operator
¢ Animates elements

o Creates variables for the animation of WPF elements in zenon, which project
planners can access

» Project planner
e Integrates elements into zenon:
e stores logic and functionality
We make a distinction:

» Workflow with Microsoft Expression Blend (on page 88)

» Workflow with Adobe lllustrator (on page 88)

87

Workflow with Microsoft Expression Blend

When using Microsoft Expression Blend, a WPF element is created in four stages:

1. [lllustration of elements in MS Expression Blend (on page 89)
2. Openelementin Ms Expression Design and export as WPF
3. Animation in MS Expression Blend (0n page 89)

4. Integration into zenon (on page 134)

You can find an example for creating a WPF elements with Microsoft Expression Blend in the Create
button as XAML file with Microsoft Expression Blend (on page 89) chapter.

Workflow with Adobe lllustrator

Based on traditional design processes with adobe Illustrator the following workflow is available:

1. lllustration of elements in Adobe Illustrator (on page 94)

2. Import of .ai files and preparation in Ms Expression Design (0n page 96)
3. WPF export from MS Expression Design (On page 96)

4. Animation in MS Expression Blend (0n page 98)

5. Integration into zenon (on page 141)

You can find an example for creation in the Workflow with Adobe lllustrator (on page 93) chapter.

6.2 Manual for designer

This section informs you how to correctly create WPF files in Microsoft Expression Blend and Adobe
Illustrator. The tutorials on Creating a button element (on page 89) and a bar graph element (on page
93) show you how fully functional WPF files for zenon can be created from pre-existing graphics in a few
steps.

The following tools were used for this:

» Adobe lllustrator CS3 (Al)

» Microsoft Expression Design 4 (ED)

88

» Microsoft Expression Blend 4 (EB)

» zenon 6.51

¥ Information

If referenced objects (assemblies) are used in WPF, note the instructions in the

Referenced objects (on page 85) chapter.

6.2.1 Workflow with Microsoft Expression Blend

With Microsoft Expression Blend, a WPF element:

» isillustrated
» is converted into WPF format using MS Expression Design

» animated

The following example shows the illustration and conversion of a button element into an XAML file.

Note: A test version of "Microsoft Expression Blend" can be downloaded from the Microsoft website.

Create button as an XAML file with Microsoft Expression Blend

CREATE BUTTON

1. Start Expression Blend

89

2. select the New Project option

r bl

Projects

ﬁ New Project...
E Open Project...

VRun at startup Close

3. Select WPF as project type

4. give it a path and name of your choice (MyBlendProject, for example)

A project for creating custom controls that can be reused across
other WPF applications.

MName
Location C:\Elen ecth, Browse...
Language

Version

Cancel

The Language and version Settings can be ignored, because no functionality is to be
programmed.

90

5. After the dialog has been confirmed with ok, Microsoft Blend creates a new project with the
chosen settings. Expression Blend adds an empty XAML file which already contains a class

reference.
6. Delete the CS file that belongs to the XAML file using the context menu.
7. Rename the XAML file MainControl.xaml t0 MyButton.xaml.

8. The development size of the file is set at 640 x 480 pixels as standard and must still be changed:
a) switch to xamr view
b) correct the size to 100 x 100 pixels

c) Delete the class reference x:Class="MyBlendProject.MyButton"

MyButton.xaml =

1 <UserControl
2 wmlns="http://schemas.microsoft. com/winfx/2806/xaml/presentation”

3 xmlns:x="http://schemas.microsoft.com/winfx/2066/xaml"”

4 xmlns:d="http://schemas.microsoft.com/expression/blend/2668"

5 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2666"
6 mc:Ignorable="d"

7 »:Name="UserControl”

3 d:DesignwWidth="108" d:DesignHeight="19q">

9

1@ <Grid x:Name="LayoutRoot" />

11

12 < /UserControl:

9. switch to Design view

10. add a button via the tool bar

11. define the properties
e Width: 50
e Height: 50

91

e Margins: 25

v Layout

Width 50
Height 50
Row 0 RowSpan 1
Column 0 ColumnSpan 1
Zindex 0
HorizontalAlignment [= = _|II:II
VerticalAlignment I_I
Margin + 25

t+ 25

The button is therefore at the center of the control.

T .. T

12. Save the changes and open the file in Internet Explorer to check it. You will see that the button is

displayed in a size of 50 x 50 pixels.

MAKE BUTTON SCALABLE

If you integrate this status into zenon, the button will always have the exact size of 50 x 50 pixels.
Because the button can be implemented as a scalable button, switch to Expression Blend again:

1. select the button in the tree view
2. select the Group Into->Viewbox button in the context menu
3. the button is inserted into a Viewbox

4. Define the properties of the viewbox

e Width: Auto
e Height: Auto

92

5. save the file

Cut
Copy
Paste
Delete

Rename

Order
Align

Auto Size

Group Into Grid

StackPanel
Fin Active Container DockPanel

-

SIEEE ZTE I Data bind Content to Data... Canvas

Edit Text ScrollViewer
Border
WrapPanel
UniformGrid

UserControl Make Into Control...
Make Into UserContral...
Edit Template

Edit Additional Templates

Control Viewbox

youtRoot
@ [Button] “Button”

6. If you now open the file in Internet Explorer, the button is automatically scaled when the IE
window size is changed. This file will now also automatically adapt to changes in the size of the

WPF element in zenon.

CHANGE NAME

Before you can integrate the file into zenon, you must give the WPF element a name. The WPF
elements are not named in Expression Blend as standard, and are labeled with square brackets and
their type. zenon content is assigned to WPF content via the name of the WPF elements:

» intree view, change the name
o of the button on MyButton

e of the ViewBox t0 MyviewBox

This button can now be integrated in zenon (on page 134) as an XAML file.

6.2.2 Workflow with Adobe Illustrator

When Adobe Illustrator is used, a WPF element:

» isillustrated in Adobe Illustrator
» isconverted into a WPFinMS Expression Design

» isanimated in MS Expression Blend

93

The following example shows the illustration and conversion of a bar graph element into an XAML file.

Bar graph illustration

A bar graph is created in Adobe Illustrator.

1. Al: Starting element for bar graph

[llustrated in Adobe lllustrator CS3.

2. Al Path view of bar graph in Adobe lllustrator

E =
-

o All effects must be converted (object -> Convert appearance)
e Alllines are transformed into paths (object -> Path -> Contour line)

o Do not use filters such as shading, blurring etc.
NOTES ON COMPATIBILITY

Illustrations that were created with Adobe lllustrator are in principle suitable for WPF export. However,
not all lllustrator effects can become corresponding effects in Expression Design/Blend. Note:

94

Effect

Clipping masks

Filters and effects

Text fields

Transparencies and group
transparencies

Multiply levels

Indicating instruments and
standard positions

Description

Clipping masks created in Adobe lllustrator are not correctly interpreted
by Expression Design. These are usually shown in Blend as areas of black
color.

We recommend creating illustrations without clipping masks.

Not all Adobe lllustrator filters are transferred into Expression Design
accordingly: Thus blurring filters, shading filters and corner effects from
Illustrator do not work in Expression Design.

Solution:

4 Most effects can be converted so that they can be read correctly by
Expression Design using the Object -> Convert appearance

command in Adobe lllustrator.

> Corner effects from Adobe lllustrator are correctly interpreted by MS Design

if they are converted to Al in paths.

To be able to link text fields with code, these must be created separately
in Expression Blend. "Labels" are required for dynamic texts; simple
"text fields" are sufficient for static information.

There is no possibility to create text labels in MS Design. These must be
directly created in MS Blend.

There can be difficulties in Adobe lllustrator with the correct
interpretation of transparency settings, in particular from group
transparency settings.

However MS Expression Blend and MS Expression Design do offer the
possibility to create new transparency settings.

These level settings in Adobe lllustrator are not always correctly
displayed by MS Expression Blend.

However, there is the possibility to "Multiply levels" directly in
Expression Design.

To prepare the graphics optimally for animation, the indicator and slider
must always be set to the starting position, usually O or 12: 00
o'clock.

Thus the position parameters for rotations etc. are also correct in Blend
and an animation can be implemented without conversion of position
data.

95

WPF export

WPF files are required for animation in Microsoft Expression Blend. We recommend Microsoft
Expression Design for this export, because it provides good results and most lllustrator effects are
correctly interpreted.

Note: There is a free plug-in for the direct export of WPF files from Adobe Illustrator available on the
internet. This plug-in provides a quick, uncomplicated way of exporting from lllustrator, however it is
less suited to the current application because it lead to graphical losses. Even color deviations from the
original document are possible.

Files in .ai format can regularly be imported into Expression Design; the paths are retained in the
process.

Attention: Some common lllustrator effects cannot be displayed by Expression Design correctly
however (see lllustration (on page 94) chapter).

We export the pre-created bar graph element in 5 stages:

1. ED:Import

e Import the prepared lllustrator file (on page 94) in Microsoft Expression Design Via
File -> Import

2. ED: Optimization

Stop Alpha 100%

(%0 oo B

Opacty @ 100%

96

o If the starting file is not correctly displayed in MS Expression Design, it can still be
subsequently edited and optimized here

3. ED:Selection

o Highlight the element for WPF export with the direct selection arrow in MS
Expression Design; in this case it is the whole clock

4. ED: Start export

e Start the export via File -> Export

e the dialog for configuring the export settings opens

5. ED: Export settings

o Enter the following export settings:

a) Format: XAML Silverlight 4 / WPF Canvas

Always name objects: Activate with tick

Place the grouped object in an XAML layout container: Activate with tick
b) Text: Editable text block

C) Line effects: Rasterize all

The exported file has . xam1 file suffix. It is prepared and animated (on page 98) in MS Expression Blend
in the next stage.

97

Animation in Blend

With MS Expression Blend:

» static XAML files from MS Expression Design are animated

» Variables for controlling effects that can be addressed by zenon are created

In thirteen steps, we go from a static XAML to an animated element, that can be embedded in zenon:

1. EB:create project

Open Microsoft Expression Blend

Create a new project

Select the project type Of WPF- >WPF Control Library
Give it a name (in our tutorial: My_Project)

Select a location where it is to be saved

Select a language (in our tutorial: C#)

Select Framework Version 3.5

2. EB:delete MainControl.xaml.cs

a)
b)

Navigate t0 MainControl.xaml.cs

Delete this file using the pelete command in the context menu

3. EB: Open exported XAML file

Open the context menu for My_project (right mouse button)
Select add existing element..

Select the XAML file exported from Microsoft Expression Design, in order to open this
in Microsoft Expression Blend

98

4.

EB: Open MainControl.xaml

a) Open the automatically created MainControl.xaml

b) Inthe objects and Time axes area, navigate to the Usercontrol entry

EB: Adapt XAML code

a) Click on usercontrol with the right mouse button
b) Select pispiay xamr in the contextual menu.
c) Delete lines 7 and 9 in the XAML code:

x:Class="My_ Project.MainControl"

d:DesignWidth="640" d:DesignHeight="480"

EB: check XAML code

e The XAML code should now look like this:

<UserControl

xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc: Ignorable="4"
x:Name="UserControl">

99

<Grid x:Name="LayoutRoot"/>

</UserControl>

7. EB:Copy elements

a) Open the XAML file imported from Expression Design
b) Mark all elements
c) Select pelete in the context menu

d) Change back to the automatically created XAML file

8. EB:lInsert element

a) Click on Layout Root With the right mouse button

b) Select 1nsert

9. EB: Adapt layout type

a) Click on Layout root -> Change layout type -> Viewbox with the right mouse button

b) The structure should now look like this: usercontrol -> LayoutRoot -> Grid ->

Elements

c) Give a name for LayoutRoot and ecrid by double-clicking on the names

10. EB: Texts and values

e Dynamic and static texts are labeled with text fields

100

e Values (numbers) are issued with Labels

11. EB:Insertlabels

o Labels replace numbers that are to be subsequently linked using INT variables (must
be carried out for all number elements)

12. EB: Set property

e Todisplay 100%, set the bar graph element's MaxHeight property to 341 (the
maximum height of the indicator element is 340)

13. EB: prepare for use in zenon

a) Delete all name labels (names may only be given for elements that are to be
addressed via zenon)

b) Save the XAML file with any desired name
c) Integrate the XAML file into zenon (on page 141)

A tip for checking: If the XAML file is displayed with no problems in Microsoft Internet Explorer and
the window size of Internet Explorer adapts to it, it will also be correctly used in zenon.

6.3 Engineering in zenon

To use WPF with zenon, Microsoft Framework 3.5 must be installed on both the editor computer and on
Runtime.

101

CONDITIONS FOR WPF DISPLAY IN ZENON

The animation is currently available for simple variables; arrays and structures cannot be animated.
Therefore the following WPF functions can be implemented in zenon:

» Element properties that correspond to simple data types, such as String, Int, Bool etc.
» Element properties of the "Object" type, which can be set with simple data types

» Element events can be used with functions; the parameters of the events are not however

available in and cannot be evaluated in zenon

» Element transformation, for which a render transformis present for the element in the XAML
file

Attention: if the content is outside of the area of the WPF element during transformation,

this part of the content is lost or is not labeled

Notes on dBase: No shade can be displayed in zenon for WPF elements.

A Attention

If the Runtime files were created for a project for a version before 6.50, existing WPE’

elements are not included into Runtime screens.

DISPLAY UNDER WINDOWS VISTA/WINDOWS 7

If a WPF screen contains a slider and Windows Vista or Windows 7 Aero Effects are used, this may lead
to refresh problems in zenon Editor.

6.3.1 create WPF element

To create a WPF element

1. inthe elements toolbar, select the symbol for WPF element or the Elements entry in the menu
2. select the start point in the main window

3. pull open the element with the mouse

102

4. In properties, select Representation the propertyXAML file inthe group
5. the file selection dialog opens

6. Select the desired file

Files of the following formats are valid

e *xaml: Extensible Application Markup Language

o * cdwpf: WPF collective file, also shows preview image

(the file must already be present in the Project Manager under Files/graphics Or created in
the dialog.)

7. configure the link (on page 104)

¥ Information

If referenced objects (assemblies) are used in WPF, note the instructions in the

Referenced objects (on page 85) chapter.

6.3.2 CDWPF files (collective files)

Rules for the use of collective files:

» The files can be in the ZIP file directly or in a joint folder.
» The name of the XAML file should correspond to the names of the collective file.
» Only one XAML file may be contained.

» The preview graphic should be small and no more than 64 pixels high.

Name of the preview file: preview.png or the name of the XAML file with the suffix png.

» Any number of assemblies can be used. The distinction is made on the basis of the file version in

numerical form.
» Collective files do not need to contain an assembly.
» All folders are searched and only *.d11, *.xaml and *.png files are taken into account.

» If alf a collective file (.cdwpf) is replaced by a file with a different version, all corresponding

CDWPF files in all symbols and images in all projects must be adapted.

103

6.3.3

To configure a WPF element

Configuration of the linking

1. In properties, select the Configuration property in the Display group

2. The dialog with three tabs opens with a preview of the XAML file and the elements present in

Configuration
WPF glement
WPF element
Available elements Preview
|
- MyViewBox
- ~
MyButton
- >
Action link
Proprton S| |
Name Linkage Type of ink WPFinfo] Linked | =
| | | | =
ActualHeight <nothing linked> 252 m]
ActualWidth <nothing linked> 404 a
AllowDrop <nothing linked> False]
ClipTeBounds <nothing linked> False (m]
ContextMenuService.HasDre... <nothing linked> False o
ContetMenuSenvice.Harizon.., <nothing linked> 0 m}
ContetMenuServicelsEnabled <nothing linked> True (m]
ContextMenuService.Placem... <nothing linked> MousePoint (m]
ContextMenuService.Placem... <nething linked> Empty a
ContetMenuService.Show(... <nothing linked> False (]
ContextMenuService.Vertical... <nothing linked> 0 (m]
DataContext <naothing linked> O
DesiredSize <nothing linked> 404:252 (]
FlowDirection <nothing linked> LeftToRight a
Encucable <nothine linksds _Falce O _17]

the file

ie §

104

Parameters Description

Existing elements Shows the named file elements in a tree structure. The
selected element can be linked with process data.

WPF is assigned to process data based on the element
name. Therefore elements are only shown if they and the
attendant elements have a name. Allocations are
configured and shown in the Properties, Events,
Transformations tabs.

Preview The selected element is shown flashing in the preview.

Properties (on page 105) Configuration and display of properties (variables,
authorizations, interlockings, linked values).

Events (on page 113) Configuration and display of events (functions).
Transformations (on page 115) Configuration and display of transformations.

Name Name of the property.

Connection Selection of link.

Link type Type of link (variable, authorization, function)

WPF info Shows the current value for properties in WPF content.

For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

Y Information

Only logical objects can be displayed in the configuration dialog. Visual objects are not
displayed. You can read about backgrounds and how visual objects can be animated in

the Allocation of zenon object to WPF content (on page 86).

Properties

The properties enable the linking of:

105

» Variables (on page 108)

» Values (on page

» Authorizations and interlockings (on page 111)
(Confgumtion ... T =

109)

WPF element
WPF element []
Available elements Preview -
~ Lovoutfoot | el |
- (ke]
L e [e |
—_—
Action bk
|Pmpemu Evenlsl nmml
Linked | Name Linkage Type of firk | WEF inf -
hert,. W Filter tes ¥ Fiter test Filier teat Fiter tesd ¥ El
E EEnabled Autherizaticn available Authorizatio... True
[0 DataContext | <nothing lin...
[0 ContentStringFormat | _<nothing lin...
O CommandTarget | <nothing lin...
O ud <nathing lin...
O MaxHeight | _<nothing lin... | +unendlich
O Tag | _<nothing lin...
O Teelip <nething lin...
(m] CommandParameter | =nathing lin...
00 ToolTipService.VerticalOffset | _<nothing lin... 0
O MasWidth | | <nothing lin... | +unendlich
(m] ContetMenuService.Harizont... <nething lin... 0
[0 Typography.AnnotationAltern... <nothing lin... 0
(] Ia icaVadicaly | [thinnlin | 0 i

WPF Element

Zzenon

Parameters

Name

Connection

Link type

WPF info

Linked

CREATE LINK

To create a link:

Description

Name of the property.
Linked variable, authorization or linked value.

Clicking in the column opens the respective selection
dialog, depending on the entry in the Link type column.

Selection of linking.

Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

1. Highlight the line with the property that is to be linked

2. Clickinthe Link type cell

3. select the desired link from the drop-down list.

Available are:
e <not linked> (deletes an existing link)
o Authorization/interlocking
e Variable

e Value linking

4. Click in the Link cell

5. The dialog for configuring the desired link opens

107

¥ Information

Properties of WPF and zenon can be different. If, for example the visibility

property is linked, there are three values available in .NET:
0 - visible

1 - invisible

2- collapsed

These values must be displayed via the linked zenon variable.

Link variable
To link a variable with a WPF property:
1. Highlight the line with the property that is to be linked
2. Clickinthe Link type cell
3. Select from the variable drop down list
4. Click in the Link cell

5. The dialog for configuring the variables opens

This dialog also applies for the selection of variables with transformations (on page 115). The
configuration also makes it possible to convert from zenon into WPF units.

Configuration @
Linked variable I—IOK
D Cancel
Range of values of the WPF element
Convert range of values
Minimum Maximum

108

Parameters

Linked wvariables

Value range of WPF element

Convert value range

Minimum
Maximum
OK
Cancel

Help

Link values

Description

Selection of the variable to be linked. A click on the . ..
button opens the selection dialog.

Data to convert variable values into WPF values.

Active: WPF unit conversion is switched on.

Effect on Runtime: The current zenon value (incl.

zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

For example: The value of a variable varies from
100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

) for Transformations, the

RotateTransform.Angle property is linked to

the variables
» Adjust wvalue activated
» aWPF value range of O to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Defines the lowest WPF value.
Defines the highest WPF value.
Accepts settings and ends the dialog.
Discards settings and ends the dialog.

Opens online help.

Linked values can either be a string or a numerical value of the double type. When selecting the
screen, the selected value is sent in WPF content after loading the WPF content.

109

A Attention

The data type of the WPF property need not necessarily be double or string.
However only values of the string type or double are sent by zenon. These must be
converted to .NET on the WPF page. For details see the Value transfer from zenon to
WPF (on page 84) chapter.

To link a value with a WPF property:

=

Highlight the line with the property that is to be linked
2. Clickinthe Link type cell

3. Selectvalue linkings from the drop-down list

4. Click in the Link cell

5. The dialog for configuration of value linking opens

Configuration @
Link constant value
Ok
Linked vaue o]
Use string Cancel
Mumeric value]
Help
Unit
<Base unit> -

110

Parameters Description

Linked value: Entry of a numerical value or string value.

Use string Active: Astring value is used instead of a numerical value.

The language of string values can be switched. The text is
translated in Runtime when the screen is called up and sent in
WPF content. If the language is switched whilst the screen is
opened, the string value is retranslated and sent.

String Depending on what is selected for the Use string property, a
value/numerical value | numerical value or a string value is entered into this field. For
numerical values, a unit of measurement can also be selected.

Unit: Selection of a unit of measurement from the drop down list. You must
have configured this in unit switching beforehand.

The unit of measurement is allocated with the numerical value. If
the units are switched in Runtime, the value is converted to the
new unit of measurement and sent to WPF content.

OK Accepts settings and ends the dialog.
Cancel Discards settings and ends the dialog.
Help Opens online help.

Link authorization or interlocking

Authorizations cannot be granted for the whole WPF element. The element is allocated a user level.
Authorizations are granted within the user level for individual controls. If an authorization is active, the
value 1 is written to the element.

To link an authorization or interlocking with a WPF property:

1. Highlight the line with the property that is to be linked
2. Clickinthe Link type cell
3. Select Authorization/interlocking from the drop down menu

4. Click in the Link cell

111

WPF Element
zenon

5. The dialog for configuring the authorizations opens

Link authorizationfinterlocking |

Linked status

uthorization available -

Link authorization/interlocking Setting the authorizations.

Linked status

selection of an authorization that is linked to a WPF control from
the drop down list. For example, visibility and operability of a
WPF button can depend on a user's status.

Link authorizationfinterlocking |

Linked status

uthorization available

Authorization available

Authorization does not exist
Mot interlocked

Interlocked
Can be operated
Cannot be operated

Authorization granted

If the user has sufficient rights to operate the WPF element, a value of
1 is written to the property.

Authorization not
present

If the user does not have sufficient rights to operate the WPF
element, avalue of 1 is written to the property.

Not locked If the element is not locked, the value 1 is written to the property.
Locked If the element is locked, the value 1 is written to the property.
Operable If authorization is present and the element is not locked, then a value of

1 is written to the property.

Not operable

If authorization is not present or the element is not locked, then a value
of 1 is written to the property.

Events

Events make it possible to link zenon functions to a WPF element.

(Configuration e)

[Wor dement |

Available elements

WPF Element

iaf LayoutRoot

Button

| Properties | Events |

IUH .--n.._JJ-l

WPF event
ContextMenuClasing
ContextMenuOpening
DataContextChanged
DragEnter
DragLeave

DragOver

FocusableChanged

GotFocus

Linked function
Function 1
Function 2
Function 3

Zzenon

WPF Element
Zenon

Name Name of the property.

Connection Linked function. Clicking in the cell opens the
configuration dialog.

Link type Selection of linking. Clicking in the cell opens the selection
dialog.
WPF info Shows the current value for properties in WPF content.

For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

LINK FUNCTIONS

To create a link:
1. Highlight the line with the property that is to be linked
2. Clickinthe Link type cell
3. Select from the drop down list function
4. Click in the Link cell

5. The dialog for configuring the function opens

Link function
Linked function E]
| < no function linked = | B
]

WPF Element
Zenon

Linked function Selection of the function to be linked. Clicking on the ...
button opens the dialog for Function selection.
OK Accepts selection and closes dialog.
Cancel Discards changes and closes the dialog.
Help Opens online help.
Transformation

The WPF element does not support rotation. If, for example, the WPF element is in a symbol and the
symbol is rotated, the WPF element does not rotate with it. Therefore there is a different mechanism
for Transformation with WPF to turn elements or to otherwise transform them. These transformations
are configured in the Transformation tab.

Attention: If the content is outside of the WPF element area, this part of the contents is lost, i.e. it is
not shown.

ﬁ

WPF element

Available elements Preview Cancel

= LayoutRoot

& Myvewgox

Button

[roperte [Events | Tranformatons | Lser athorzason/neriods

WPF transformation Linked variable (i

RotateTransform. Angle WIZ_VAR_10
RotateTransform, CenterX Alarms not acknowledged
RotateTransform. CenterY

ScaleTransform. CenterX g
ScaleTransform, Centery
SealeTransform, ScaleX.
ScaleTransform. ScaleY
SkewTransform, Anglex
SkewTransform, Angle’
SkewTransform. CenterX

Parameters Description

Name Name of the property.
Connection Selection of the linked variables.

Transformations are displayed in XAML as transformation objects with their own
properties. If an element supports a transformation, then the possible properties
of the transformation object are displayed in list view. (more on this in: Integrate
button as WPF XAML in zenon (on page 134)

For example, if the linked variable is set at the value of 10, then this value is
written as a WPF target and the WPF element is rotated by 10°.

Link type Selection of transformation link type.

WPF info Shows the current value for properties in WPF content. For the user, it is directly
visible what type of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected using Context
menu->Column selection.

LINK TRANSFORMATIONS
To link a transformation with a WPF property:
1. Highlight the line with the property that is to be linked
2. Clickinthe Link type cell
3. Select from the Transformation drop down list
4. Click in the Link cell

5. The dialog for configuring the variables opens

116

The configuration also makes it possible to convert from zenon into WPF units.

(Cofiguation ==

Link variable
Linked variable E]
Range of values of the WPF element

Convert range of values

Minimum Maximum
o | o

WPF Element

Zzenon

Parameters

Linked wvariables

Value range of WPF element

Convert value range

Minimum
Maximum
OK
Cancel

Help

6.3.4 Validity of XAML Files

Description

Selection of the variable to be linked. A click on the . ..
button opens the selection dialog.

Data to convert variable values into WPF values.

Active: WPF unit conversion is switched on.

Effect on Runtime: The current zenon value (incl.

zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

For example: The value of a variable varies from
100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

) for Transformations, the

RotateTransform.Angle property is linked to

the variables

» Adjust wvalue activated
» aWPF value range of O to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Defines the lowest WPF value.
Defines the highest WPF value.
Accepts settings and ends the dialog.
Discards settings and ends the dialog.

Opens online help.

XAMIL files are valid subject to certain requirements:

» correct name space

118

» no class references

» Scalability

CORRECT NAME SPACE

The WPF element can only display WPF content, i.e.:

Only XAML files with the correct WPF namespace can be displayed by the WPF element. Files that use
a Silverlight namespace cannot be loaded or displayed. However, in most cases it is suffice to change the
Silverlight namespace to the WPF namespace.

WPF namespace:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

NO USE OF CLASS REFERENCES

Because the XAML files can be loaded dynamically, it is not possible to use XAML files that contain
references to classes ("class" key in header). Functions that have been programmed in
independently-created CH#- files cannot be used.

SCALABILITY

If the content of a WPF element is adjusted to the size of the WPF element, then the controls of the
WPF element are interlaced in a control that offers this functionality, such as a view box for example.
n addition, care must be taken to ensure that the height and width elements are configured as

automatic.

CHECKING AN XAML FILE TO SEE IF IT IS CORRECT

To check if an XAML file has the correct format:

» Open the XAML file in Internet Explorer

e Ifit can be opened without additional plug-ins (Java or similar), then it can be
assumed with a high degree of certainty that this file can be loaded and displayed by
zenon

e if problems occur during loading, these are then shown in Internet Explorer and the
lines in which problems arise can be clearly seen

119

The scaling can also be tested in this manner: If the file has been created correctly, the content will
adjust to the size of the Internet Explorer window.

ERROR MESSAGE

If an invalid file is used in zenon, then an error message is displayed in the output window when loading
the file in the WPF element.

For example:

“error when loading
xaml-Datei:C:\ProgramData\COPA-DATA\SQL\781b1352-59d0-437e-al173-08563c
3142e9\FILES\zenon\custom\media\UserControll.xaml

The attribute "Class" cannot be found in XML namespace
"http://schemas.microsoft.com/winfx/2006/xaml". Line 7 Position 2."

6.3.5 Pre-built elements
zenon is already shipped with several WPF elements. More are available for download in the web shop.

All WPF elements have properties which determine the graphical design of the respective element
(Dependency Properties). Setting the values via an XAML file or linking the property via zenon can directly
change the look in the Runtime. The following tables contain the respective Dependency Properties,
depending on the control.

Elements:

» Round display (on page 122)

» Progress bar (on page 127)

» Vertical bar graph (on page 128)

» Temperature control (on page 129)
» Analog clock (on page 130)

» Universal slider (on page 131)

120

REPLACING ASSEMBLY WITH A NEWER VERSION

Per project only one assembly for a WPF element can be used in the Editor as well as the Runtime. If
two versions of an assembly are available in a project, then the first loaded file is used. A user enquiry
is made as to which version should be used. No further actions are needed for the maintenance of the
versions used up until now. If a newer version is chosen, all corresponding CDWPF files in all symbols
and images in all projects must be adapted.

Note for Multi-Project Administration: If an assembly in a project is replaced by a new version, it
must also be replaced in all other projects that are loaded in the Editor or in Runtime.

121

Circular gauge control

WPF Element
Zenon

CurrentValue Current value which should be displayed. Double
IsReversed Scale orientation - clockwise or anti-clockwise Boolean
ElementFontFamily | Element font. Font
MinValue Minimum value of the scale. Double
MaxValue Maximum value of the scale. Double
ScaleRadius Radius of the scale. Double
ScaleStartAngle Angle at which the scale starts. Double
ScaleLabelRotatio | Alignment of the scale caption. Enum:
nMode
» None
» Automati
c
» Surround
In
» Surround
Out
ScaleSweepAngle Angel area which defines the size of the scale. Double
ScalelLabelFontSiz | Fontsize of the scale caption. Double
e
ScalelLabelColor Font color of the scale caption. Color
ScalelLabelRadius Radius on which the scale caption is orientated. Double
ScaleValuePrecisi | Accuracy of the scale caption. Integer
on
PointerStyle Shape of the pointer displaying the value. Enum:
» Arrow
» Rectangl
e

WPF Element
zenon

» Triangle

Cap
» Pentagon

» Triangle

MajorTickColor Color of main ticks on the scale. Color
MinorTickColor Color of sub ticks on the scale. Color
MajorTickSize Size of main ticks on the scale. Size
MinorTickSize Size of sub ticks on the scale. Size
MajorTicksCount Number of main ticks on the scale. Integer
MajorTicksShape Shape/type of main ticks on the scale. Enum:
» Rectangl
e
» Trapezoi
d
» Triangle
MinorTicksShape Shape/type of sub ticks on the scale. Enum:
» Rectangl
e
» Trapezoi
d
» Triangle
MinorTicksCount Number of sub ticks on the scale. Integer
PointerSize Size of the pointer. Size
PointerCapRadius Size of the pointer fastening point. Double
PointerBorderBrus | Color of pointer border. Brush
h
PointerCapStyle Shape/type of pointer fastening point. Enum:
» BackCap
» FrontCap
> Screw
PointerCapBorderB | Color of pointer fastening point. Brush
rush

124

PointerBrush
GaugeBorderBrush

GaugeBackgroundBr
ush

PointerCapColorBr
ush

GaugeMiddlePlate
PointerOffset
RangeRadius
RangeThickness
RangeStartValue
RangelEndvValue
Range2EndValue
Range3EndValue
Range4EndvValue
RangebEndValue
Range6EndValue
RangelColorBrush
Range2ColorBrush
Range3ColorBrush
Range4ColorBrush
RangebColorBrush
Range6ColorBrush

ScaleOuterBorderB
rush

ScaleBackgroundBr
ush

Color of pointer.
Color of the element border.

Color of element background.

Color of pointer fastening point.

Radius of the element background middle plate.
Offset of the pointer (displacement).

Radius of the total range display.

Thickness of the total range display.

Start value of the total range display.

End value of the 1st area and start value of the 2nd range.
End value of the 2nd area and start value of the 3rd range.

End value of the 3rd area and start value of the 4th range.

End value of the 4th area and start value of the 5th range.
End value of the 5th area and start value of the 6th range.
End value of the 6th range.

Color of the first range.

Color of the sedond range.

Color of the third range.

Color of the fourth range.

Color of element fifth range.

Color of element sixth range.

Color of the scale border.

Color of scale background.

Brush

Brush

Brush

Brush

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Brush

Brush

Brush

Brush

Brush

Brush

Brush

Brush

125

ValueTextFrameSty | Shape/type of value display. Enum:
le
» Largefra
me
» SmallFra
me
» None
ValueTextContent Content of the value display. Enum:
y Text
> TextValu
e
» Value
ValueTextSize Font size of the value display. Double
ValueTextColor Font size of the value display. Color
IsGlasReflection Activate the glass effect on the element. Boolean
GaugeOffsett Lowering the rotation point of the whole element. Double

126

WPF Element

Progress bar - ProgressBarControl

Zzenon

CurrentValue Current value which should be displayed. Double
MinValue Minimum value of the value area. Double
MaxValue Maximum value of the value area. Double
ProgressbarDivision | Number of divisions of the progress bar. Intege
Count r
VisibilityText Visibility of the value display. Boolea
n
TextSize Font size of the value display. Double
TextColor Color of the value display. Color
ProgressBarBoxedCol | Color of the border of the progress bar. Color
or
ProgressBarMarginDi | Distance of the progress bar box from the element edge (left, Double
stance top, right, down).
ProgressBarInactive | Indicator color not active. Brush
Brush
ProgressBarActiveBr | Indicator color active. Brush
ush
ProgressBarPadding Distance of the progress bar from the progress bar box (left, Double
top, right, down).
ElementBorderBrush Color of the element border. Brush
ElementBackgroundBr | Color of element background. Brush
ush

Bar graph vertical - VerticalBargraphControl

WPF Element

Zzenon

CurrentValue Current value which should be displayed. Double
MinValue Minimum value of the scale. Double
MaxValue Maximum value of the scale. Double
MajorTicksCount Number of main ticks on the scale. Integer
MinorTicksCount Number of sub ticks on the scale. Integer
MajorTickColor Color of main ticks on the scale. Color
MinorTickColor Color of sub ticks on the scale. Color
ElementBorderBrush | Color of the element border. Brush
ElementBackgroundB | Color of element background. Brush
rush

ElementGlassReflec | Activate the glass effect on the element. Visibilit
tion v
ElementFontFamily Element font. Font
ScaleFontSize Font size of the scale. Double
ScaleFontColor Font color of the scale. Color
IndicatorBrush Bar graph fill color. Brush
BargraphSeparation | Number of bar graph dividion. Integer
BargraphSeparation | Color of the scale division. Color
Color

WPF Element
Zenon

Temperature indicator - TemperaturelndicatorControl

CurrentValue Current value which should be displayed. Double
MinValue Minimum value of the scale. Double
MaxValue Maximum value of the scale. Double
MajorTicksCount Number of main ticks on the scale. Integer
MinorTicksCount Number of sub ticks on the scale. Integer
TickNegativColor Color of the negative main tick (gradient to Color
TickPositivColor).
TickPositivColor Color of the positive main tick (gradient to Color
TickNegativColor).
MinorTickColor Color of the sub ticks. Color
ElementBorderBrush | Color of the element border. Brush
ElementBackgroundB | Color of element background. Brush
rush
ElementGlassReflec | Activate the glass effect on the element. Visibility
tion
ElementFontFamily Element font. Font
IndicatorColor Color of the indicator fill color. Color
IndicatorBorderCol | Color of the indicator border. Color
or
MajorTickSize Size of main ticks on the scale. Size
MinorTickSize Size of sub ticks on the scale. Size
ScalelLetteringDist | Distance of the scale caption (vertical), each x. main tick Integer
ance should be captioned.
IndicatorScaleDist | Distance between indicator and scale (horizontal). Double
ance
ScaleFontSize Font size of the scale. Double
ScaleFontColor Font color of the scale. Color
Unit Unit. String

WPF Element
zenon

ElementStyle Shape/type of element. Enum:

) SmallFra

me
» Unit
» None

Analog clock - AnalogClockControl

ElementStyle Shape/type of element. Enum:

> SmallNumb

ers

» BigNumber

S
» No
ElementBackgroundBr | Color of element background. Brush
ush
ElementGlassReflect | Activate the glass effect on the element. Visibility
ion
Offset Value in hours (h) which displays the time lag to the Intl6

system clock.

OriginText Text which is displayed in the clock (e.g. location). String

Universal slider - UniversalReglerControl

WPF Element

Zzenon

CurrentValue Current value which should be displayed. Double
ElementFontFamily Element font. Font
MinValue Minimum value of the scale. Double
MaxValue Maximum value of the scale. Double
Radius Double
ScaleRadius Radius of the scale. Double
ScaleStartAngle Angle at which the scale starts. Double
ScalelLabelRotationM | Alignment of the scale caption. Enum:
ode

» None

» Automatic

» SurroundI

n
» SurroundO
ut

ScaleSweepAngle Angel area which defines the size of the scale. Double
ScalelLabelFontSize Font size of the scale caption. Double
ScalelLabelColor Font color of the scale caption. Color
ScalelLabelRadius Radius on which the scale caption is orientated. Double
ScaleValuePrecision Accuracy of the scale caption. Integer
ElementStyle Display type of the element Enum:

» Knob

» Plate

» None
MajorTickColor Color of main ticks on the scale. Color
MinorTickColor Color of sub ticks on the scale. Color

MajorTickSize Size of main ticks on the scale. Size
MinorTickSize Size of sub ticks on the scale. Size
MajorTicksCount Number of main ticks on the scale. Integer
MajorTicksShape Shape/type of main ticks on the scale. Enum:

» Rectangle

» Trapezoid

» Triangle
MinorTicksShape Shape/type of sub ticks on the scale. Enum:

» Rectangle

» Trapezoid

» Triangle
MinorTicksCount Number of sub ticks on the scale. Integer
BackgroundBorderBru | Color of the element border. Brush

sh

132

BackgroundBrush

PointerCapColorBrus
h

GaugeMiddlePlate
ValueFontSize
ValueFontColor
IsGlasReflection
KnobBrush
IndicatorBrush

IndicatorBackground
Brush

KnobSize
KnobIndicatorSize
ElementSize
VisibilityKnob
ValuePosition

ValueVisibility

6.3.6

Color of element background.

Color of pointer fastening point.

Radius of the element background middle plate.

Font size of the value display.

Font size of the value display.

Activate the glass effect on the element.
Color of the knob.

Color of the indicator.

Background color of the inactive indicator.

Diameter of the knob.
Indicator size of the knob.
Size of the element.
Activating of the knob.
Position of the value display.

Activating the value display.

Examples: Integration of WPF in zenon

Brush

Brush

Double

Double

Color

Boolean

Brush

Brush

Brush

Double

Size

Size

Boolean

Double

Boolean

You can see how XAML files are created and integrated as WPF elements in zenon from the following

examples:

» Integrate button as WPF XAML in zenon (on page 134)

» Integrate bar graph as WPF XAML in zenon (on page 141)

» Integrate DataGrid Control in zenon (on page 146)

133

Integrate button as WPF XAML in zenon

Example structure:

>

>

Creating a button (on page 89) in Microsoft Expression Blend
Integrate into zenon

Link to a variable and a function

adjust the button to the size of the element

Create button

As a first step, create a button as described in the Create button as XAML file with Microsoft Expression
Blend (on page 89) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the
Files/graphics folder.

INTEGRATE BUTTON

Note: A zenon project with the following content is used for the following description:

An empty screen as a start screen
an internal variable int of type Int

a function Funktion_0 of typesend value to hardware with:
e Direct to hardware Option activated

e Setwassetto 45

To integrate the button:

open the empty screen

place a WPF element (on page 102) in the screen

select XAML file inthe properties window

select the XAML file (e. g. MyButton.xaml and close the dialog

select the Configuration property

134

CONFIGURE THE BUTTON

The configuration dialog shows a preview of the selected XAML file. All elements named in the XAML file
are listed in the tree:

Configuration [
WPF element
WPF element ILI
Available elements Preview m
LayoutRoot -
T -

Button

Action nk
Properties Events | Transformations

Lirked | Name Linkage # Type of fnk | WPFinfo -
O ActualHeight <nething lin... 50
O ActualWidth <nething lim... 50
[m] AllowDrop <nothing lin... False
[0 BorderThickness <nothing lim... 1111
(] ClickMode <nething lim... Release
[m] ClipToBounds <nothing lin... False
(m] Command <nothing lim...
m] CommandParameter <nething lim...
O CommandTarget <nothing lim...

[TE T Content int Varisble Butt
O ContentStringFormat <nothing
O ContextMenuService. HasDrop... <nething lim... False
O ContetMenuService Horizont... <nething lin... 0
(m] ContetMenuServicelsEnabled <nothing lim... True
[l ContedhenSenics Placsment | |_cnothina lin _ MaussBoint E

1. select the WPF button, which is in LayoutRoot->MyViewBox->MyButton

2. Lookinthe properties Entrycontent tab; this contains the button's text
3. Click the Link type column

4. Select variable from the drop down list

5. Click in the Link column

6. the variable selection dialog is opened

7. selectthe int variable to link this variable with the content property

EVENTS

To also assign events:

135

1. select the events tab

Configuration

WPF element

Available elements

=I- LayoutRoot
=I-MyViewBox

WPF event

Click
ContextMenuClosing
ContextMenuOpening
DataContextChanged
DragEnter

DraglLeave

DragQOver

Drop
FocusableChanged
GiveFeedback

(o]

preven [cand]

- = —bep]
Button

:pmrﬁes_ Events :Transforma:ims User authorization,Interiocking

Linked function -

Function 0

2. look for the 'Click' entry, this event is triggered by the WPF element, as soon as the button is

clicked

3. Clickin the Link type column

4. Select Function from the drop down list

5. Click in the Link column

6. the function selection dialog is opened

7. select Function_0

8. Confirm the changes with ok

9. Insertanumerical value element into the screen

10. Link this numerical value element tothe int variables too.

11. Compile the Runtime files and start Runtime.

136

The WPF element is displayed in Runtime, the button text is 0. As soon as you click on the button, the
click event is triggered and the set wvalue function is carried out. The value 45 is sent directly to the
hardware and both numerical value and button display the value 45

45 e

Define a set value of 30 viathe numerical value element; thisvalue isthen alsoassumed by the
WPF element.

AUTHORIZATION

Similar to anumerical value, aWPF element can be locked according to authorizations (lock
symbol) or switched to be operable. Set the user authorization level to 1 for the WPF element and
create a user called Test withauthorization level 1.In addition, set up the functions Login
with dialogand Logout . You link these two functions with 2 new text buttons on the screen.

137

Inthe WPF element configuration dialog, select the MyButton WPF button and select the properties:
tab

Konfiguration (el
WPF-Element
pre— Lo]
Vorhanden
e Blemente Vorschau —]
LayoutRoot -
=1 MyViewBex —l"’"e
MyButton !
Alcbonsverknupfungen
Eigenschaften Ereignisss I Transformationen
Name: Veskniipfung L] Verknipfungsart | WPF-info Verknipht *
| InputMethod.lsinputhethodE... <nichts verknipft> = False]
InputMethed lslnputMetheds.., <nichts verknipft> False (]
InputMethod.PreferredimeCo... <nichts verknipft> DoMotCare O |5
| InputMethod.PreferredimeSen... <nichts verkndpft> DolNotCare m]
InputMethod. PreferredlmeState <nichts verkndpft> DoNotCare O
IsArrangeValid <nichts verknipft> | True o
IsCancel <nichts verknipft> False]
| IsDefault <nichts verknipft> False O
leDefaulted <nichts verknipft> | False O
IsEnabled i igung varhanden i i True =
| IsFocused <nichts verknipft> False O
IsHitTestVisible <nichts verkndpft> True (]
Islnitialized <nichts verknipft> True]
TelnpsthdethndFnahled <nichts verkniinft> _Falze BB
4 i v

1. Select the 1sEnabled element

2. Clickin the Link type column

3. Select Authorizations/interlocking from the drop down list
4. Click in the Link column

5. Inthe drop-down list, select the Authorized option

Configuration

Link authorizationfinterlocking |

Linked status o

Authorization available n Cancel

Authorization available
Authorization does not exist Help
Mot interlocked
Interlocked

Can be operated
Cannot be operated

1

6. Close the dialog with ok

138

Compile the Runtime file and note that Authorizations to be Transferred must also be selected. After
Runtime has been started, the WPF button is displayed as deactivated on the screen and cannot be
operated. If you now log in as the user Test, the button is activated and can be operated. The button is
locked again as soon as you log out.

45 e

Login 1 ‘ Logout 1

TRANSFORMATION

The XAML files must still be adapted to use transformations:

1. switch tothe Expression Blend program

2. select MyButton, so that the properties of the element are visible in the events window

¥ Transform
RenderTransform

& 2 & a O K

e :

Apply relative transform

3. Under Transform at RenderTransform select the Apply relative transform option

As a result of this, a block is inserted into the XAML file, which save the transformation
settings in runtime.

<Button.RenderTransform>

<TransformGroup>
<ScaleTransform ScaleX="1" Scalev="1"/>
<SkewTransform AngleX="8" Anglev="8"/>
<RotateTransform Angle="@"/>

<TranslateTransform X="8" v="8"/>
</TransformGroup>
</Button.RenderTransform:

4. Save the file and replace the old version in zenon with this new file.

5. Openthe WPF element configuration dialog again:

139

a) select the MyButton button

b) select the Transformations tab

Configuration

WPF element

Available elements

=I- LayoutRoot
=I-MyViewBox

preven [cand]
~ e
Button

ipmperlies[Evenis Transformations User authorization,Interiocking

WPF transformation

RotateTransform. Angle
RotateTransform.CenterX
RotateTransform.CenterY
ScaleTransform, Center)
ScaleTransform. CenterY
ScaleTransform. ScaleX
ScaleTransform, Scale
SkewTransform. AngleX
SkewTransform, AngleY
SkewTransform. Center)

Linked variable

nt

m

c) selectthe RotateTransform.Angle €lement

d) Click in the Link type column

€) Select Transformations from the drop down list

f) Click in the Link column

g) the variable selection dialog is opened

h) select the int variable to link this variable with the RotateTransform.Angle property

140

Compile the Runtime files and start Runtime. Log in as the Test user and click on the button. The button
has the value 45 and the WPF element rotates by 45°.

25\ 45

Login 1 ‘ Logout 1

Integrate bar graph as WPF XAML in zenon

Example structure:

» Creating a bar graph (on page 93) in Adobe lllustrator and converting it to WPF

» Integrate into zenon
» Linking with variables

» Adapting the bar graph WPF element

CREATE BAR GRAPH

The first step is to generate a bar graph as described in the Workflow with Adobe lllustrator (on page
93) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the
Files/graphics folder.

INTEGRATE BAR GRAPH

Note: A zenon project with the following content is used for the following description:

» Anempty screen as a start screen

» Four variables from the internal driver for
e Scale0

e Scale central

141

e Scale high

e Current value

» Avariable from the mathematics driver for displaying the current value (255)

To integrate the bar graph:

1. open the empty screen
2. place aWPF element (on page 102) in the screen
3. select XAML file inthe properties window

4. Select the desired XAML file (for example bar graph_vertical.xaml) and close the dialog

ADJUST BAR GRAPH

Before configuration, the scale of the XAML file is adapted if necessary:

counting Value

To do this:

o Create a new mathematics variable that calculates the new value in relation to the
scaling, for example:

142

WPF Element
Zenon

e Variable: 0-1000

¢ Mathematic variable {value created in xaml file}*Variable/1000

Properties: Variable: calculation - Project: DOKU * O X

|
|

;
§

1

:
;
:

[E=]

Limits
Value calculati

Calculaton active < no variable linked >

ju]

Decimals 0
Formula 350"X01/100
Hysteresis

&)

&)

Value adjustment linear

&)

Value adjustrment non-linear —

&)

Value range PLC i

]ﬁ'Proper‘ties: Variable: calculation - Project: DOKU E ngeﬂ hele
The XAML file is then configured.

CONFIGURE BAR GRAPH
1. Click on the WPF element and select the Configuration property

2. The configuration dialog shows a preview of the selected XAML file.

WPF Element ﬂ

Zzenon

3. Select the minimum value, the average value and the maximum value and link each of these to

the corresponding variable in the content property

[‘Configuration
VP element |
e element [|
Avaiable elements
= COPA_DATA
o
i mid
- max
Action nk
|n-operm Evenlsl ﬁmml
Name Linkage Type of Ink | WPFinfo " me| -
— 3 P 3 Filiar b 3 Filer test 3::-:--:3i
ActualHeight <nathing linked> 52,9307402502... [m]
ActualWidth <nothing linked> 52 [m}
AllowDrop <nothing linked> False a
BorderThickness <nothing linked> 0,000 o
ClipToBounds <nothing linked> False m]
Content Varisble 128 (]
ContentStringFormat <nathing linked> O
ContextMenuService.HasDro... <nothing linked> False a
ContextMenuService. Horizon,.. <nothing linked> 0 [m}
ContextMenuServicelsEnabled <nothing linked> True [m]
ContextMenuService.Placem... <nothing linked> MousePoint [m]
ContextMenuService. Placem... <nathing linked> Empty a
ContestMenuService. ShowD... <nothing linked> False [m]
ContextMenuService.Vertical... <nothing linked> 0 [m]
Natalnntet thin linkeds n s

WPF Element ﬂ

Zzenon

4. Select the siider and link the value property to the mathematics variables (in our example:

[Configuration =]
VP element |
WPE element [o |
(oo
=/-COPA_DATA
o
- mid
- max
Action ink
|n-operm Evenlsl ﬁmml
Name Linkage " Type of Ink | WPFinfo | Lirke +
r— 5| I B Feeiee Wllreres
FlowDirection <naothing linked> | LeftToRight O [=
Focusable <nothing linked> True o
FontSize <nothing linked> 12]
FontStretch <naothing linked> Normal (m]
FontStyle <naothing linked> Normal m]
FontWeight <nothing linked> Normal (m]
ForceCursor <nothing linked> = False m]
Grid.Column <nothing linked> | 0 (]
Grid. ColumnSpan <nething linked> | 1 (]
Grid Row <nothing linked> | 0 m]
Grid RowSpan <nothing linked> | 1 (m]
HasAnimatedProperties <nothing linked> = False m]
Maths Vanisble n. def, (=)
HnnzontalAlinnment <nnthinn linked> | Rinht II'I S
4 nr L3
calculation)

5. Check the project planning in Runtime:

counting Value _

Integrate DataGrid Control in zenon

To create DataGrid control, you need:

» WPF Toolkit: available as a download at http://wpf.codeplex.com (http://wpf.codeplex.com)

» Visual Studio

Ensure that you always create projects that are based on .NET Framework 3.5.

CREATE WPF USER CONTROL

1. Create a WPF User Control in Visual Studio.

146

http://wpf.codeplex.com/

New Project

Recent Templates MNET Framework3.5 + [Sort by: | Default
Installed Templates
=)cﬂ Windows Forms Application
4 Visual Co B
Windows Y
Web ‘9’ WPF Application
Office
Cloud mc’ Console Application
Reporting
SharePomt o] Class Ubrary
=
Silverlight
Test "ol WPF Browser Application
ICF
Workfh —
Workfiow | Empty Project
Other Languages
Other Project Types ‘?
y Windows Senvce
Database bJ
Test Projects

@CH WPF Custom Control Library

@ WPF User Control Uibrary

[
wch| Windows Forms Control Libraey

Name:
Location: cA\users\marting\ documents\visual studio 2010\Projects
Soltins [Creste pew soktion.

J Solution name: <Enter_nsme>

@

Visual ¢
Visual €3
Visual C8
Visual C#
Visual C8
Visual C2
Visual C2
Visual C2
Visual C2

Visus! C#

- |
Mo

Type: Visual C2

Windows Presentation Foundation uses
control Bbrary

Browse...

4| Create directory for solution

Add to source control

In our example, it is given the name MyWpFLibrary.

2. Add the WPF Toolkit assemblies to the references. To do this:

a) Right-click on the project

b) Select add reference..

c) Select this in the .NeT tab

d) Select system.Data and System.Data.DataSetExtensions 100 if these are not already

present

3. Create a new data connection in Server Explorer. To do this:

a) right-click on pata connections

b) Select add connection..

In our example, the database Northwind is used; this has been created by Microsoft as an

example database.

147

After adding the connection, the Server Explorer window should look a little like this:

Server Explorer - ax
BIRENRS- R
4 [JJ Data Connections
4 |4 cdsbg030\zenon_2008r2 Morthwind.dbo
- [Database Diagrams
4 [Tables
. [Categories
. [Customers
. [Employees
. [Order Details
. [Orders
. [Products
. [Shippers
. [Suppliers
- [Views
. [Stored Procedures
- [Functions
- [Synonyms
+ [Types
- [Assemblies
a4 T4 Servers
& CDSBGO30
- §Hi SharePoint Connections

A new DataSet is created in the next step.

CREATING A DATASET
1. Right-click on the project
2. Inthe context menu, select the Ad New Item....
3. Create a new DataSet.

4. double click the DataSet It should now open in the designer.

148

5. Drag the tables that you need into the DataSet design window.

SEEY

4 [j) Dats Connectscns

4 [cdshgl\zenon 20082 Horthwind.g

3 Database Diagrams
4 [Tables
T Categaries
T Cumtomers
O Employees
0 Order Deasils
0 Orders
T Products
7] shippens
0 Sopplers
) Voews
3 Steved Precedires
3 Functions
23 Synonyms
3 Types
C3l Assemblies
o By Serves
M cosecox
§4 SharePoint Connections

The XAML file is configured in the next step.

]
K, Gantomers m
CuntomedD OrderdD -
Companylime CustomedD
Contact EmployedD
ContactTitle Orderliate
Addeess RegaredDate
City Shippedlute
Fegion Ship¥ia
PostalCode Freight
Country Shiphlamee
Phone ShipAddress
ShipCity
ShipRegion
'a ovd
[Fill GesData [}

CONFIGURATION OF XAML FILE

1. Insert the namespaces into the XAML file.

You need the namespace of the WPF toolkits and a reference to the class:

esign 1t
<UserControl

x:Class="MyWPFLibrary.UserControll"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="300"

~3xmlns:my="http://schemas.microsoft.com/wpf/2008/toolkit"

2. Define the resources and the DataGrid that is to be used in the WPF:

_> xmlns:myls"clr-namespace:MyWPFLibrary">

<UserControl.Resources>

<myl:MyDataSet x:Key="MyDataset" />

<CollectionViewSource x:Key="customersviewSource" Source="{Binding Path=customers,

Source={StaticResource MyDataSet}}" />

</UserControl.Resources>

<Grid DataContext="{StaticResource customersViewSource}">

<my:DataGrid reight="304" HorizontalAlignment="reft" Margin="6,7,0,0"
Name="dataGridi" VerticalAlignment="Top" Width="497"

149

DisplayMemberPath="companyName" ItemsSource="{Binding}"
SelectedValuePath="customerip" />

</Grid>
3. Open the code-behind file (xaml.cs) and insert the following lines in the constructor:
public UserControll1()
{
InitializeComponent();

MyWPFLibrary.Mypataset ds =
((MyWPFLibrary.mypataset)(this.FindResource("MyDataSet")));

MyWPFLibrary.MyDataSetTableAdapters.customersTableAdapter ta = new
MyWPFLibrary.MyDataSetTableAdapters.customersTableAdapter();

ta.Fill(ds.Customers);

System.Windows.Data.collectionviewSource customersViewSource =
((System.Windows.Data.collectionviewSource)(this.FindResource("customersViewSour

ce"));

customersViewSource.View.MoveCurrentToFirst();

}

This has the following effect:
¢ Get DataSet
e Create a new ReportAdapter
e Fill DataSet

e Provide this information to the DataGrid Control

The solution can now be built.

BUILD

Now create the solution Some DLLs are created in the output folder in the process.

You now have a DLL with the necessary functionality available. However zenon can only display XAML
files that cannot be linked to the code-behind file. Therefore another DLL is required that references the
DLL that has just been built. To do this:

1. Create another project, another WPF user control library.

150

2. It was called pataGridControl in our example.

3. Insert a reference to the project that has just been built into this new project.

-
eo Add Reference l E_J @I&J
Projects | Browse | Recent

Project Name ‘ Project Directory

My WPFLibrary C\Users\Martin5\Documents\Visual Studio 20100...

0K] ’ Cancel

4. The XAML files looks as follows:

<UserControl x:Class="test.UserControll”
xmlns="http://schemas.microsoft.com/winfx/20@6/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"”
xmlns imc="http://schemas|.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2e88"
mc:Ignorable="d"
d:DesignHeight="30@" d:DesignWidth="3@0">

<Grid>»

</Grid>
</UserControl>

5. Because all necessary content is contained in the DLL and no code-behind is necessary, delete:

X:Class="test.UserControll"

6. Also delete (for the positioning) the following lines

mc:lgnorable="ar

d:DesignHeight="300" d:DesignWidth="300"

7. Define what is to be displayed in the XAML file. To do this, add the following lines:

<UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
XMINS:X="http://schemas.microsoft.com/winfx/2006/xaml"
XmMINS:MC="http://schemas.openxmlformats.org/markup-compatibility/2006"

XmMINS:d="http://schemas.microsoft.com/expression/blend/2008"

151

xmins:mywpflib="c1lr-namespace :MyWPFLibrary ; assembly=MyWPFLibrary'>
<Grid x:Name="GridName">

<mywopflib:UserControll HorizontalAlignment="reft" Name="userControlll"
VerticalAlignment="Top"/>

</Grid>
</UserControl>

The xmlns:mywpflib="clr-namespace:MyWPFLibrary;assembly=MyWPFLibrary" line defines the
namespace mywp£lib and stipulates that this should use the assembly built before.

8. Insert a pre-existing name into the TAGs of the grid.

9. Insert the control mywp£lib:UserControll from our library and give it a name, because zenon

can only modify objects that have a name.

10. Construct this solution.

This now leads to an error message:

Error List - Q%
© 1Emor |)\ 0Wamings | (i) 0 Messages

Description File Line Colurmn Project

e Ty
conbed

11. To rectify the error, simply delete the code-behind file and carry out a rebuild.

In the next step, the XAML file is added in zenon.

STEPS IN ZENON
1. Open the zenon Editor

2. GotoFile -> Graphics

3. Selectadd file... in the context menu
&; User administration
" SAP intedace
£ Fles .
&EEL’ Add file.
& He Folder new...
ﬁ t Rename folder...
=2 Dn Delete folder
o O
I\ History Editor profile ¥
v Project
)balsymeIH_ Help N E
3

tree Reﬂ Network topology

152

4. Select the XAML file from the save location and insert this.

BRE T BAX T L0 S0

Status File name | Type Size Preview
r r r r r
UserControll xaml xaml 0KB

5. Insert the DLLs with the functionality for the XAML file. To do this:
a) Select, in the context menu, File -> Otheradd file....

b) Select the weFToolkit.d11 and the DLL of the first project

= iE or 4 e

Status Fle name " Type Sire Preview
WPFToolkit.dil dil 456 KB
MyWPFLibrary.dil dil 95KB

2 total / 2 filtered / 0 selected

6. Create a screen.

153

WPF Element ﬂ

Zzenon

7. Insert a WPF element and select an XAML file. You should now see the following:

T swao e wer oamaGeo e x %

D= fam 2= 2 =
| | Ratus | Name A Screenty

"5340 o] CustomeriD CompanyName Contact ContactTitle
ALFKE Alfreds Futteriiste Maria Anders Sales Representat
ANATR Ana Trujilio Emparedados y helados | Ana Trujillo Owner F E
ANTON Antonio Mereno Taqueria Antono Moreno | Owner |
AROUT Argund the Hom Thomas Mardy | Sales ntat
BERGS Berglunds snabbisp Cheisting Berghund | Order Administrat
BLAUS Bisuer See Delikatessen Hanns Moos Sales Representat
BLONP Blondel pére et fils Frécénique Cteau| Marketing Manag
B0UD Bolhido Comidas preparadas Martin Sommer | Owner
BONAP [Bon app’ Laurence Lebihan | Onner
BOTIM Bottom-Dollar Markets Elizabeth Lincoln | Accounting Mana
BSBEV 8's Beverages Victoria Ashworth | Sales Representat
CACTU Cactus Comidas para Bevar Patricio Simpson _ | Sales Agent
CENTC Centro comercial Moctezums Francisco Chang | Marketing Mansg
CHOPS (hoo-wev Chinese Yana Wana Owner %

B
e) J ’

Note: If the XAML file is to be deleted or updated within the zenon project, it may be the case that the
DLLs are still open and cannot be deleted from the file folder. The editor must be restarted in order to
delete them. It may also be sufficient to deactivate the project and reactivate it again.

6.3.7 Troubleshooting

ENTRIES IN LOG FILES

Entry

Xaml file found in %s
with different name,
using default!

no preview image
found in %s

Xaml file in %s not
found or not unique!

Could not remove old
assembly $%s

Could not remove old
assembly %s

file exception in %s

Generic exception in
%s

Level

Warning

Warning

Errors

Warning

Errors

Errors

Errors

Meaning

The name of the collective file and the name of the XAML file
contained therein do not correspond. To avoid internal conflicts, the
file with the name of the collective file and the suffix .xaml is used.

The collective file does not contain a valid preview graphic
(preview.png or [names of the XAML file].png). Thus no
preview can be displayed.

The collective file does not contain an XAML file or several files with
the suffix .xaml. It cannot be used.

There is an assembly that is to be replaced with a newer version, but
cannot be deleted.

A new version is available for an assembly in the work folder, but it
cannot be copied there. Possible reason: The old example is still
loaded, for example. The old version continues to be used, the new
version cannot be used,

A file error occurred when accessing a collective file.

A general error occurred when accessing a collective file.

155

	1. Welcome to COPA-DATA help
	2. Controls
	3. General
	3.1 Access zenon API
	3.2 Methods
	3.2.1 CanUseVariables
	3.2.2 MaxVariables
	3.2.3 VariableTypes
	3.2.4 zenonExit
	3.2.5 zenonExitEd
	3.2.6 zenonInit
	3.2.7 zenonInitEd

	4. ActiveX
	4.1 Develop ActiveX elements
	4.1.1 Methods
	CanUseVariables
	MaxVariables
	VariableTypes
	zenonExit
	zenonExitEd
	zenonInit
	zenonInitEd

	4.2 Example LatchedSwitch (C++)
	4.2.1 Interface
	4.2.2 Control
	4.2.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.2.4 Operate and display
	Setting values
	Drawing

	4.2.5 zenon Interface

	4.3 Example CD_SliderCtrl (C++)
	4.3.1 Interface
	4.3.2 Control
	4.3.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.3.4 Operate and display
	Drawing
	Setting values

	4.3.5 zenon Interface

	4.4 Example :NET control as ActiveX (C#)
	4.4.1 Creat Windows Form Control
	4.4.2 Change .NET User Control to dual control
	4.4.3 Work via VBA with ActiveX in the Editor
	4.4.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5. .NET user controls
	5.1 Different use .NET Control in Control Container or ActiveX
	5.2 Example .NET control container
	5.2.1 General
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnExit()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5.2.2 Create .NET user control
	5.2.3 add a CD_DotNetControlContainer and a .NET User Control
	5.2.4 Accessing the user control via VSTA or VBA

	5.3 Example :NET control as ActiveX (C#)
	5.3.1 Creat Windows Form Control
	5.3.2 Change .NET User Control to dual control
	5.3.3 Work via VBA with ActiveX in the Editor
	5.3.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	6. WPF Element
	6.1 Basics
	6.1.1 WPF in process visualization
	6.1.2 Transfer of values from zenon to WPF
	6.1.3 Referenced objects
	6.1.4 Allocation of zenon object to WPF content
	6.1.5 Workflows
	Workflow with Microsoft Expression Blend
	Workflow with Adobe Illustrator

	6.2 Manual for designer
	6.2.1 Workflow with Microsoft Expression Blend
	Create button as an XAML file with Microsoft Expression Blend

	6.2.2 Workflow with Adobe Illustrator
	Bar graph illustration
	WPF export
	Animation in Blend

	6.3 Engineering in zenon
	6.3.1 create WPF element
	6.3.2 CDWPF files (collective files)
	6.3.3 Configuration of the linking
	Properties
	Link variable
	Link values
	Link authorization or interlocking

	Events
	Transformation

	6.3.4 Validity of XAML Files
	6.3.5 Pre-built elements
	Circular gauge control
	Progress bar - ProgressBarControl
	Bar graph vertical - VerticalBargraphControl
	Temperature indicator - TemperatureIndicatorControl
	Analog clock - AnalogClockControl
	Universal slider - UniversalReglerControl

	6.3.6 Examples: Integration of WPF in zenon
	Integrate button as WPF XAML in zenon
	Integrate bar graph as WPF XAML in zenon
	Integrate DataGrid Control in zenon

	6.3.7 Troubleshooting

