

zenon manual
Programming interfaces

v.7.11

©2014 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely

with the written permission of the company COPA-DATA. The technical data contained herein has been

provided solely for informational purposes and is not legally binding. Subject to change, technical or

otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 6

2. Programming interfaces ... 6

3. Process Control Engine (PCE) .. 9

3.1 The PCE Editor ... 9

3.1.1 The Taskmanager ... 10

3.1.2 The editing area .. 10

3.1.3 The output window .. 11

3.1.4 The menus of the PCE Editor .. 11

3.1.5 The icon bar of the PCE Editor .. 14

3.2 Course of actions... 15

3.2.1 Creating a task .. 15

3.2.2 Entering code ... 17

3.2.3 Function Show PCE ... 20

3.2.4 Executing tasks ... 20

3.3 VB Script - Introduction ... 21

3.3.1 Data types ... 21

3.3.2 Variables ... 23

3.3.3 Constants .. 25

3.3.4 Operators ... 26

3.3.5 Conditional Statements .. 28

3.3.6 Looping Through Code ... 30

3.3.7 Types of procedures ... 35

3.3.8 Coding Conventions .. 37

4. Macro list .. 43

4.1 VBA toolbar and context menu detail view .. 45

4.2 VBA on 64-bit systems .. 49

4.3 Basics ... 49

4.3.1 Object PROPERTIES ... 49

4.3.2 Object METHODS .. 50

4.3.3 Object EVENTS .. 50

4

4.3.4 VBA object structure in zenon .. 51

4.3.5 How to use VBA macros ... 53

4.3.6 How to insert an ActiveX element in zenon? ... 55

4.3.7 Access from an external program .. 56

4.3.8 Functionality of online variables .. 57

4.3.9 List of status bits ... 60

4.3.10 Lasso for selecting dynamic elements in the Runtime ... 62

4.4 Macros in the Editor .. 63

4.4.1 Tool bar macro list .. 64

4.4.2 Linking macros .. 66

4.5 Functions in zenon .. 67

4.5.1 Execute VBA Macro .. 68

4.6 Developing wizard in VBA ... 69

4.6.1 Using a wizard .. 70

4.6.2 Structure of a wizard .. 71

4.6.3 Integration in VBA .. 71

4.6.4 Developing a wizard ... 72

4.6.5 Updating wizards .. 78

4.7 Frequently asked questions .. 78

4.7.1 Why does the button stay pressed? ... 78

4.7.2 Macro is not performed with the first click .. 79

4.7.3 Macros no longer work in the Runtime? .. 79

4.7.4 Windows CE and VBA ... 79

4.8 Examples ... 79

4.8.1 MouseEvents and ActiveX Control initialization... 79

4.8.2 Display variable information .. 81

4.8.3 Read and write variable values .. 81

4.8.4 Read and write variables and implement online variables .. 82

4.8.5 Use dialog multiple times ... 84

4.8.6 Alarm – Events and ActiveX Control handling .. 86

4.8.7 Access to alarms ... 89

4.8.8 Set switch (working with process variables) .. 91

5. VSTA ... 94

5.1 Basics ... 95

5.1.1 Setting up the VSTA environment .. 95

5

5.1.2 Access to the object model in zenon .. 96

5.1.3 Functions in zenon.. 98

5.1.4 Debugging VSTA add-in .. 99

5.1.5 New events in VSTA .. 99

5.1.6 Creating a backup of VSTA projects.. 100

5.2 Creating a VSTA project .. 100

5.2.1 VSTA projects in the Editor ... 101

5.2.2 VSTA projects in Runtime ... 102

5.2.3 Developing wizards in VSTA ... 103

5.3 Examples ... 104

5.3.1 Creating variables in the zenon Editor ... 104

5.3.2 Writing project information in the zenon output window ... 107

5.3.3 Reading variables from zenon via regular expressions .. 108

Welcome to COPA-DATA help

6

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com

(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact

via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com (mailto:sales@copadata.com).

2. Programming interfaces

Different interfaces to integrate your own programs or to automate planning are available in zenon:

 Process Control Engine (PCE) (on page 9)

 Macro list (on page 43)

 VSTA (on page 94)

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

Programming interfaces

7

 License information

Part of the standard license of the Editor and Runtime.

CONTEXT MENU

Menu item Action

Open PCE editor Opens the PCE editor.

Open VBA Editor Opens the VBA editor

Open VSTA editor Opens the VSTA editor.

Editor profile Opens the drop-down list for selecting a Editor profile.

Help Opens online help.

 Information

you can find information on the creation and implementation of controls (ActiveX, .NET,

WPF) in the Controls manual.

You can find information on engineering and use of the SAP interface in the SAP interface

chapter.

OPEN VBA AND VSTA EDITOR

VBA starts the same development environment for workspace and project. To open the VBA Editor:

1. navigate to the Programming interfaces node

2. right-click on VBA macros

3. select Open in VBA Editor... in the context menu

 press the short cut

Programming interfaces

8

VSTA provides separate development environments for workspace and project. You can only use one of

them at a time. At the start every other VSTA development environment which is open will be close.

To open the VSTA Editor for the workspace:

1. press the short cut

2. the code for the workspace and all loaded projects is displayed

To open the VSTA Editor for the currently loaded project:

1. navigate to the Programming interfaces node

2. right click on VSTA

3. select Open VSTA Editor... in the context menu

4. the Editor is opened for the currently loaded project

API FROM VERSION 7.10:

For the use of zenon programming interfaces, the following is applicable from zenon 7.10:

 VSTA / .NET: .NET Framework 3.5 must be installed.

 VBA: If, in the VBA code, Windows API or other imported DLL functions are accessed, these calls

must be adapted to the 64-bit environment. In general, the following applies: A VBA file created

with a 32-bit version cannot be used without changes in a 64-bit version of VBA.

 Attention

Note that errors in applications such as ActiveX, PCE, VBA, VSTA, WPF and external

applications that access zenon via the API can also influence the stability of Runtime.

Process Control Engine (PCE)

9

3. Process Control Engine (PCE)

 Information

The Process Control Engine (PCE) offers the possibility to develop cyclic application flows

in VB Script or Java Script. The PCE is especially suitable for long-lasting functions that

run in the background (e.g. extensive export functions). In contrast to VBA (on page 43),

the PCE supports multi-threading.

3.1 The PCE Editor

The PCE can be found in the Project Manager in the entry Programming interfaces. The PCE Editor is

opened with the entry Open PCE Editor in the context menu.

Process Control Engine (PCE)

10

3.1.1 The Taskmanager

The Taskmanager of the PCE Editor lists the existing tasks and the linked variables.

A doubleclick on a task opens it in the editing area. With the right mouse button the context menu of a

task can be opened.

The context menu of a task has four entries:

TAG Description

Task properties... Opens the properties dialog of the task.

Task variables... Opens the variable selection. So you can add new variables to the task.

Delete task Deletes the task without any further query.

Compile tasks Compiles the task.

3.1.2 The editing area

In the editing area of the PCE Editor the code of the tasks is entered in VB Script or Java Script.

Process Control Engine (PCE)

11

3.1.3 The output window

3.1.4 The menus of the PCE Editor

Menu File

The menu File includes the following commands:

TAG Description

Save Saves new or changed tasks.

Print Prints the current task.

Close Closes the PCE Editor.

Menu Edit

The menu Edit includes the following commands:

Process Control Engine (PCE)

12

TAG Description

Undo Undoes the last executed action.

Redo Repeats the last executed action.

Cut Moves a text to the Windows Clipboard.

Copy Copies a text to the Windows Clipboard.

Paste Pastes a text from the Windows Clipboard.

Delete

Select all Selects the entire text of the task.

Search Searches for a text in the current task.

Find next Goes to the next place of finding.

Find previous Goes to the previous place of finding.

Replace... Replaces a text in the task by another.

Bookmarks Administration of bookmarks in the code of the task.

- set bookmark Sets a bookmark at the selected line in the code.

- next bookmark Goes to the next bookmark in the code.

- previous bookmark Goes to the previous bookmark in the code.

- delete all bookmarks Deletes all bookmarks in the code.

Menu Run

The menu Run includes the following commands:

Save and restart all tasks

Compile tasks Compiles the task.

Menu View

The menu View includes the following commands:

Process Control Engine (PCE)

13

TAG Description

Settings Opens the settings dialog of the PCE Editor.

Task manager Opens/closes the Taskmanager window.

Output Opens/closes the Output window.

Status Bar Opens/closes the status bar.

Menu Window

The menu Window includes the following commands:

Close

Arrange

Divide

Align symbols

List of the last open windows

Menu Help

The menu Help includes the following commands:

Command Action

Help Opens online help.

Info about… Opens a window with information on zenon:

 Serial Number

 Activation number:

 Licensed tags/IOs

 Licensed module

A slider can be used for navigation in the information window. Clicking in the

window or pressing the Esc key closes the info window.

Process Control Engine (PCE)

14

3.1.5 The icon bar of the PCE Editor

The most important commands of the PCE Editor can also be executed with the icons of the icon bar.

The following icons are available:

TAG Description

Close Closes the PCE Editor.

Save all Saves new or changed tasks.

Print active screen Prints the current task.

Cut Moves a text to the Windows Clipboard.

Copy Copies a text to the Windows Clipboard.

Paste Pastes a text from the Windows Clipboard.

Undo Undoes the last executed action.

Redo Repeats the last executed action.

Search Searches for a text in the current task.

Find next Goes to the next place of finding.

Find previous Goes to the previous place of finding.

Replace... Replaces a text in the task by another.

Save and restart

Start debugger

Next bookmark Goes to the next bookmark in the code.

Set bookmark Sets a bookmark at the selected line in the code.

Previous bookmark Goes to the previous bookmark in the code.

Delete all bookmarks Deletes all bookmarks in the code.

Process Control Engine (PCE)

15

3.2 Course of actions

3.2.1 Creating a task

With the context menu of the Taskmanager a new task can be created.

Properties of the task

After creating the task the properties dialog of the new task opens automatically.

The following properties can be defined:

Process Control Engine (PCE)

16

TAG Description

Name Unique name of the task.

Type Tasks can be executed cyclic or once.

Cyclic: the task is executed cyclically in the interval defined under limit of

time schedule.

Once: the task is executed one single time.

Priority Process priorities for operating system multithreading (idle, low, normal, high,

highest, time critical).

Default: Normal

main process: the task runs in the same thread as Runtime. If the task gets

into a waiting loop or crashes, that also influences the Runtime.

Script file Selection of the script file: VB-Files (*.vbs) for VB Script or JS-Files (*.js) for Java

Script.

The according file is created, when the task is opened in the editing area for the

first time.

Start type System start : automatically started with Runtime. (This is the only way to

use the PCE under Windows CE, as Windows CE does not support VBA.)

event triggered: the task is started in a VBA macro with the statement

"thisProject.Tasks.Item("Taskname").Run".

Cycle time to

reach

For cyclic tasks the interval in milliseconds that should be achieved.

If this cycle time is not achieved, the task is executed as fast as possible.

For a later change of the properties this dialog can also be opened with the context menu of the task

and the entry Task Properties….

Variables of the task

After defining the properties the variable selection dialog is automatically opened. Here the variables

that should be processed in the task are selected.

All variables that are read or written in the task should be linked here. There is also the possibility to

access the variables via the variables object, but only the variables directly linked to the task are

automatically updated when initializing the task before execution.

The variables must have the following syntax:

Task.Value('Variable name')=123

For a later change of the variable selection this dialog can also be opened with the context menu of the

task and the entry Task Variables….

Process Control Engine (PCE)

17

3.2.2 Entering code

Doubleclicking the task in the Taskmanager opens it in the editing area. If the task is opened for the first

time, the according VBS or JS file is created now.

Four procedures are automatically created:

TAG Description

Task_Init() This procedure is automatically executed when starting the task.

Task_Main() This procedure is either executed once (type once) or cyclically (type

cyclic).

Task_Exit() This procedure is automatically executed when stopping the task.

Task_Timer(lTimerI

d)

This procedure is executed cyclically, as long as the according time is

running. The cycle time is defined as a parameter with the starting of the

timer.

Generally speaking the PCE uses the same object model as VBA (see VBA Tutorials). When using VBA

objects (except the object Task) multithreading is lost, because these objects only can be accessed from

the main thread.

 Attention

Not all funtions of the COM interface are multithread-able and therefore can only be

used in a main tread context. If a different property than "in the main process" is set as

PCE task, there must not be any access from the PCE to the main thread. In case there is

an access to the COM interface nevertheless, this can lead to undefined system states,

e.g. a Runtime freeze.

Of special importance are the collection Tasks and the object Task.

Process Control Engine (PCE)

18

The collection Tasks

Count

Item

Parent

Process Control Engine (PCE)

19

The object Task

ActualCycleTim

e

Property Currently achieved cycle time of the task

CountVariable Property Number of variables linked to the task

CycleTime Property Defined cycle time of the task

DynProperties Property

ErrorNumber Property

ErrorString Property

Exit Event

On init Event

ItemVariable Method

Main Event

MemValue Property With "Task.MemValue("Name")=value" an internal variable is

created and a value is assigned to it. There is no need to declare

the variable before.

This variable can also be accessed from other tasks. So it allows

the exchange of values between tasks.

Name Property Name of the current task

Parent Property The collection Tasks

Priority Property Priority of the current task

Run Method Starts a task

Sleep Method Holds a task

StartTimer Method The method "StartTimer" starts a timer of the task.

Status Property

Stop Method Stops a task

StopTimer Method The method "StopTimer" stops a timer of the task.

Timer Event

Type Property

Process Control Engine (PCE)

20

Value Property With "Task.Value("name of linked variable")=value" a variable of

the project can get a new value.

3.2.3 Function Show PCE

With the zenon function Show PCE the PCE Editor can be opened from the Runtime.

3.2.4 Executing tasks

Executing tasks with system start

If in the configuration of the task the Start type is set to System start , the task is automatically

started with the Runtime.

This is the only way to use the PCE under Windows CE, as Windows CE does not support VBA.

Executing tasks event triggered

On a PC

A task can also be started event triggered. In this case the Start type has to be set to Event driven .

Now the task is no longer automatically started with the Runtime.

A VBA macro has to be created in order to execute a task by pressing a button, by a limit violation or any

other event. With the following VBA statement the task can be started:

thisProject.Tasks.Item("Taskname").Run

The task is automatically started in an own thread if in the configuration Priority Main process has

not been set.

With the following VBA statement the task can be stopped at any time:

thisProject.Tasks.Item("Taskname").Stop

Process Control Engine (PCE)

21

On a CE terminal

As Windows CE does not support VBA, the way described above is not possible on a CE terminal. But

there is a possibility to execute tasks event triggered also here.

A task with the Start type System start is created. This task is automatically started with the

Runtime. And this task gets the Priority Main process so that it runs in the same thread as the

Runtime. Now bit variables are linked to that task, then will execute other tasks event triggered. With

the following statement the task can be started:

Parent.Item("Taskname").Run

The task is automatically started in an own thread if in the configuration the Priority Main process has

not been set.

With the following statement the task can be stopped at any time:

Parent.Item("Taskname").Stop

3.3 VB Script - Introduction

3.3.1 Data types

Variant

VBScript has only one data type called a Variant. A Variant is a special kind of data type that can

contain different kinds of information, depending on how it is used. Because Variant is the only data

type in VBScript, it is also the data type returned by all functions in VBScript.

At its simplest, a Variant can contain either numeric or string information. A Variant behaves as a

number when you use it in a numeric context and as a string when you use it in a string context. That is,

if you are working with data that looks like numbers, VBScript assumes that it is numbers and does what

is most appropriate for numbers. You can always make numbers behave as strings by enclosing them in

quotation marks (" "). If you work with data that only can be interpreted as strings, VBScript will

interpret them as strings.

Process Control Engine (PCE)

22

Variant Subtypes

Beyond the simple numeric or string classifications, a Variant can make further distinctions about the

specific nature of numeric information. For example, you can have numeric information that represents

a date or a time. When used with other date or time data, the result is always expressed as a date or a

time. You can also have a rich variety of numeric information ranging in size from Boolean values to

huge floating-point numbers. These different categories of information which can be contained in a

Variant are called subtypes . Most of the time, you can just put the kind of data you want in a

Variant , and the Variant behaves in a way that is most appropriate for the data it contains.

The following summary shows subtypes of data that a Variant can contain.

Subtype Meaning

Empty Variant is uninitialized. Value is 0 for numeric variables or a zero-length string ("") for

string variables.

Null Variant intentionally contains no valid data.

Boolean Contains either TRUE or FALSE.

Byte Contains integer in the range 0 to 255.

Integer Contains integer in the range -32,768 to 32,767.

Currency -922,337,203,685,477.5808 bis 922,337,203,685,477.5807.

Long Contains integer in the range -2,147,483,648 to 2,147,483,647.

Single Contains a single-precision, floating-point number in the range -3.402823E38 to

-1.401298E-45 for negative values; 1.401298E-45 to 3.402823E38 for positive values.

Double Contains a double-precision, floating-point number in the range -1.79769313486232E308

to -4.94065645841247E-324 for negative values; 4.94065645841247E-324 to

1.79769313486232E308 for positive values.

Date

(Time)

Contains a number that represents a date between January 1, 100 to December 31, 9999.

String Contains a variable-length string that can be up to approximately 2 billion characters in

length.

Object Contains an object.

Error Contains an error number.

Process Control Engine (PCE)

23

3.3.2 Variables

A variable is a convenient placeholder that refers to a computer memory location where you can store

program information that may change during the time your script is running. For example, you might

create a variable called ClickCount to store the number of times a user clicks an object on a particular

Web page. Where the variable is stored in computer memory is unimportant. What is important is that

you only have to refer to a variable by name to see or change its value. In VBScript, variables are always

of one fundamental data type, Variant.

Declaring Variables

You declare variables explicitly in your script using the Dim statement, the Public statement, and the

Private statement. Example:

Dim DegreesFahrenheit

You declare multiple variables by separating each variable name with a comma. Example:

Dim Top, Bottom, Left, Right

Limitations for names

Variable names follow the standard rules for naming anything in VBScript. A variable name:

 Must begin with an alphabetic character.

 Cannot contain an embedded period.

 Must not exceed 255 characters.

 Must be unique in the scope in which it is declared.

Scope and Lifetime of Variables

When you declare a variable within a procedure, only code within that procedure can access or change

the value of that variable. It has local scope and is a procedure-level variable.

If you declare a variable outside a procedure, you make it recognizable to all the procedures in your

script. This is a script-level variable, and it has script-level scope.

Process Control Engine (PCE)

24

The lifetime of a variable depends on how long it exists. The lifetime of a script-level variable extends

from the time it is declared until the time the script is finished running. At procedure level, a variable

exists only as long as you are in the procedure. When the procedure exits, the variable is destroyed.

Local variables are ideal as temporary storage space when a procedure is executing. You can have local

variables of the same name in several different procedures because each is recognized only by the

procedure in which it is declared.

Assigning Values to Variables

Values are assigned to variables creating an expression as follows: the variable is on the left side of the

expression and the value you want to assign to the variable is on the right. Example:

B = 200

Scalar Variables and Array Variables

Much of the time, you only want to assign a single value to a variable you have declared. A variable

containing a single value is a scalar variable. Other times, it is convenient to assign more than one

related value to a single variable. Then you can create a variable that can contain a series of values. This

is called an array variable. Array variables are declared nearly like scalar variables The only difference is,

that in the declaration brackets follow the names of array variables. In the following example, a

single-dimension array containing 11 elements is declared:

Dim A(10)

Although the number shown in the parentheses is 10, all arrays in VBScript are zero-based, so this array

actually contains 11 elements. In a zero-based array, the number of array elements is always the

number shown in parentheses plus one. This kind of array is called a fixed-size array.

You assign data to each of the elements of the array using an index into the array. Beginning at zero and

ending at 10, data can be assigned to the elements of an array as follows:

A(0) = 256

A(1) = 324

A(2) = 100

. . .

A(10) = 55

Similarly, the data can be retrieved from any element using an index into the particular array element

you want. Example:

Process Control Engine (PCE)

25

. . .

SomeVariable = A(8)

. . .

Arrays aren't limited to a single dimension. You can have as many as 60 dimensions, although most

people can't comprehend more than three or four dimensions. You can declare multiple dimensions by

separating an array's size numbers in the parentheses with commas. In the following example, the

MyTable variable is a two-dimensional array consisting of 6 rows and 11 columns:

Dim MyTable(5, 10)

In a two-dimensional array, the first number is always the number of rows; the second number is the

number of columns.

You can also declare an array whose size changes during the time your script is running. This is called a

dynamic array. The array is initially declared within a procedure using either the Dim statement or using

the ReDim statement. However, for a dynamic array, no size or number of dimensions is placed inside

the parentheses. Example:

(Dim AnArray()

ReDim AnotherArray()

To use a dynamic array, you must subsequently use ReDim to determine the number of dimensions and

the size of each dimension. In the following example, ReDim sets the initial size of the dynamic array to

25. A subsequent ReDim statement resizes the array to 30, but uses the Preserve keyword to

preserve the contents of the array as the resizing takes place.

ReDim MyArray(25)

. . .

ReDim Preserve MyArray(30)

3.3.3 Constants

A constant is a meaningful name that takes the place of a number or string and never changes. VBScript

defines a number of intrinsic constants . You can get information about these intrinsic constants from

the VBScript Language Reference.

You create user-defined constants in VBScript using the Const statement. So you can assign a

meaningful name to string or numerical constants. Then you can assign them literal values and use them

in a script. Example:

Const MyString = "This is a string."

Const MyAge = 49

Process Control Engine (PCE)

26

Note that the string literal is enclosed in quotation marks (" "). Quotation marks are the most obvious

way to differentiate string values from numeric values. You represent Date literals and time literals by

enclosing them in number signs (#). Example:

Const CutoffDate = #6-1-97#

You may want to adopt a naming scheme to differentiate constants from variables. This will prevent you

from trying to reassign constant values while your script is running. For example, you might want to use

a "vb" or "con" prefix on your constant names, or you might name your constants in all capital letters.

Care that constants and variables can be distinguished. So you avoid problems when creating complex

scripts.

3.3.4 Operators

VBScript has a full range of operators, including arithmetic operators, comparison operators,

concatenation operators, and logical operators.

Operator Precedence

If several operators appear in a statement, each part is evaluated and resolved in a pre-defined

sequence. This sequence is called operator precedence. You can use parentheses to override the order

of precedence and force some parts of an expression to be evaluated before others. Operations within

parentheses are always performed before those outside. Within parentheses, however, standard

operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated

first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison

operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they

appear. Arithmetic and logical operators are evaluated in the following order of precedence.

Arithmetic Operators

Description Symbol

Exponentiation ^

Unary negation -

Multiplication *

Process Control Engine (PCE)

27

Division /

Integer division /

Modulus arithmetic Mod

Addition +

Subtraction -

String concatenation

Comparison Operators

Description Symbol

Equality =

Inequality <>

Less than <

Greater than >

Less than or equal

to

<=

Greater than or

equal to

>=

Opject equivalence Is

Logical Operators

If several operators appear in a statement, each part is evaluated and resolved in a pre-defined

sequence. This sequence is called operator precedence. You can use parentheses to override the order

of precedence and force some parts of an expression to be evaluated before others. Operations within

parentheses are always performed before those outside. Within parentheses, however, standard

operator precedence is maintained.

Process Control Engine (PCE)

28

When expressions contain operators from more than one category, arithmetic operators are evaluated

first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison

operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they

appear. Arithmetic and logical operators are evaluated in the following order of precedence.

3.3.5 Conditional Statements

You can control the flow of your script with conditional statements and looping statements. Using

conditional statements, you can write VBScript code that makes decisions and repeats actions.

Making Decisions Using If...Then...Else

The If...Then...Else statement is used to evaluate whether a condition is True or False and,

depending on the result, to specify one or more statements to run. Usually the condition is an

expression that uses a comparison operator to compare one value or variable with another. For

information about comparison operators, see Comparison Operators. If...Then...Else

statements can be nested to as many levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax for the

If...Then...Else statement. The following example shows the single-line syntax. Notice that this

example omits the Else keyword.

Sub FixDate()

Dim myDate

myDate = #2/13/95#

If myDate < Now Then myDate = Now

End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax includes

the End If statement, as shown in the following example:

Sub AlertUser(value)

If value = 0 Then

AlertLabel.ForeColor = vbRed

AlertLabel.Font.Bold = True

AlertLabel.Font.Italic = True

End If

End Sub

Process Control Engine (PCE)

29

To run only one statement when a condition is True, use the single-line syntax for the

If...Then...Else statement. The following example shows the single-line syntax. Notice that this

example omits the Else keyword.

Sub FixDate()

Dim myDate

myDate = #2/13/95#

If myDate < Now Then myDate = Now

End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax includes

the End If statement, as shown in the following example:

Sub AlertUser(value)

If value = 0 Then

AlertLabel.ForeColor = vbRed

AlertLabel.Font.Bold = True

AlertLabel.Font.Italic = True

End If

End Sub

Running Certain Statements if a Condition is True and Running Others if a Condition is False

You can use an If...Then...Else statement to define two blocks of executable statements: one

block to run if the condition is True, the other block to run if the condition is False.

Sub AlertUser(value)

If value = 0 Then

AlertLabel.ForeColor = vbRed

AlertLabel.Font.Bold = True

AlertLabel.Font.Italic = True

Else

AlertLabel.Forecolor = vbBlack

AlertLabel.Font.Bold = False

AlertLabel.Font.Italic = False

End If

End Sub

Deciding Between Several Alternatives

A variation on the If...Then...Else statement allows you to choose from several alternatives.

Adding ElseIf clauses expands the functionality of the If...Then...Else statement so you can

control program flow based on different possibilities.

Process Control Engine (PCE)

30

Example:

Sub ReportValue(value)

If value = 0 Then

MsgBox value

ElseIf value = 1 Then

MsgBox value

ElseIf value = 2 then

Msgbox value

Else

Msgbox Walue out of range!

End If

Making Decisions with Select Case

The Select Case structure provides an alternative to If...Then...ElseIf for selectively

executing one block of statements from among multiple blocks of statements. A Select Case

statement provides capability similar to the If...Then...Else statement, but it makes code more

efficient and readable.

A Select Case structure works with a single test expression that is evaluated once, at the top of the

structure. The result of the expression is then compared with the values for each Case in the structure.

If there is a match, the block of statements associated with that Case is executed, as in the following

example.

Select Case Document.Form1.CardType.Options(SelectedIndex).Text

Case MasterCard

DisplayMCLogo

ValidateMCAccount

Case Visa

DisplayVisaLogo

ValidateVisaAccount

Case American Express

DisplayAMEXCOLogo

ValidateAMEXCOAccount

Case Else

DisplayUnknownImage

PromptAgain

End Select

3.3.6 Looping Through Code

Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a

condition is False; others repeat statements until a condition is True. There are also loops that

repeat statements a specific number of times.

Process Control Engine (PCE)

31

The following looping statements are available in VBScript:

TAG Description

Using Do loops (on page 31): Loops while or until a condition is True.

Using While...Wend (on page

33):

Loops while a condition is True.

Using For...Next (on page 33): Uses a counter to run statements a specified number of times.

Using For Each...Next (on page

34):

Repeats a group of statements for each item in a collection or each element of an array.

Using Do Loops

You can use Do...Loop statements to run a block of statements an indefinite number of times. The

statements are repeated either while a condition is True or until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do...Loop statement. You can check the condition

before you enter the loop (as shown in the following ChkFirstWhile example), or you can check it after

the loop has run at least once (as shown in the ChkLastWhile example). In the ChkFirstWhile procedure,

if myNum is set to 9 instead of 20, the statements inside the loop will never run. In the ChkLastWhile

procedure, the statements inside the loop run only once because the condition is already False.

 Sub ChkFirstWhile()

 Dim counter, myNum

 counter = 0

 myNum = 20

 Do While myNum > 10

 myNum = myNum - 1

 counter = counter + 1

 Loop

 MsgBox 'The loop made ' & counter & ' repetitions.'

 End Sub

 Sub ChkLastWhile()

Process Control Engine (PCE)

32

 Dim counter, myNum

 counter = 0

 myNum = 9

 Do

 myNum = myNum - 1

 counter = counter + 1

 Loop While myNum > 10

 MsgBox 'The loop made ' & counter & ' repetitions.'

 End Sub

Repeating a Statement Until a Condition Becomes True

There are two ways to use the Until keyword to check a condition in a Do...Loop statement. You

can check the condition before you enter the loop (as shown in the following ChkFirstUntil example), or

you can check it after the loop has run at least once (as shown in the ChkLastUntil example). As long as

the condition is False, the looping occurs.

 Sub ChkFirstUntil()

 Dim counter, myNum

 counter = 0

 myNum = 20

 Do Until myNum = 10

 myNum = myNum - 1

 counter = counter + 1

 Loop

 MsgBox 'The loop made ' & counter & ' repetitions.'

 End Sub

 Sub ChkLastUntil()

 Dim counter, myNum

 counter = 0

 myNum = 1

 Th

 myNum = myNum - 1

 counter = counter + 1

 Loop Until myNum = 10

 MsgBox 'The loop made ' & counter & ' repetitions.'

 End Sub

Process Control Engine (PCE)

33

Exiting a Do...Loop Statement from Inside the Loop

You can exit a Do...Loop by using the Exit Do statement. Because you usually want to exit only in

certain situations, such as to avoid an endless loop, you should use the Exit Do statement in the True

statement block of an If...Then...Else statement. If the condition is False, the loop runs as

usual.

In the following example, myNum is assigned a value that creates an endless loop. The

If...Then...Else statement checks for this condition, preventing the endless repetition.

 Sub ExitExample()

 Dim counter, myNum

 counter = 0

 myNum = 9

 Do Until myNum = 10

 myNum = myNum - 1

 counter = counter + 1

 If myNum < 10 Then Exit Do

 Loop

 MsgBox 'The loop made ' & counter & ' repetitions.'

 End Sub

Using While...Wend

The While...Wend statement is provided in VBScript for those who are familiar with its usage.

However, because of the lack of flexibility in While...Wend, it is recommended that you use

Do...Loop instead.

Using For...Next

You can use For...Next statements to run a block of statements a specific number of times. For

loops, use a counter variable whose value increases or decreases with each repetition of the loop.

The following example causes a procedure called MyProc to execute 50 times. The For statement

specifies the counter variable x and its start and end values. The Next statement increments the

counter variable by 1.

 Sub DoMyProc50Times()

 Dim x

Process Control Engine (PCE)

34

 For x = 1 To 50

 MyProc

 Next

 End Sub

Using the Step keyword, you can increase or decrease the counter variable by the value you specify. In

the following example, the counter variable j is incremented by 2 each time the loop repeats. When the

loop is finished, the total is the sum of 2, 4, 6, 8, and 10.

 Sub DoMyProc50Times()

 Dim x

 For x = 1 To 50

 MyProc

 Next

 End Sub

To decrease the counter variable, use a negative Step value. You must specify an end value that is less

than the start value. In the following example, the counter variable myNum is decreased by 2 each time

the loop repeats. When the loop is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

 Sub NewTotal()

 Dim myNum, total

 For myNum = 16 To 2 Step -2

 total = total + myNum

 Next

 MsgBox 'The total is ' & total

 End Sub

Using For Each...Next

A For Each...Next loop is similar to a For...Next loop. Instead of repeating the statements a

specified number of times, a For Each...Next loop repeats a group of statements for each item in a

collection of objects or for each element of an array. This is especially helpful if you don't know how

many elements are in a collection.

In the following HTML code example, the contents of a Dictionary object is used to place text in

several text boxes.

 <HTML>

 <HEAD><TITLE>Formulare und Elemente</TITLE></HEAD>

 <SCRIPT LANGUAGE='VBScript'>

 <!--

Process Control Engine (PCE)

35

 Sub cmdChange_OnClick

 Dim d 'Create a variable

 Set d = CreateObject('Scripting.Dictionary')

 d.Add '0', 'Athen' 'Add some keys and items

 d.Add '1', 'Belgrad'

 d.Add '2', 'Kairo'

 For Each I in d

 Document.frmForm.Elements(I).Value = D.Item(I)

 Next

 End Sub

 -->

 </SCRIPT>

 <BODY>

 <CENTER>

 <FORM NAME='frmForm'

 <Input Type = 'Text'><p>

 <Input Type = 'Text'><p>

 <Input Type = 'Text'><p>

 <Input Type = 'Text'><p>

 <Input Type = 'Button' NAME='cmdChange' VALUE='Hierauf klicken'><p>

 </FORM>

 </CENTER>

 </BODY>

 </HTML>

3.3.7 Types of procedures

Sub Procedures

A Sub procedure is a series of VBScript statements (enclosed by Sub and End Sub statements) that

perform actions but don't return a value. A Sub procedure can take arguments (constants, variables, or

Process Control Engine (PCE)

36

expressions that are passed to it by a calling procedure). If a Sub procedure has no arguments, its Sub

statement must include an empty set of parentheses ().

The following Sub procedure uses two intrinsic, or built-in, VBScript functions, MsgBox and

InputBox, to prompt a user for information. It then displays the results of a calculation based on that

information. The calculation is performed in a Function procedure created using VBScript. The

Function procedure is shown after the following discussion.

 Sub ConvertTemp()

 temp = InputBox('Please enter the temperature in degrees F.', 1)

 MsgBox 'The temperature is ' & Celsius(temp) & ' degrees C.'

 End Sub

Function Procedures

A Function procedure is a series of VBScript statements enclosed by the Function and End

Function statements. A Function procedure is similar to a Sub procedure, but can also return a

value. A Function procedure can take arguments (constants, variables, or expressions that are passed

to it by a calling procedure). If a Function procedure has no arguments, its Function statement

must include an empty set of parentheses. A Function returns a value by assigning a value to its name

in one or more statements of the procedure. The return type of a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from degrees Fahrenheit. When

the function is called from the ConvertTemp Sub procedure, a variable containing the argument value is

passed to the function. The result of the calculation is returned to the calling procedure and

displayed in a message box.

 Sub ConvertTemp()

 temp = InputBox('Please enter the temperature in degrees F.', 1)

 MsgBox 'The temperature is ' & Celsius(temp) & ' degrees C.'

 End Sub

 Function Celsius(fDegrees)

 Celsius = (fDegrees - 32) * 5 / 9

 End Function

Getting data into and out of procedures

Process Control Engine (PCE)

37

Each piece of data is passed into your procedures using an argument . Arguments serve as placeholders

for the data you want to pass into your procedure. When you create a procedure using either the Sub

statement or the Function statement, parentheses must be included after the name of the

procedure. Any arguments are placed inside these parentheses, separated by commas. For example, in

the following example, fDegrees is a placeholder for the value being passed into the Celsius function for

conversion.

 Function Celsius(fDegrees)

 Celsius = (fDegrees - 32) * 5 / 9

 End Function

Using Sub and Function Procedures in Code

A Function in your code must always be used on the right side of a variable assignment or in an

expression.

Examples:

 Temp = Celsius(fDegrees)

 or

 MsgBox 'The temperature is ' & Celsius(temp) & ' degrees C.'

To call a Sub procedure from another procedure, type the name of the procedure along with values for

any required arguments, each separated by a comma. The Call statement is not required, but if you do

use it, you must enclose any arguments in parentheses.

The following example shows two calls to the MyProc procedure. In the one case the Call statement is

used in the code, in the other one it is not. Both calls have the same result.

 Call MyProc(firstarg, secondarg)

 MyProc firstarg, secondarg

3.3.8 Coding Conventions

Coding conventions are suggestions are designed to help you write code using Microsoft Visual Basic

Scripting Edition.

Coding conventions can include the following:

Process Control Engine (PCE)

38

Naming conventions for objects, variables, and procedures

Commenting conventions

Text formatting and indenting guidelines

The main reason for using a consistent set of coding conventions is to standardize the structure and

coding style of a script or set of scripts so that you and others can easily read and understand the code.

Using good coding conventions results in clear, precise, and readable source code that is consistent with

other language conventions and is intuitive.

Constant Naming Conventions

Earlier versions of VBScript had no mechanism for creating user-defined constants. Constants, if used,

were implemented as variables and distinguished from other variables using all uppercase characters.

Multiple words were separated using the underscore (_) character.

Examples:

USER_LIST_MAX

NEW_LINE

Although this way of naming constants still works, you can use a different way of naming. You can create

real constants with the statement Const. This convention uses a mixed-case format in which constant

names have a "con" prefix.

For example:

conYourOwnConstant

Variable Naming Conventions

To enhance readability and consistency, use the following summary with descriptive names for variables

in your VBScript code.

Process Control Engine (PCE)

39

Subtype Prefix Example

Boolean bln blnFound

Byte byt bytRasterData

Date (Time) dtm dtmStart

Double dbl dblTolerance

Error err errOrderNum

Integer int intQuantity

Long lng lngDistance

Object obj objCurrent

Single sng sngAverage

String str strFirstName

Variable Scope

Variables should always be defined with the smallest scope possible. VBScript variables can have the

following scope.

Valid range Declaration Visibility

Procedure-level Event, Function, or Sub procedure. Visible in the procedure in which it is

declared.

Script-level HEAD section of an HTML page, outside

any procedure.

Visible in every procedure in the script.

Variable Scope Prefixes

As script size grows, so does the value of being able to quickly differentiate the scope of variables. A

one-letter scope prefix preceding the type prefix provides this, without unduly increasing the size of

variable names.

Process Control Engine (PCE)

40

Valid range Prefix Example

Procedure-level None dblVelocity

Script-level sec sblnCalcInProgress

Descriptive Variable and Procedure Names

In the core of a variable or procedure name also capitals should be used. The name should be long

enough to describe the use of the variable. In addition, procedure names should begin with a verb, such

as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to help keep name length

reasonable. In general, variable names greater than 32 characters can be difficult to read. When using

abbreviations, make sure they are consistent throughout the entire script. For example, randomly

switching between Cnt and Count within a script or set of scripts may lead to confusion.

Object Naming Conventions

The following table lists recommended conventions for objects you may encounter while programming

VBScript.

Process Control Engine (PCE)

41

Object type Prefix Example

3D Panel pnl pnlGroup

Animated button ani aniMailBox

Check box chk chkReadOnly

Combo box, drop-down list box cbo cboEnglish

Command button cmd cmdExit

Common dialog dlg dlgFileOpen

Frame fra fraLanguage

Horizontal scroll bar hsb hsbVolume

Image img imgIcon

Label lbl lblHelpMessage

Line lin linVertical

List Box lst lstPolicyCodes

Spin spn spnPages

Text box txt txtLastName

Vertical scroll bar vsb vsbRate

Slider sld sldScale

Code Commenting Conventions

Each procedure should start with a short comment describing the purpose of the procedure. This

description should not go into implementation details (how operations are executed), because these

might change with the time. This could result in maintenance effort for the comments and - even worse

- wrong comments. The code itself and any necessary inline comments describe the implementation.

Arguments passed to a procedure should be described when their purpose is not obvious and when the

procedure expects the arguments to be in a specific range. Return values for functions and variables

that are changed by a procedure, especially through reference arguments, should also be described at

the beginning of each procedure.

Process Control Engine (PCE)

42

Procedure header comments should include the following section headings. For examples, see the

"Formatting Your Code" section that follows.

Section Heading Comment

Purpose What the procedure does (not how).

Assumptions List of the procedure's effect on each external variable, control, or other

element.

Effects List of the procedure's effect on each external variable, control, or other

element.

Inputs Explanation of each argument that is not obvious. Each argument should

be on a separate line with inline comments.

Return Values Explanation of the value returned.

Remember the following points:

Every important variable declaration should include an inline comment describing the use of the variable

being declared.

Variables, controls, and procedures should be named clearly to ensure that inline comments are only needed

for complex implementation details.

At the beginning of your script, you should include an overview that describes the script, enumerating

objects, procedures, algorithms, dialog boxes, and other system dependencies. Sometimes a piece of

pseudocode describing the algorithm can be helpful.

Code formating

Screen space should be conserved as much as possible, while still allowing code formatting to reflect

logic structure and nesting. Here are a few suggestions:

 Indent standard nested blocks four spaces.

 Indent the overview comments of a procedure one space.

 The statements on the highest level, directly following the overview comment, should be

indented with four blanks. Each nested block should again be indented by four blanks.

Example:

The following code adheres to VB Script coding conventions.

Macro list

43

 ' Purpose: Searches for the first appearance of the stated user in the data field UserList.

 Inputs: strUserList(): the list of users to be searched.

 strZielUser: the name of the user to search for.

 Return values: Index of the first appearance of strTargetUser in the data field strUserList.

If the target user is not found, return -1. -1.

 Function intFindUser (strUserList(), strTargetUser)

 Dim i ' Loop counter.

 Dim blnFound ' 'Target found' flag.

 intFindUser = -1

 i = 0 ' Initialize loop counter

 Do While i <= Ubound(strUserList) and Not blnFound

 If strUserList(i) = strTargetUser Then

 blnFound = True ' Set flag to True

 intFindUser = i ' Set return value to loop count

 End If

 i = i + 1 ' Increment loop counter

 Loop

 End Function

4. Macro list

You can use VBA and VSTA in order to extend zenon functionality. The usage of macros with zenon is

described.

Macro list

44

CONTEXT MENU

Menu item Action

Open VBA Editor Opens the VBA Editor.

Export all VBE Opens the dialog for selecting the storage directory for the VBE export.

Import VBE Opens the dialog for selecting the VBE import file.

Editor profiles Opens the drop-down list with predefined editor profiles.

Help Opens online help.

 Information

If VBA macros are changed in the Editor,

 the Runtime files are compiled and transferred to the Runtime

 the Runtime is reloaded

 VSTA elements are also reloaded even if no changes were made in VSTA

VBA starts the same development environment for workspace and project. To open the VBA Editor:

1. navigate to the Programming interfaces node

2. right-click on VBA macros

3. select Open in VBA Editor... in the context menu

 press the short cut

Macro list

45

4.1 VBA toolbar and context menu detail view

TOOL BAR

Macro list

46

Menu item Action

New VBA macro Creates a new macro and opens the macro Editor.

Open VBA Editor Opens the VBA Editor.

Save Saves macros.

Delete Deletes the selected element.

Export all VBE Opens the dialog for selecting the storage directory for the VBE export.

Import VBE Opens the dialog for selecting the VBE import file.

Rename Makes it possible to rename the selected macro.

Help Opens online help.

CONTEXT MENU MODULE

Menu item Action

Open VBA Editor Opens the VBA Editor.

Save Saves macros.

Export all VBE Opens the dialog for selecting the storage directory for the VBE export.

Import VBE Opens the dialog for selecting the VBE import file.

Help Opens online help.

CONTEXT MENU MODULE

Menu item Action

New VBA macro Creates a new macro and opens the VBA Editor.

Help Opens online help.

CONTEXT MENU MACRO

Menu item Action

Edit Opens macro in the Editor for editing.

Alternatively: Enter button or double click.

Macro list

47

Delete Deletes macro.

Alternatively: Del key

Rename Opens list elements for editing.

Alternatively: F2 key.

Help Opens online help.

TOOL BAR EDITOR

Macros that were created with VBA can be administrated via toolbar-item Macro list.

Macro list

48

Symbol

(from left to right)

Function

Reload list of VBA/VSTA macros Loads all Public Sub Name () macros that are included in

myWorkspace and in modules to the drop-down list of the

toolbar.

Search Macro Search for macros via combobox input field or selection from

drop-down list. The drop-down list is adjusted to the widest element

when opened.

Drop-down list Macros Contains all loaded macros for selection.

Execute selected macro Executes the macro selected in the drop-down list.

execute allocated macro #<x> Executes the macro allocated with the symbol.

Allocate macros Opens the allocation dialog for macros. Up to 5 macros can be

allocated with the symbols 1 to 5.

VBA Filters for VBA-macros. Only VBA-macros are displayed.

VSTA Filters for VSTA-macros. Only VSTA-macros are displayed.

ALL Cancels the current filter and all macros are displayed.

AZ Sorts macros in ascending order from 0 - 9 and A - Z.

ZA Sorts macros in descending order from Z - A and 9 - 0.

Options for symbol bar Clicking on the arrow opens the submenu:

Active: Tool bar is displayed

If the toolbar is not displayed, it can be activated using the Menu

Options -> Toolbar.

 For free placed tool bar (undocked from the Editor) options

are not displayed. The tool bar can be closed by clicking on button X.

 Information

If the macro assignment dialog does not list all macros from myWorkspace, execute

the function Reload list of VBA macros in the toolbar.

Macro list

49

4.2 VBA on 64-bit systems

zenon has supported 64-bit operating systems since version 7.10. VBA was thus converted to VBA

version 7.1. Therefore VBA is also available in zenon 64-bit. If, in the VBA code, Windows API or other

imported DLL functions are accessed, these calls must be adapted to 64-bit. In general, the following

applies: A VBA file created with a 32-bit version cannot be used without changes in a 64--bit version.

There are some defines/functions available in VBA in order to write 32-bit and 64-bit compatible code.

For example:

#if Win64 then

 Declare PtrSafe Function MyMathFunc Lib "User32" (ByVal N As LongLong) As LongLong

#else

 Declare Function MyMathFunc Lib "User32" (ByVal N As Long) As Long

#end if

#if VBA7 then

 Declare PtrSafe Sub MessageBeep Lib "User32" (ByVal N AS Long)

#else

 Declare Sub MessageBeep Lib "User32" (ByVal N AS Long)

#end if

You can also obtain some useful notes on the porting of VBA 32-bit code to VBA 64-bit from Microsoft:

 Microsoft Office 2010, notes on porting:

http://msdn.microsoft.com/en-us/library/ee691831.aspx

(http://msdn.microsoft.com/en-us/library/ee691831.aspx)

 32-bit and 64-bit declares for API calls: http://www.jkp-ads.com/articles/apideclarations.as

(http://www.jkp-ads.com/articles/apideclarations.as)p

4.3 Basics

Describes the basics of the programming language VBA - Visual Basic for Applications

4.3.1 Object PROPERTIES

An object property is a certain attribute of the object. In case of a variable object this e.g. can be the

value, the name or the identification. In case of a circle the position or the color of the circle in the

http://msdn.microsoft.com/en-us/library/ee691831.aspx
http://www.jkp-ads.com/articles/apideclarations.as

Macro list

50

screen. Each object has at least one property (usually more), each property has a certain value. While

the property name is a text, the property value is a value between 0 and e.g. 1000.

The special thing with properties is, that with changing the property value in a VBA program you can

change the behaviour or the appearance of the object. If you e.g. change the property value of a

variable object, the currently selected variable gets this new value. You cannot cange the value of each

property. The property count of the variable object cannot be changed, because it represents the

number of created variables. You cannot add variables by changing the value of Count. So some

properties are read only, i.e. their values only can be read.

4.3.2 Object METHODS

Beside the properties each object can have methods. A method is not an attribute but a request to the

object to do something. So a form has the method Show. What does it do? It requests the form to

appear on the screen. Accordingly the form disappears when using the method Unload.

The advantage of methods is, that the programmer does not have to know anything about the structure

of the object and most of all has no opportunity to chnage the internal data of the object.

 Executing the method Show or Unload works as follows:

frmSollwert.Show bzw. Unload frmSollwert

If you want to open another form, the method stays the same, only the name of the form (object name)

changes.

frmChange.Show bzw. Unload frmChange

So one and the same method can be used for different object types. But not every object must have

methods.

4.3.3 Object EVENTS

In 90% of working with objects you will use properties and methods, but there is a third kind of

attributes objects can have: Events. Some objects of the control system object hierarchy can react on

events. Events take place during the work with zenon on their own.

Macro list

51

 Example

Whenever a screen is opened, an open event is triggered in the according screen object.

As a programmer you can add commands to the event procedure (procedure to be

executed, when the event happens), which define, what should happen in this case. One

example for this is changing a variable. You can create an event, which reacts on value

changes of a variable.

4.3.4 VBA object structure in zenon

Basically there is a object list and objects again and again in the project structure.

Example:

 Projects – Project

 Variables – Variable

 Elements – Element

You can find more about the object model:

 in the VBA help

Macro list

52

 in the graphical overview which you can obtain from COPA-DATA complete as printed overview.

 in the VBA object browser

Macro list

53

4.3.5 How to use VBA macros

In order to create a new macro in the window Project info on the property page Macro Browser select

a desired event, when the new macro should be executed.

Clicking on this event with the right mouse button opens a menu.

Select the menu entry "New macro..." Thus zenon generates a procedure:

Public Sub LeftClickUp_Sollwert(obElem As Element)

End Sub

If a macro already exists, it can be edited, deleted or renamed by clicking it with the right mouse button.

 Attention

If you select menu item Rename macro, take care that you do not change the name of

the event e.g. LeftClickUp_..., - of the current name. Otherwise renaming will not be

executed. Additionally you have to change the name of the sub program to be executed

in the VBA Editor by hand, if you rename a macro.

After you have filled the procedure generated by zenon with the source code to be executed, the

created macro has to be linked to an element.

Doubleclicking the element opens the property dialog of the element.

On the property page Events the macro is linked to the element.

Macro list

54

Clicking the element with the left mouse button executed the LeftClickDown event of the element and

the linked macro.

Inserting existing macros

In order to insert existing macros into another project do the following:

1. In the VBA Editor export all needed forms and modules and import them in the other project.

2. Event dependent macros, in ModulElement.bas, are not displayed in the macro browser at

the moment. So this macros have to be created in the macro browser.

The easiest way is to use the name of the existing macro.

e.g.:

LeftClickUp_ DateSet2

LeftClickUp_ DateSet4

LeftClickUp_ TimeSet

Draw_ Date2

Draw_ Date4

Draw_ Time

3. On creating the macros zenon generates procedures with the same name as the existing macros.

You have to delete these generated procedures.

4. Connect the macros as usual with a dynamic element.

 Information

If the hardware is not connected and the simulation mode of the SAIA driver is used,

do not forget to stop the driver.

Macro list

55

4.3.6 How to insert an ActiveX element in zenon?

An ActiveX element is drawn into the screen like any other dynamic element; a dialog opens, where you

musz select an ActiveX element.

 After you have selected the element from the list, you can links variables to it. For this click the

button Variable and select a variable or create a new one.

 In the next step we give the ActiveX element an object name, so that we can access it in VBA.

 In our example we give it the object name Slide6_DW18, because it is an AcziveX element Slider

linked to the variable Doubleword18.

 Now the Slider element has to be activated and edited in the VBA Editor.

 For this we create a new macro as described in chapter "How to use VBA macros? (on page 53)".

The macro Init_Slider passes the element to be initialized to a sub program in the control system object

thisProject, whereby the allocation to the current project is defined.

Public SubInit_Slider(obElem AsElement)

thisProject . Init _ Slider obElem

End Sub

Just like in the macro Init_Slider also Draw_SliderValue passes the element to the control system object

thisProject.

Public Sub Draw_SliderValue (obElem As Element, ByVal hdc As OLE _ HANDLE)

thisProject.Draw_Slider obElem

Macro list

56

obElem.Draw hdc

End Sub

The code below is added in the control system object this Project.

Public Declarations

Public WithEvents obSlider As Slider

Public obSliderPV As Variable

Public Sub Init_Slider (obElem As Element)

Set obSlider = obElem.ActiveX

'ActiveX exists

If obSlider Is Nothing Then

Exit Sub

End If

Set obSliderPV = obElem . ItemVariable(0)

'variable exists

If obSliderPV Is Nothing Then

Exit Sub

End If

obSlider.Max = obSliderPV.RangeMax

obSlider.Min = obSliderPV.RangeMin

obSlider.TickFrequency = 1000

obSlider.LargeChange = 25

obSlider.SmallChange = 1

obSlider.Value = obSliderPV.Value

End Sub

Public Sub Draw _ Slider (obElem As Element)

Dim vVar As Variant

Dim obDynPic As DynPicture

Set obSliderPV = obElem.ItemVariable (0)

Set obDynPic = thisProject.DynPictures. Item (BILD_1)

'variable exists

If obSliderPV Is Nothing Then

Exit Sub

End If

4.3.7 Access from an external program

In order to access zenon data from an external program such as e.g. Visual Basic the COM interface is

used. This COM interface is also used by VBA. So there are only a few small differences, that should be

cared of.

Macro list

57

Visual Basic 6

In order to be able to access the COM interface it has to be implemented:

With this type library you can access the application object of zenon (the Runtime).

As here there is no thisProject object, it has to be created to get access to the data.

Dim obProject As zenon.Project

Set obProject = zenon.Application.Projects.Item(PROJEKTNAME)

If the VB project should work with all zenon projects - should be project name independent - it can be

defined in the following way:

Set obProject = zenon.Application.Projects.Item(0)

After the project object (thisProject) has been created, e.g. the variables can be accessed for reading

and writing.

Read:

Value = obProject.Variables.Item(Variablenname).Value

Write:

obProject.Variables.Item(Variablenname).Value = Value

4.3.8 Functionality of online variables

You can imagine a VBA OnlineVariable as a container; this container contains control system variables,

which have to be added. If the value of one of the variables of the container changes, this is indicated

with an event.

Macro list

58

Functionality of the event:

If the container is activated (Container.Define), all variables in the container are forced once, so that

the current value of the variables are known. So the procedure Container_VariableChange is executed

for each variable in the container. As soon as all variables then have been initialized, this event always

occurs, if one of the variables of the container changes its value.

So it is avoided, that a value is read, which is not the current value of the variable.

Define and create container

Definition:

Public WithEvents Container As OnlineVariable

With this line of code the container is defined.

Creating:

Set Container = thisProject . OnlineVariables . CreateOnlineVariables (Containername)

Put variables in the container

Container . Add Variablenname1

Container . Add Variablenname2

Container . Add Variablenname3

Container . Add Variablenname4

...

Repeat this line, until all needed variables are added to the container.

Create event

Private Sub Container_VariableChange(ByVal obVar As zenon.IVariable)

...

End Sub

This event is automatically created, when the container is selected in the left combobox at the top of

the VBA Editor. The procedure above then is added to the source code. With obVar the variable with the

changed value is passed on. When this event occurs, e.g. the current value of the variable

(ob-Var.Value) can be read. Refer to the object hierarchy in the VBA documentation to see the

properties and values of variables, which can be used.

Macro list

59

Activate event

Container.Define

This command line activates the monitoring of the variables in the container. After executing the

command Define, the container is active.

Switching off the event

Container.Undefine

With this command the surveillance in the container is switched off. The event (VariableChange) is no

longer carried out.

Remove on closing

In order not to leave anything in the memory on closing the Runtime, the container has to be removed

at the latest on closing the Runtime.

thisProject . OnlineVariables . DeleteOnlineVariables (Containername)

Not before the container is deleted can another container with the same name be created.

Macro list

60

4.3.9 List of status bits

Bit number Short term Long name straton label

0 M1 User status 1 _VSB_ST_M1

1 M2 User status 2 _VSB_ST_M2

2 M3 User status 3 _VSB_ST_M3

3 M4 User status 4 _VSB_ST_M4

4 M5 User status 5 _VSB_ST_M5

5 M6 User status 6 _VSB_ST_M6

6 M7 User status 7 _VSB_ST_M7

7 M8 User status 8 _VSB_ST_M8

8 NET_SEL Select in the network _VSB_SELEC

9 REVISION Revision _VSB_REV

10 PROGRESS In operation _VSB_DIREC

11 TIMEOUT Runtime exceedance _VSB_RTE

12 MAN_VAL Manual value _VSB_MVALUE

13 M14 User status 14 _VSB_ST_14

14 M15 User status 15 _VSB_ST_15

15 M16 User status 16 _VSB_ST_16

16 GI General interrogation _VSB_GR

17 SPONT Spontaneous _VSB_SPONT

18 INVALID Invalid _VSB_I_BIT

19 T_CHG_A Daylight saving time/winter time

announcement

_VSB_SUWI

20 OFF Switched off _VSB_N_UPD

21 T_EXTERN Real time external _VSB_RT_E

22 T_INTERN Real time internal _VSB_RT_I

23 N_SORTAB Not sortable _VSB_NSORT

Macro list

61

24 FM_TR Fault message transformer value _VSB_DM_TR

25 RM_TR Working message transformer

value

_VSB_RM_TR

26 INFO Information for the variable _VSB_INFO

27 ALT_VAL Substitute value

If no value was transferred, the

defined alternate value is used

otherwise the last valid value is

used.

_VSB_AVALUE

28 RES28 Reserved for internal use (alarm

flashing)

_VSB_RES28

29 N_UPDATE Not updated _VSB_ACTUAL

30 T_STD Standard time _VSB_WINTER

31 RES31 Reserved for internal use (alarm

flashing)

_VSB_RES31

32 COT0 Cause of transmission bit 1 _VSB_TCB0

33 COT1 Cause of transmission bit 2 _VSB_TCB1

34 COT2 Cause of transmission bit 3 _VSB_TCB2

35 COT3 Cause of transmission bit 4 _VSB_TCB3

36 COT4 Cause of transmission bit 5 _VSB_TCB4

37 COT5 Cause of transmission bit 6 _VSB_TCB5

38 N_CONF Negative acceptance of Select by

device (IEC60870 [P/N])

_VSB_PN_BIT

39 TEST Test bit (IEC 60870 [T]) _VSB_T_BIT

40 WR_ACK Writing acknowledged _VSB_WR_ACK

41 WR_SUC Writing successful _VSB_WR_SUC

42 NORM Normal status _VSB_NORM

43 N_NORM Deviation normal status _VSB_ABNORM

44 BL_870 IEC 60870 Status: blocked _VSB_BL_BIT

45 SB_870 IEC 60870 Status: substituted _VSB_SP_BIT

Macro list

62

46 NT_870 IEC 60870 Status: not topical _VSB_NT_BIT

47 OV_870 IEC 60870 Status: overflow _VSB_OV_BIT

48 SE_870 IEC 60870 Status: select _VSB_SE_BIT

49 T_INVAL Time invalid not defined

50 CB_TRIP Breaker tripping detected not defined

51 CB_TR_I Breaker tripping detection inactive not defined

52 RES52 reserved not defined

53 RES53 reserved not defined

54 RES54 reserved not defined

55 RES55 reserved not defined

56 RES56 reserved not defined

57 RES57 reserved not defined

58 RES58 reserved not defined

59 RES59 reserved not defined

60 RES60 reserved not defined

61 RES61 reserved not defined

62 RES62 reserved not defined

63 RES63 reserved not defined

 Information

In formulas all status bits are available. For other use the availability can be reduced.

You can read details on status processing in the Status processing chapter.

4.3.10 Lasso for selecting dynamic elements in the Runtime

Dynamic elements which are linked with a variable or function can be pre-selected with the lasso in the

Runtime and therefore by used for events.

Macro list

63

With method SelElements the user can identify selected dynamic elements as selected in the Runtime.

These DynPicture.SelElements can then by used for events sich as drag&drop.

SELECTION PER LASSO

To select elements with the lasso in the Runtime, you must:

 activate property Runtime settings/Runtime lasso in the project settings

 activate property Runtime/selectable with lasso in the property of the dynamic

element

In the Runtime several methods for selecting elements are available:

 Select elements: Left-click on a free area and move lasso over the screen elements while holding

the mouse button pressed.

 Extend selecton: Ctrl+mouse click on an element in order to select/deselect it in addition to

the other elements already selected

 Add elements: While spanning the lasso press and hold Ctrl in order to add elements to the

existing selection

 Cancel selection: Spanning a lasso which does not contain elements.

4.4 Macros in the Editor

Macros can be carried out with the help of a configurable Toolbar (on page 64) in the Editor. For this

macros are linked (on page 66) with buttons in toolbar VBA.

In addition macros can be run manually using the VBA Editor.

With the help of Wizards repeating engineering tasks can be run or whole projects can be created with

the click on a button. As examples a few wizards are already included in the shipped version of zenon.

These wizards can be enhanced and completed at will. They help when creating a project, at the import

and export, at creating variables and so on. You can find details in chapter Wizards.

Macro list

64

EDITOR EVENTS

Editor events are part of the VBA workspace and make it possible to react to Events in the workspace

programming, e.g. for wizards or Remote Transport. For example:

 OnElementCreated

 OnElementDeleted

 OnElementDoubleClicked

 OnObjectCreated

 ...

All Events and information about them can be found in the help in chapter Object Model.

4.4.1 Tool bar macro list

Macros that were created with VBA can be administrated via toolbar-item Macro list.

Macro list

65

Symbol

(from left to right)

Function

Reload list of VBA/VSTA macros Loads all Public Sub Name () macros that are included in

myWorkspace and in modules to the drop-down list of the

toolbar.

Search Macro Search for macros via combobox input field or selection from

drop-down list. The drop-down list is adjusted to the widest element

when opened.

Drop-down list Macros Contains all loaded macros for selection.

Execute selected macro Executes the macro selected in the drop-down list.

execute allocated macro #<x> Executes the macro allocated with the symbol.

Allocate macros Opens the allocation dialog for macros. Up to 5 macros can be

allocated with the symbols 1 to 5.

VBA Filters for VBA-macros. Only VBA-macros are displayed.

VSTA Filters for VSTA-macros. Only VSTA-macros are displayed.

ALL Cancels the current filter and all macros are displayed.

AZ Sorts macros in ascending order from 0 - 9 and A - Z.

ZA Sorts macros in descending order from Z - A and 9 - 0.

Options for symbol bar Clicking on the arrow opens the submenu:

Active: Tool bar is displayed

If the toolbar is not displayed, it can be activated using the Menu

Options -> Toolbar.

 For free placed tool bar (undocked from the Editor) options

are not displayed. The tool bar can be closed by clicking on button X.

 Information

If the macro assignment dialog does not list all macros from myWorkspace, execute

the function Reload list of VBA macros in the toolbar.

Macro list

66

4.4.2 Linking macros

Macros can be called via a button in the toolbar. A maximum of five macros can be linked this way. Via

button Assign macros the dialog for assigning macros is opened.

TAG Description

Macro # Macro number matches the number of the button in the

toolbar.

A click on button ... opens the dialog for selecting the

macro.

OK Creates links to the buttons and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

Macro list

67

TAG Description

Existing selection List of macros which can be linked.

No selection Deletes existing assignment for the button.

OK Assigns the selected macro to the button.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

4.5 Functions in zenon

In dialog Function selection you can find the following functions under element VBA.

Function Description

Open PCE editor Opens the editor of the optional module Process

Control Engine (PCE).

Open VBA Editor Opens the VBA editor

Execute VBA Macro Executes a selected VBA macro.

 The VBA Event project inactive is

carried out by script AUTO_END_xxx. Therefore the

zenon function Execute VBA macro is no longer

executed in scripts as VBA is not running at this

time.

Show VBA macro dialog Opens the VBA macro dialog.

Macro list

68

4.5.1 Execute VBA Macro

If you select function Execute VBA macro, the following dialog is displayed.

These settings are available.

TAG Description

Macro selection Opens the dialog for selecting the macros (see also Macro selection (on page 69))

Hint: Only lists VBA macros that match the number of parameters defined at the

function Parameter (below).

Parameters Enter the desired value (string) for a parameter.

New Click on this button in order to apply the value at parameter in the list of available

parameter.

Delete Click on this button in order to delete the selected entry from the list of available

parameter. You can always only delete one entry at a time.

Up Click on this button in order to move the selected entry up one place. In the

parameter order the entry is moved one place to the front.

Down Click on this button in order to move the selected entry down one place. In the

parameter order the entry is moved one place to the back.

It is possible to add strings to macros which were created with parameters. These strings are transferred

in the Runtime as individual parameters when the macro is carried out.

Macro list

69

 Information

You must make sure that the number of parameters of the linked macro matches the

number of the created parameters.

Macro selection

After clicking button ..., the following dialog is displayed.

Select the desired macro from the available macros and then click OK.

4.6 Developing wizard in VBA

Since version 6 it is possible to automate engineering projects with wizards. So frequently recurring

tasks can be sourced out to a wizard which executes the desired actions, e.g. creating a project, creating

frames and screens in a pre-defined standard.

Another field of application for wizards are automated changes in existing projects, e.g. changing

properties of dynamic elements in all screens of an existing project.

The basis for the wizards is Microsoft Visual Basic for Applications (VBA) and the object model of zenon.

At the moment the following wizards are available:

 Project Wizard

Macro list

70

 Import Wizard

 World View Wizard

 Find VBA-Text Wizard

 Wizard for keyword creation

 Wizard for keyword translation

 Wizard for creating variables

The wizards are available as VBA source code files on the installation medium. New wizards can be

implemented with the VBA environment.

4.6.1 Using a wizard

The menu entry Wizards in the menu File opens the wizard selection. In this dialog all activated

wizards are displayed in their categories.

If a wizard has no category, the category Not linked is automatically created. In this category all not

linked wizards are displayed.

By selecting a wizard and pressing the button OK the selected wizard is executed.

Macro list

71

 Information

Wizards only support single-user projects and not multi-user projects.

4.6.2 Structure of a wizard

A wizard is a UserForm stored in the application specific node of the application. Usually the UserForm

consists of a multi-page element displaying the single steps of the wizard.

With a button Next the next page of the multi-page element is displayed. All entries have to be stored

temporarily - the creation of objects, e.g. frames, screens, ... has to be done with Finishing the wizards.

 Information

UserForms to be used as wizards have to contain some public methods, which provide

the control system with information about the wizard. If this routines are missing in a

UserForm, it is not treated as a wizard.

4.6.3 Integration in VBA

The wizards are stored in the application specific node ZWorkspace. This object represents the

currently loaded workspace in the Editor and is only available in the zenon Editor.

All objects in this VBA project can access the current workspace with teh object MyWorkspace. It is

always linked to the currently active project, which can be accessed with the property

ActiveDocument.

The contents of the object ZWorkspace are stored in the file ZenWorkspace.vba. It is copied to the

installation directory with the first installation of version 6. This file is not overwritten by later updates.

You will find more information on updating wizards at the end of this tutorial.

Macro list

72

4.6.4 Developing a wizard

This tutorial develops a wizard creating variables for a defined driver.

Start the VBA environment from the zenon Editor and change to folder ZWorkspace/Forms. This file

contains the basics for developing a wizard. Change the name of the UserForm.

If the folder mentioned above is not available, you can import it via Import the Import file command.

 Information

For developing a wizard knowledge about the object model of zenon and VBA are

required. These topics are not part of this tutorial.

Macro list

73

Create the surface displayed above. Then switch to the code module of the UserForm and scroll to the

end of the file. There you will find the following methods.

 Public Function GetWizardName () As String

Returns the unique name of the wizard. Change the contents to Wizard for creating

variables

 Public Function GetWizardInfo () As String

Returns a short description displayed in the wizard selection. Change the contents to

Wizard for creating variables to a selected driver

 Public Function GetWizardCategory () As String

Returns the category of the wizard. In the wizard selection the wizards are displayed in a

tree structure of the categories. Change the contents to Variables.

Macro list

74

 Public Function IsZenOnWizard () As Boolean

Displaying the wizard in the wizard selection. If this method returns False, the wizard is not

displayed, e.g. because it is not yet finished. Change the return type to True.

These methods provide the information about the wizard, which is requested by the control system.

Keep in mind that the wizard is only displayed in the wizard selection if the method IsZenOnWizard

returns True.

Switch to the event Initialize of the UserForm and change the contents of the string array

m_strCaption. As oru wizard only consits of two steps, you can delete the other allocations.

Add the following definitions to the top area of the code module:

Private m_obDriver As Driver

Private m_obVarType As VarType

Private m_nChannelType As Integer

Create a method for initializing the driver combobox. The task of this routine is to display all the loaded

drivers of the current project in a combobox.

cbDriver.Clear

Dim nIndex As Long

For nIndex = 0 To MyWorkspace.ActiveDocument.Drivers.Count - 1

 Dim obDriver As Driver

 Set obDriver = MyWorkspace.ActiveDocument.Drivers.Item(nIndex)

 If (Not obDriver Is Nothing) Then

 cbDriver.AddItem

 obDriver.Name

 End If

Next nIndex

If (cbDriver.ListCount > 0) Then

 cbDriver.ListIndex = 0

End If

Additionally we need a routine displaying all defined variable types of the project in a combobox.

Macro list

75

If (Not m_obDriver Is Nothing) Then

cbVarType.Clear

Dim nIndex As Long , nSelect As Integer

For nIndex = 0 To MyWorkspace.ActiveDocument.VarTypes.Count - 1

Dim obVarType As VarType

Set obVarType = MyWorkspace.ActiveDocument.VarTypes.Item(nIndex)

If (Not obVarType Is Nothing And obVarType.IsSimple = True) Then

cbVarType.AddItem

obVarType.Name

If (obVarType.Name = INT) Then

 nSelect = nIndex

End If

End If

Next nIndex

cbVarType.ListIndex = nSelect

End If

On opening the wizard all existing variables are checked to find a free start offset for the the new

variables to be created. This is done with the following method.

Private Function FindHighestOffsetVar() As Long

On Error GoTo Error

Dim nIndex As Long , nOffset As Long

For nIndex = 0 To MyWorkspace.ActiveDocument.Variables.Count - 1

Dim obVar As Variable

 Set obVar = MyWorkspace.ActiveDocument.Variables.Item(nIndex)

 If (Not obVar Is Nothing) Then

 If (obVar.Offset > nOffset) Then

 nOffset = obVar.Offset

 End If

 End If

Next nIndex

FindHighestOffsetVar = nOffset

Exit Function

Error : MsgBox

Error occurs: + Err.Description + Source + Err.Source

End Function

Switch to the event Initialize of the UserForm and add the following lines to this method:

txtStart.Value = CStr(FindHighestOffsetVar + 1)

InitializeDriver

Macro list

76

The allocation to txtStart sets the proposed start offset for the variables to be created. The method

InitializeDriver fills the combobox with the existing drivers.

Create an event Change for the driver combobox and add the following code. After having selected a

driver the variable types are acquired. The selected driver object is stored in the variable m_obDriver

for later use.

Private Sub cbDriver_Change()

cmdNext.Enabled = True

Set m_obDriver = MyWorkspace.ActiveDocument.Drivers.Item(cbDriver.Value)

If (Not m_obDriver Is Nothing) Then

 InitializeVarType

End If

End Sub

Create an event Change for the variable type combobox and add the following code. The selected

variable type is stored in the variable m_obVarType for later use.

Private Sub cbVarType_Change()

Set m_obVarType = MyWorkspace.ActiveDocument.VarTypes.Item(cbVarType.Value)

End Sub

Now the only thing left is to create the event routine for creating the variables with the defined settings.

This is done with the button Finish.

Private Sub cmdFinish_Click()

On Error GoTo Error

If (cbVarType.ListIndex = -1) Then

MsgBox 'Please select a variable type'

cbVarType.SetFocus

Exit Sub

End If

If (txtStart.Value = Or txtCount.Value = Or txtStep.Value =) Then

MsgBox 'Please enter Start-Offset', 'count of creating variables and the step'

txtStart.SetFocus

End If

If (m_obVarType Is Nothing) Then

MsgBox 'Variable type + cbVarType.Name + doesnt exist!'

Exit Sub

End If

Dim nPrvMousePtr As Integer

nPrvMousePtr = MousePointer

MousePointer = fmMousePointerHourGlass

DoEvents

Macro list

77

Dim strName As String

Dim nIndex As Long , nVarIndex As Integer

Dim nStartOff As Long , nStep As Integer

nVarIndex = 1

nStartOff = CLng (txtStart.Value)

nStep = CLng (txtStep.Value)

For nIndex = 0 To CLng (txtCount.Value - 1)

Dim obVar As Variable

strName = txtName.Value + _ + CStr (nIndex + 1)

'*** Guaranteeing uniqueness of the variable name

Dim bResult As Boolean

bResult = False

Do

Set obVar = MyWorkspace.ActiveDocument.Variables.Item(strName)

If (obVar Is Nothing) Then

bResult = True

Else

nVarIndex = nVarIndex + 1

strName = txtName.Value + _ + CStr (nVarIndex)

End If

Loop While

bResult = False

'*** Create variable

Set obVar = MyWorkspace.ActiveDocument.Variables.CreateVar (strName, m_obDriver,

tpSPSMerker, m_obVarType)

If (Not obVar Is Nothing) Then

obVar.Offset = nStartOff

nStartOff = nStartOff + nStep

End If

Next nIndex

MousePointer = nPrvMousePtr

Unload Me

Exit Sub

Error :

MousePointer = nPrvMousePtr

MsgBox Error occurs: + Err.Description + Source + Err.Source

End Sub

On finishing the wizard it is checked, if the defined settings are valid. If this is not the case, a messages is

displayed and the user is demanded to correct the entries.

If the defined settings are valid, the variables are created. The variables are named with a name and an

index. If a variables with the same name already exists in the project, the next free index is acquired. In

our code example always a variable with the channel type PLC marker is created. With each cycle the

offset of the variable is increased.

Macro list

78

4.6.5 Updating wizards

To update the wizards:

1. Select Update wizards.. in the File menu.

2. a dialog for updating available wizards is opened

3. select the desired wizards

4. start the update by clicking Start update

If a wizard or a class already exists in the workspace, a warning is displayed.

 Attention

Already existing wizards are overwritten during the update. Individual changes made at

the wizard are lost.

4.7 Frequently asked questions

In this chapter a few frequently asked questions are answered. You can find additional solutions online

in the COPA-DATA User forum (http://www.copadata.com/forums/).

4.7.1 Why does the button stay pressed?

If a button is linked e.g. to a LeftClickUp event, in the end of the precedure the LeftClickUp has to be

executed.

Public Sub LeftClickUp_Schalter(obElem As Element)

frmSchalter.Show

obElem.LeftClickUp

End Sub

http://www.copadata.com/forums/

Macro list

79

4.7.2 Macro is not performed with the first click

The solution matches the one from the question: Why does the button stay pressed (on page 78):

If a button is linked e.g. to a LeftClickUp event, in the end of the precedure the LeftClickUp has to be

executed.

Public Sub LeftClickUp_Schalter(obElem As Element)

frmSchalter.Show

obElem.LeftClickUp
End Sub

4.7.3 Macros no longer work in the Runtime?

This effect can occur, if the VBA Editor is opened in the Runtime and then Stop/Start is pressed to

stop/start VBA. In this case the objects (OnlineVariables, ScreenObjects, ...) become invalid, because

they lose the link in case of a new initialization.

4.7.4 Windows CE and VBA

In the Editor VBA can be used for wizards. It cannot be used in the Runtime. For detailed information

about the Editor refer to chapter How to create projects in CE.

4.8 Examples

Here you can find a few examples for VBA

4.8.1 MouseEvents and ActiveX Control initialization

Option Explicit

Public Sub Init_ActiveX(obElem As Element)

 'Initializing ActiveX...

Macro list

80

 thisProject.Init_MSChart_AX obElem

End Sub

Public Sub LeftClickUp_Sample1(obElem As Element)

 'Initializing Userform...

 frmSample1.InitForm obElem

 'Show Userform

 frmSample1.Show

End Sub

Public Sub LeftClickUp_Sample2(obElem As Element)

 'Initializing Userform...

 frmSample2.InitForm obElem

 'Show Userform

 frmSample2.Show

End Sub

Public Sub LeftClickUp_Sample3(obElem As Element)

 'Initializing Userform...

 frmSample3.InitForm obElem

 'Show Userform

 frmSample3.Show

End Sub

Public Sub LeftClickUp_Sample4(obElem As Element)

 Dim NewForm As New frmSample4

 'Initializing NEW Userform...

 NewForm.InitForm obElem

 'Show NEW Userform

 NewForm.Show (0)

End Sub

Macro list

81

4.8.2 Display variable information

Show variable name for clicked element:

Option Explicit

Dim obVar As Variable

'User defined Public Procedure for initializing Objects

Public Sub InitForm(obElem As Element)

 'set the variable object like the linked variable of the element

 Set obVar = obElem.ItemVariable(0)

 'write variable name into the textbox

 txtVarName.Text = obVar.Name

End Sub

Private Sub cmdExit_Click()

 'close Userform

 Unload Me

End Sub

4.8.3 Read and write variable values

Read value from variable and write it back:

Option Explicit

Dim obVar As Variable

Macro list

82

'User defined Public Procedure for initializing Objects

Public Sub InitForm(obElem As Element)

 'set the variable object like the linked variable of the element

 Set obVar = obElem.ItemVariable(0)

 'write variable name into the textbox

 txtVarName.Text = obVar.Name

End Sub

Private Sub cmdExit_Click()

 'close Userform

 Unload Me

End Sub

Private Sub cmdRead_Click()

 'read value from variable and write into textbox

 txtValue.Text = obVar.Value

End Sub

Private Sub cmdWrite_Click()

 'write text as value to variable

 obVar.Value = txtValue.Text

 'or changing text to value before writing...

 'obVar.Value = Val(txtValue.Text)

End Sub

4.8.4 Read and write variables and implement online variables

Read variable information, write values and implement online variables:

Option Explicit

Macro list

83

Dim obVar As Variable

Dim WithEvents zOnlineVariable As OnlineVariable

'User defined Public Procedure for initializing Objects

Public Sub InitForm(obElem As Element)

 'set the variable object like the linked variable of the element

 Set obVar = obElem.ItemVariable(0)

 'write variable name into the textbox

 txtVarName.Text = obVar.Name

 'create an OnlineVariable container

 Set zOnlineVariable = thisProject.OnlineVariables.CreateOnlineVariables("OLV")

 'add variables to the container (by name of the variable)

 zOnlineVariable.Add obVar.Name

End Sub

Private Sub cmdExit_Click()

 'close Userform

 Unload Me

End Sub

Private Sub cmdRead_Click()

 'read value from variable and write into textbox

 txtValue.Text = obVar.Value

End Sub

Private Sub cmdWrite_Click()

 'write text as value to variable

 obVar.Value = txtValue.Text

 'or changing text to value before writing...

 'obVar.Value = Val(txtValue.Text)

End Sub

Private Sub cmdOLV_Start_Click()

 'start the OnlineVariable - Define

 'the VariableChange Event will be executed

 zOnlineVariable.Define

End Sub

Macro list

84

Private Sub cmdOLV_Stop_Click()

 'stop the OnlineVariable - UnDefine

 'the VariableChange Event will be stopped

 zOnlineVariable.Undefine

End Sub

Private Sub zOnlineVariable_VariableChange(ByVal obVar As IVariable)

 'write actual value into textbox

 txtOLV.Text = obVar.Value

End Sub

Private Sub UserForm_Terminate()

 'the VariableChange Event will be stopped if running

 zOnlineVariable.Undefine

 'delete OnlineVariable container

 thisProject.OnlineVariables.DeleteOnlineVariables ("OLV")

End Sub

4.8.5 Use dialog multiple times

Userforms can be used multiple times.

Option Explicit

Dim obVar As Variable

Dim WithEvents zOnlineVariable As OnlineVariable

Dim strOLVName As String

Public Sub InitForm(obElem As Element)

 'set the variable object like the linked variable of the element

 Set obVar = obElem.ItemVariable(0)

Macro list

85

 'write variable name into the textbox

 txtVarName.Text = obVar.Name

 'create name for Online Container

 strOLVName = "OLV_" & obElem.Name

 'get existing online container

 Set zOnlineVariable = thisProject.OnlineVariables.Item(strOLVName)

 'check if online container exists

 If zOnlineVariable Is Nothing Then

 'create an OnlineVariable container

 Set zOnlineVariable =

thisProject.OnlineVariables.CreateOnlineVariables(strOLVName)

 'add variables to the container (by name of the variable)

 zOnlineVariable.Add obVar.Name

 End If

End Sub

Private Sub cmdExit_Click()

 Unload Me 'close Userform

End Sub

Private Sub cmdRead_Click()

 'read value from variable and write into textbox

 txtValue.Text = obVar.Value

End Sub

Private Sub cmdWrite_Click()

 'write text as value to variable

 obVar.Value = txtValue.Text

 'or changing text to value before writing...

 'obVar.Value = Val(txtValue.Text)

End Sub

Private Sub cmdOLV_Start_Click()

 'the VariableChange Event will be executed

 zOnlineVariable.Define

End Sub

Private Sub cmdOLV_Stop_Click()

Macro list

86

 'the VariableChange Event will be stopped

 zOnlineVariable.Undefine

End Sub

Private Sub zOnlineVariable_VariableChange(ByVal obVar As IVariable)

 'write actual value into textbox

 txtOLV.Text = obVar.Value

End Sub

Private Sub UserForm_Terminate()

 'the VariableChange Event will be stopped if running

 zOnlineVariable.Undefine

 'delete OnlineVariable container

 thisProject.OnlineVariables.DeleteOnlineVariables (strOLVName)

End Sub

4.8.6 Alarm – Events and ActiveX Control handling

Option Explicit

Dim WithEvents obChart As MSChart

Dim WithEvents zOLV As OnlineVariable

Dim WithEvents zAlarm As Alarm

'procedure is executed on startup of the zenon Runtime

Private Sub Project_Active()

 'init the alarm object for events

 Set zAlarm = thisProject.Alarm

End Sub

'procedure is executed when an Alarm comes

Private Sub zAlarm_AlarmComes(ByVal obItem As IAlarmItem)

 Dim strInfo As String

 'write specific information about the alarm into a StringVariable

 strInfo = obItem.Text & " - " & obItem.Name

Macro list

87

 thisProject.Variables.Item("Var_Comes").Value = strInfo

End Sub

'procedure is executed when an Alarm has gone

Private Sub zAlarm_AlarmGoes(ByVal obItem As IAlarmItem)

 Dim strInfo As String

 'write specific information about the alarm into a StringVariable

 strInfo = obItem.Text & " - " & obItem.Name

 thisProject.Variables.Item("Var_Goes").Value = strInfo

End Sub

'procedure is executed when an Alarm was acknowledged by a user

Private Sub zAlarm_AlarmAcknowledged(ByVal obItem As IAlarmItem)

 Dim strInfo As String

 'write specific information about the alarm into a StringVariable

 strInfo = obItem.Text & " - " & obItem.Name

 thisProject.Variables.Item("Var_Acknowledged").Value = strInfo

End Sub

'procedure is executed on terminating the zenon Runtime

Private Sub Project_Inactive()

 'free the alarm object

 Set zAlarm = Nothing

 'delete OnlineVariable for Chart actualization...

 thisProject.OnlineVariables.DeleteOnlineVariables "CHART"

End Sub

'procedure for MSChart ActiveX initialization...

Public Sub Init_MSChart_AX(YourAX As Element)

 Set obChart = YourAX.AktiveX

 obChart.RowCount = 3

 obChart.ColumnCount = 1

 Set zOLV = thisProject.OnlineVariables.Item("CHART")

 'does existing OnlineVariable exist?

 If zOLV Is Nothing Then

 'if not, create it...

 Set zOLV = thisProject.OnlineVariables.CreateOnlineVariables("CHART")

 zOLV.Add "Internal_UINT_001"

 zOLV.Add "Internal_UINT_002"

Macro list

88

 zOLV.Add "Internal_UINT_003"

 End If

 zOLV.Undefine 'if not stopped, refreshing not possible

 'START watching variables...

 zOLV.Define

End Sub

'event on Variable change - refresh chart...

Private Sub zOLV_VariableChange(ByVal obVar As IVariable)

 'setting values to display in chart control

 Select Case obVar.Name

 Case "Internal_UINT_001"

 obChart.Row = 1

 obChart.RowLabel = "Var1"

 obChart.Data = obVar.Value

 Case "Internal_UINT_002"

 obChart.Row = 2

 obChart.RowLabel = "Var2"

 obChart.Data = obVar.Value

 Case "Internal_UINT_003"

 obChart.Row = 3

 obChart.RowLabel = "Var3"

 obChart.Data = obVar.Value

 End Select

End Sub

'event of the Chart AX...

Private Sub obChart_DblClick()

 MsgBox "You have DoubleClicked the ActiveX!"

End Sub

Macro list

89

4.8.7 Access to alarms

In the form frmAlarm an alarm from the memory can be selected in a combobox. After the selection all

data of the alalm are written to the textboxes below (group, class, variable, ...).

We use an event independent macro to display frmAlarm, because we do not link it to an element.

Sub Alarm ()

frmAlarm.Show

End Sub

'The macro is executed with the function Execute macro.

'On opening the form it is initialized and so the following procedure is executed. This

procedure cares, that all alarms in the memory are written to the combobox in the form.

Private Sub UserForm _ Initialize ()

'fill combobox with all AlarmItems

Dim i As Integer

Dim obAlarmItems As AlarmItems

Dim obAlarm As Alarm

Set obAlarm = thisProject.Alarm

Set obAlarmItems = obAlarm.AlarmItems (*)

If obAlarmItems.Count = 0 Then

MsgBox (# Alarms = 0)

Exit Sub

End If

For i = 0 To obAlarmItems.Count - 1

cmbAlarmItems.AddItem obAlarmItems.Item (i). Name

Macro list

90

Next i

txtAktiv.Text = obAlarm.Aktiv

cmbAlarmItems.Text = cmbAlarmItems.List (0)

End Sub

'Wenn nun ein Alarm aus der Combobox ausgewählt wird reagiert das Change - Ereigniss der

Combobox.

Private Sub cmbAlarmItems _ Change ()

'put actual properties from AlarmItem in textboxes

Dim obAlarmItems As AlarmItems

Dim obAlar As Alarm

Set obAlarm = thisProject.Alarm

Set obAlarmItems = obAlarm.AlarmItems (*)

txtComputer.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Computer

txtCountreactivated.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Countreactivated

txtName.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex). Name

txtProjectname.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Projectname

txtStatus.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Status

txtStatusreactivated.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex

).Statusreactivated

txtTagname.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Tagname

txtTimecomes.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timecomes

txtTimegoes.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timegoes

txtTimequitted.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timequitted

txtTimereactivated.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timereactivated

txtUser.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).User

txtUsertext.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Usertext

txtValue.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Value

tbGroup.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).AlarmGroup

tbClass.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).AlarmClass

End Sub

Macro list

91

4.8.8 Set switch (working with process variables)

In this example we draw a pump consisting of a circle and a triangle. Define the triangle as a symbol. On

top draw a multibinary element and link it to three bit marker variables.

Additionally define, which color the triangle should get, if the values of the variables change.

First we combine the multibinary element with a macro, which opens a form frmSwitch.

In the form frmSwitch we will be able to change the values of the three bit marker variables.

 Information

Only one of the three variables may have the value 1. (i.e. if one variable is set to 1, the

other two have to be set to 0)

To be able to use this macro several times in project with different variables, you only may link bit

marker variables ti the multibinary element, which contail in their names, which status of the pump they

control.

for example:

Variable_Auto

Variable_Hand

Variable_Revi

 Information

The suffixes _Auto, _Hand and _Revi are fixly defined in the source code of the example.

Macro list

92

With this five characters suffix of the variable names it is defined, which variable is set to 1 and which is

set to 0 on clicking a toggle button.

In the macro LeftClickUp_Switch a sub program FindVariable is called in the form frmSwitch, which gets

the clicked element obElem.

Public Sub LeftClickUp_Schalter (obElem As Element)

frmSchalter.FindVariable obElem

position (pixel to points = (pixel * 0.75))

frmSchalter.Top = obElem.Bottom * 0.75

frmSchalter.Left = obElem.Left * 0.75

frmSchalter.Show

obElem.LeftClickUp

End Sub

Module global variable declaration:

Dim cmdLast As ToggleSchaltfläche

Dim strHand As String

Dim strAuto As String

Dim strRevi As String

In the sub program FindVariable all variables linked to the passed element are checked.

Depending on the suffix (_Auto, _Hand or _Revi) the variable names are assigned to the string variables

declared above.

Additionally the status of the variables is determined and depending on the value (1 or 0) the according

toggle button is pressed or not.

On opening the form frmSwitch the name of the currently pressed toggle button is written to a string

variable. For the case, that the user decides to cancel his action, the original values are reset.

Public Sub FindVariable (obElem As Element)

Dim i As Integer

Dim obVariable As Variable

For i = 0 To obElem . CountVariable - 1

Select Case Right $(obElem . ItemVariable (i). Name , 5)

Case _ Auto

strAuto = obElem . ItemVariable (i). Name

Case _ Hand

strHand = obElem . ItemVariable (i). Name

Case _ Revi

strRevi = obElem . ItemVariable (i). Name

Macro list

93

End Select

Next i

Set obVariable = thisProject . Variables . Item (strHand)

If obVariable . Value = 1 Then

tbHand . Value = True

Set cmdLast = tbHand

End If

Set obVariable = thisProject . Variables . Item (strAuto)

If obVariable . Value = 1 Then

tbAuto . Value = True

Set cmdLast = tbAuto

End If

Set obVariable = thisProject . Variables . Item (strRevi)

If obVariable . Value = 1 Then

tbRev . Value = True

Set cmdLast = tbRev

End If

If tbHand . Value = False And tbAuto . Value = False And tbRev . Value = False Then

tbOff . Value = True

Set cmdLast = tbOff

End If

End Sub

The self-created function VarExists only checks, whether the linked variables really exist. If this is not the

case, an error message is displayed. Variable doesn't exist.

Function VarExists ()

Dim obVariable As Variable

Set obVariable = thisProject . Variables . Item (strHand)

If obVariable Is Nothing Then

MsgBox (Variable doesnt extist)

VarExitsts = False

Exit Function

End If

Set obVariable = thisProject . Variables . Item (strAuto)

If obVariable Is Nothing Then

MsgBox (Variable doesnt extist)

VarExitsts = False

Exit Function

End If

VSTA

94

Set obVariable = thisProject . Variables . Item (strRev)

If obVariable Is Nothing Then

MsgBox (Variable doesnt extist)

VarExitsts = False

Exit Function

End If

VarExists = True

End Function

If the user clicks Cancel, the value change is undone and the original status is reset.

Private Sub cmdExit _ Click ()

cmdLast.Value = True

Unload Me

End Sub

Private Sub cmdOk _ Click ()

Unload Me

End Sub

If one toggle button is pressed, no other toggle button may be pressed.

Private Sub tbAuto_Change ()

If tbAuto . Value = False And tbHand.Value = False And tbRev . Value = False Then

tbOff . Value = True

End Sub

In the click event of every toggle button it is checked, whether it is pressed and whether the variable

exists. If both conditions are true, the values are sent to the linked variables.

5. VSTA

The functionality of zenon Runtime and the Editor can be independently expanded with .NET programming

using Visual Studio Tools for Applications - VSTA.

VSTA is also available, with limited functionality for zenon Web Server and zenon Web Client.

VSTA

95

 Information

If VBA macros are changed in the Editor,

 the Runtime files are compiled and transferred to the Runtime

 the Runtime is reloaded

 VSTA elements are also reloaded even if no changes were made in VSTA

VSTA provides separate development environments for workspace and project. You can only use one of

them at a time. At the start every other VSTA development environment which is open will be close.

To open the VSTA Editor for the workspace:

1. press the short cut

2. the code for the workspace and all loaded projects is displayed

To open the VSTA Editor for the currently loaded project:

1. navigate to the Programming interfaces node

2. right click on VSTA

3. select Open VSTA Editor... in the context menu

the Editor is opened for the currently loaded project

5.1 Basics

VSTA is a Microsoft development environment that is based on .NET technology. It is necessary to have

basic knowledge of object-orientated programming, .NET and C#/Visual Basic.NET to understand it.

5.1.1 Setting up the VSTA environment

Support for VSTA is already activated as standard in zenon. When deactivating VBA support, the VSTA

environment is also not available any more.

VSTA

96

The VSTA environment can be manually activated or deactivated with the following entry in C:\Users\All

Users\COPA-DATA\System\zenon6.ini :

Activate VSTA Deactivate VSTA

[VSTA]

ON=1

[VSTA]

ON=0

Support for VBA is activated or deactivated as follows:

Activate VBA Deactivate VBA

[VBA]

EIN=1

[VBA]

EIN=0

After this, the development environment for VSTA in zenon is available.

 Information

VSTA allows the development of projects in the programming languages C# and Visual

Basic.NET. C# is envisaged as the standard language for VSTA projects in the Editor. The

language can be changed to Visual Basic.NET with the following entry:

[VSTA]

CSHARP=0

5.1.2 Access to the object model in zenon

The zenon that is also used in VBA can be accessed in VSTA. The object model offers the same

functionality in both development environments.

 Attention

Some changes to the object model have been made due to limitations in naming VSTA

objects. You can find these in the table below

VSTA

97

Old property New property

IDriver.Name IDriver.Identification

IDriver.Driver IDriver.Name

Old event New event

IApplication.Close IApplication.OnClose

IZenWorkspace.Startup IZenWorkspace.OnStartup

IZenWorkspace.Exit IZenWorkspace.OnExit

Access is VSTA is enabled via the this object and the replaces the MyWorkspace object in VBA. The

following methods and objects are identical. In the following method, a template with the name

"TemplateName" is created in zenon.

 public void Macro1()

 {

 this.ActiveDocument.Templates().Create("TemplateName", true);

 }

 Information

In contrast to VBA, capitalization and brackets after function names are important in

VSTA.

To access the methods in zenon, the project must be saved and compiled using via the following steps:

1. Click on File -> Save MyWorkspace.cs to save the project.

2. Click on File -> Build WorkspaceAddin to compile the project.

After this, the method is available as a macro in the VBA macro toolbar in the zenon editor. If the macro

assignment dialog does not list all macros from MyWorkspace, the function 'Reload list of VBA macros'

has to be executed from the toolbar.

 Information

VSTA macros with parameters, e.g. Public void MacroWithParam(string

mString), are not supported and also not made available in the macro tool bar.

VSTA

98

5.1.3 Functions in zenon

For VSTA, new functions were created in zenon. These are in the "VSTA" function group.

At the same time as existing VBA functions, similar functions were implemented for VSTA:

Function name Description

Open VSTA editor opens the VSTA editor in Runtime

Execute VSTA macro A VSTA macro can be selected in the editor, which is

started when executing the function in Runtime.

VSTA macros with parameters, e.g. Public

void MacroWithParam(string mString), are not

supported. They are neither offered at the engineering in

the Editor nor at the start of the function in the Runtime.

Show VSTA macro dialog A dialog is shown in Runtime, in which existing VSTA

macros are shown and can be selected and executed

VSTA

99

5.1.4 Debugging VSTA add-in

It is possible to debug add-ins you have written yourself with the VSTA Editor. In doing so, note that

project add ins can only be debugged in zenon Runtime and workspace add-ins can only be debugged in

zenon Editor.

A debug session is started via the Debug - Start Debugging menu. You can place breakpoints in the same

way as the VBA editor, by left clicking in the gray breakpoint toolbar at the left margin next to the

respective cell.

 Information

When debugging Runtime add-ins consider:

The Runtime files changed in zenon must be newly created before debugging.

5.1.5 New events in VSTA

Because an add-in is terminated when compiling amended code, starting a debug session or ending a

debug session, new events were implemented in VSTA. These enable, for example, an object reference

to be evaluated and approved and existing data to be saved.

Two events exist for each termination. The first event is started shortly before termination, the second

after the start of a new add-in session.

VSTA

100

Event Description

OnPreVSTADebugStart Is triggered shortly before a debug session is started.

When starting, an active add-in is removed, references

must be approved and existing data must be saved if

necessary.

OnVSTADebugStart Is triggered shortly after a debug session is started.

OnPreVSTADebugStop Is triggered shortly before a debug session is stopped.

When stopping a debug session, an active add-in is

removed, references must be approved and existing data

must be saved if necessary.

OnVSTADebugStopped Is triggered shortly after a debug session is stopped.

OnPreVSTAUpdate Is triggered before the add-in is removed if a new version

of the add-in was successfully created.

OnPostVSTAUpdate Is triggered when a new version of the add-in is loaded.

5.1.6 Creating a backup of VSTA projects

VSTA projects in Runtime are automatically zipped when creating the Runtime file and included in

workspace saves.

VSTA projects in the editor must be saved manually however. The VSTA editor projects are in the folder

C:/ProgramData/COPA-DATA/*version*/VSTAWorkspace/ .

5.2 Creating a VSTA project

Similar to VBA, there is the possibility in VSTA to create projects for both the editor and Runtime. In

principle, projects in the editor are implemented in the C# programming language. For Runtime, both C#

and Visual Basic.NET are available.

VSTA

101

 Information

Only one project can be displayed at a time in the VSTA editor. In addition, only one

instance of the VSTA editors can be active. When starting the VSTA editor, any instance

that may already be running is closed.

5.2.1 VSTA projects in the Editor

When creating a project for the zenon editor, a VSTA add-in for the workspace is loaded. To edit the

add-in, the VSTA editor must be opened via File - Open VSTA editor.... The user interface of the VSTA

editor is identical to Microsoft's Visual Studio development environment.

 Information

VSTA editor help can be accessed via the Help / Contents menu. This help gives an

overview of the editor's functions, the features of the .NET framework and programming

in Visual Basic.NET and C#.

The VSTA add-in basically consists of the MyWorkspace class. This class can now be expanded with your

own methods. The class accommodates the following two methods by default:

Function Description

MyWorkspace_Startup Is executed automatically when starting zenon, after a

build has been created and when a debug session is

started.

MyWorkspace_Shutdown Is executed automatically when starting zenon, after a

build has been created and when a debug session is

started.

 Attention

The method names may only start with Macro (for example Macro1, MacroVSTA) may

not contain parameters and must be defined as Public . In addition, the class names

and other methods and events created by VSTA may not be changed.

To access the methods in zenon, the project must be saved and compiled using via the following steps:

VSTA

102

1. Click on File -> Save MyWorkspace.cs to save the project.

2. Click on File -> Build WorkspaceAddin to compile the project.

After this, the method is available as a macro in the VBA macro toolbar in the zenon editor. If the macro

assignment dialog does not list all macros from MyWorkspace, the function 'Reload list of VBA macros'

has to be executed from the toolbar.

5.2.2 VSTA projects in Runtime

To create a VSTA project for Runtime, the VSTA environment must be started. Proceed in the following

way:

1. Open the program interfaces item in the project manager.

2. Open the VSTA context menu.

3. Click on Open VSTA editor...

Select the desired language in the selection dialog that now appears. After this, a project is created in

the desired programming language.

 Information

The desired language cannot be changed later; this dialog is therefore only shown the

first time.

In this project, a class named ThisProject is created by zenon, which accommodates the following

two methods:

Function Description

ThisProject_Startup Is executed automatically when Runtime is started

ThisProject_Shutdown Is executed automatically when Runtime is ended

The class can now be expanded with your own methods.

VSTA

103

 Attention

The method names may only start with Macro (for example Macro1, MacroVSTA) may

not contain parameters and must be defined as Public . In addition, the class names

and other methods and events created by VSTA may not be changed.

There is access to all Runtime functionalities via the zenon object model. Editor-specific functions

cannot be used, as in VBA.

zenon Runtime is automatically started when the debugger is started. Further information can be found

in the chapter on debugging a VSTA add-in (on page 99).

 Information

VSTA editor help can be accessed via the Help / Contents menu. This help gives an

overview of the editor's functions, the features of the .NET framework and programming

in Visual Basic.NET and C#.

5.2.3 Developing wizards in VSTA

The VSTA environment, like VBA (on page 69), offers the possibility to develop your own wizards.

To be able to access a form in the zenon object model, a reference to this must be copied to the form.

To do this, a method is created in the MyWorkspace class. In the following example example, a form is

instanced with the name wizard and the method ZenonInstance with a reference to the zenon

object model is called as a parameter. The wizard form is shown by selecting ShowDialog().

 public void Macro1()

 {

 Form1 Wizard = new Form1();

 Wizard.ZenonInstance(this.Application);

 Wizard.ShowDialog();

 }

A member variable must be created in the form code, which recognizes the zenon object model.

 public zenOn.IApplication m_Zenon=null;

Lastly, the ZenonInstance method is created. This methods takes the object model reference and

places it in the m_Zenon object.

VSTA

104

 public void ZenonInstance(zenOn.IApplication app)

 {

 m_Zenon = app;

 }

Now, your own classes and methods can be developed in the form, which make use of the object model.

All methods, objects and attributes are available via the m_Zenon object.

5.3 Examples

Here you find some examples of VSTA being used, both in Runtime and in the editor.

5.3.1 Creating variables in the zenon Editor

In this example, a text file is opened and the contents of this are used to create variables in the zenon

editor. The text file contains any desired number of lines. Each line includes the name and data type of a

variable; these are separated by a comma (example: Variable1,BOOL).

The Macro1 method first looks for the internal driver in the zenon editor. After this, the user is shown a

file selection dialog in which he must select the text file. The method then reads the text file and creates

the variables. The GetDataType method is then required to determine and assign the attendant data

type when creating the variables.

using System;

using System.Windows.Forms;

using System.IO;

namespace WorkspaceAddin

{

 [System.AddIn.AddIn("MyWorkspace", Version = "1.0", Publisher = "", Description = "")]

 public partial class MyWorkspace

 {

 private void MyWorkspace_Startup(object sender, EventArgs e)

 {

 }

 private void MyWorkspace_Shutdown(object sender, EventArgs e)

 {

 }

 public zenOn.IVarType GetDataType(zenOn.IVarType vType, string strVType)

VSTA

105

 {

 //gets the corresponding vartypes for bool, int, real and strings

 switch (strVType)

 {

 case "BOOL":

 vType = this.ActiveDocument.VarTypes().Item("BOOL");

 break;

 case "INT":

 vType = this.ActiveDocument.VarTypes().Item("INT");

 break;

 case "REAL":

 vType = this.ActiveDocument.VarTypes().Item("REAL");

 break;

 case "STRING":

 vType = this.ActiveDocument.VarTypes().Item("STRING");

 break;

 default:

 vType = this.ActiveDocument.VarTypes().Item("INT");

 break;

 }

 return vType;

 }

 public void Macro1()

 {

 //create objects that will take the intern driver and the variable type

 zenOn.IDriver zInternDriver = null;

 zenOn.IVarType vType = null;

 //search for the Intern driver and throw exception if no driver was found

 try

 {

 for (int nDriverCount = 0; nDriverCount <

this.ActiveDocument.Drivers().Count; nDriverCount++)

 {

 if (this.ActiveDocument.Drivers().Item(nDriverCount).Name ==

"Intern")

 {

 zInternDriver =

this.ActiveDocument.Drivers().Item(nDriverCount);

VSTA

106

 }

 }

 }

 catch (Exception xDrv)

 {

 MessageBox.Show("Unable to find zenon 'Intern' driver. Error: " +

xDrv.Message);

 throw;

 }

 this.ActiveDocument.Variables().DoAutoSave(false);

 try

 {

 OpenFileDialog VarFileSelect = new OpenFileDialog();

 String[] strVarLine = new String[2];

 //show file dialog

 if (VarFileSelect.ShowDialog() == DialogResult.OK)

 {

 string strLine = string.Empty;

 //open new stream reader with selected file

 StreamReader ImportStream = new StreamReader(VarFileSelect.FileName,

System.Text.Encoding.Default);

 //read in line by line, split the lines when a ',' occurs and create

variables

 while ((strLine = ImportStream.ReadLine()) != null)

 {

 strVarLine = strLine.Split(new Char[] { ',' });

 this.ActiveDocument.Variables().CreateVar(strVarLine[0],

zInternDriver, zenOn.tpKanaltypes.tpSystemVariable, GetDataType(vType,strVarLine[1]));

 }

 ImportStream.Close();

 }

 }

 catch (Exception xFileRd)

 {

 MessageBox.Show("An error occured while opening the file: " +

xFileRd.Message);

 throw;

VSTA

107

 }

 this.ActiveDocument.Variables().DoAutoSave(true);

 }

 #region VSTA generated code

 private void InternalStartup()

 {

 this.Startup += new System.EventHandler(MyWorkspace_Startup);

 this.Shutdown += new System.EventHandler(MyWorkspace_Shutdown);

 }

 #endregion

 }

}

5.3.2 Writing project information in the zenon output window

In this example, it is demonstrated how the output window of the zenon editors can be accessed using

VSTA. The method named Macro1 reads out the process screens created in the project for this, identifies

the respective template and identifies all drivers available as well as their labels.

using System;

namespace WorkspaceAddin

{

 [System.AddIn.AddIn("MyWorkspace", Version = "1.0", Publisher = "", Description = "")]

 public partial class MyWorkspace

 {

 private void MyWorkspace_Startup(object sender, EventArgs e)

 {

 }

 private void MyWorkspace_Shutdown(object sender, EventArgs e)

 {

 }

 public void Macro1()

 {

 string strPicName = string.Empty;

 string strCorTemp = string.Empty;

 string strDriverName = string.Empty;

 string strDrvDesc = string.Empty;

 //print start string into output window

VSTA

108

 this.Application.DebugPrint(" --------------START--------------",

zenOn.tpDebugPrintStyle.tpMsg);

 //go through all pictures and print name and used template into output window

 for (int i = 0; i < this.ActiveDocument.DynPictures().Count; i++)

 {

 strPicName = this.ActiveDocument.DynPictures().Item(i).Name;

 strCorTemp =

this.ActiveDocument.DynPictures().Item(i).get_DynProperties("Template").ToString();

 this.Application.DebugPrint(" Picture '" + strPicName + "' uses Template

'" + strCorTemp + "'",zenOn.tpDebugPrintStyle.tpMsg);

 }

 //print separator string into output window

 this.Application.DebugPrint("

------------------------------",zenOn.tpDebugPrintStyle.tpMsg);

 //go through all drivers and print name and description into output window

 for (int i = 0; i < this.ActiveDocument.Drivers().Count; i++)

 {

 strDriverName = this.ActiveDocument.Drivers().Item(i).Name;

 strDrvDesc = this.ActiveDocument.Drivers().Item(i).Identification;

 this.Application.DebugPrint(" Driver '" + strDriverName + "' has

description '" + strDrvDesc + "'", zenOn.tpDebugPrintStyle.tpMsg);

 }

 //print end string into output window

 this.Application.DebugPrint(" ---------------END---------------",

zenOn.tpDebugPrintStyle.tpMsg);

 }

 #region VSTA generated code

 private void InternalStartup()

 {

 this.Startup += new System.EventHandler(MyWorkspace_Startup);

 this.Shutdown += new System.EventHandler(MyWorkspace_Shutdown);

 }

 #endregion

 }

}

5.3.3 Reading variables from zenon via regular expressions

In the following example, zenon variables are read out in a Runtime project and saved in a local text file.

VSTA

109

Using regular expressions, variables are only read if their names start with 3 figures and a subsequent

underscore (for example "001_var" or "234_xyz"). The user is then requested to select a folder. A text

file with a time-dependent file name is created in this folder. In this file, name, labeling and current

value of all applicable variables is saved separately with a semi colon.

 Information

It is possible that manual references may have to be added to execute the example in

zenon Runtime. To do this, open the context menu in project explorer and click on Add

Reference... The references required in this example are as follows:

 Microsoft.VisualStudio.Tools.Applications.Runtime.v9.0

 System

 System.AddIn

 System.Data

 System.Windows.Forms

 System.Xml

 zenonVSTAProxy6500

using System;

using System.Text.RegularExpressions;

using System.IO;

using System.Windows.Forms;

namespace ProjectAddin

{

 [System.AddIn.AddIn("ThisProject", Version = "1.0", Publisher = "", Description = "")]

 public partial class ThisProject

 {

 private void ThisProject_Startup(object sender, EventArgs e)

 {

 }

 private void ThisProject_Shutdown(object sender, EventArgs e)

 {

 }

 public void Macro1()

VSTA

110

 {

 string sFilename = string.Empty;

 string strName = string.Empty;

 string strDescription = string.Empty;

 string strValue = string.Empty;

 //define regular expression pattern

 Regex rexMatch = new Regex("^([0-9]){3}[_]");

 try

 {

 sFilename = FolderSelection("Select place to store the variable

information");

 //create stream writer to the .txt file

 StreamWriter MatchedVariables = new StreamWriter(sFilename, true);

 //run through all variables in zenon

 for (int i = 0; i < this.Variables().Count; i++)

 {

 //if name of the variable matches the pattern, get name, tag name and

current value

 if (rexMatch.IsMatch(this.Variables().Item(i).Name))

 {

 strName = this.Variables().Item(i).Name;

 strDescription = this.Variables().Item(i).Tagname;

 strValue = this.Variables().Item(i).get_Value(0).ToString();

 //write information to the .txt file

 MatchedVariables.WriteLine(strName + ";" + strDescription + ";"

+ strValue);

 }

 }

 //close stream

 MatchedVariables.Close();

 }

 catch (Exception xFS)

 {

 MessageBox.Show ("An error occurred -> " + xFS.Message);

 throw;

 }

 }

VSTA

111

 private string FolderSelection(String strCaption)

 {

 string strSelectedPath = string.Empty;

 //create a dialog for selecting the output folder

 FolderBrowserDialog FolderSelectionDialog = new FolderBrowserDialog();

 FolderSelectionDialog.Description = strCaption;

 try

 {

 if (FolderSelectionDialog.ShowDialog() == DialogResult.OK)

 {

 //if selection was valid, get the current date, put it to file date

format

 //then create a txt file with the name "zenonVar" and the corresponding

date

 DateTime currentTime = DateTime.Now;

 strSelectedPath = FolderSelectionDialog.SelectedPath + "\\zenonVar"

+ currentTime.ToFileTime() + ".txt";

 }

 }

 catch (Exception xFD)

 {

 MessageBox.Show("An error occurred: "+xFD.Message);

 throw;

 }

 return strSelectedPath;

 }

 #region VSTA generated code

 private void InternalStartup()

 {

 this.Startup += new System.EventHandler(ThisProject_Startup);

 this.Shutdown += new System.EventHandler(ThisProject_Shutdown);

 }

 #endregion

 }

}

	1. Welcome to COPA-DATA help
	2. Programming interfaces
	3. Process Control Engine (PCE)
	3.1 The PCE Editor
	3.1.1 The Taskmanager
	3.1.2 The editing area
	3.1.3 The output window
	3.1.4 The menus of the PCE Editor
	Menu File
	Menu Edit
	Menu Run
	Menu View
	Menu Window
	Menu Help

	3.1.5 The icon bar of the PCE Editor

	3.2 Course of actions
	3.2.1 Creating a task
	Properties of the task
	Variables of the task

	3.2.2 Entering code
	The collection Tasks
	The object Task

	3.2.3 Function Show PCE
	3.2.4 Executing tasks
	Executing tasks with system start
	Executing tasks event triggered
	On a PC
	On a CE terminal

	3.3 VB Script - Introduction
	3.3.1 Data types
	Variant
	Variant Subtypes

	3.3.2 Variables
	Declaring Variables
	Limitations for names
	Scope and Lifetime of Variables
	Assigning Values to Variables
	Scalar Variables and Array Variables

	3.3.3 Constants
	3.3.4 Operators
	Operator Precedence
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	3.3.5 Conditional Statements
	Making Decisions Using If...Then...Else
	Running Statements if a Condition is True
	Running Certain Statements if a Condition is True and Running Others if a Condition is False
	Deciding Between Several Alternatives

	Making Decisions with Select Case

	3.3.6 Looping Through Code
	Using Do Loops
	Repeating Statements While a Condition is True
	Repeating a Statement Until a Condition Becomes True
	Exiting a Do...Loop Statement from Inside the Loop

	Using While...Wend
	Using For...Next
	Using For Each...Next

	3.3.7 Types of procedures
	Sub Procedures
	Function Procedures
	Getting data into and out of procedures
	Using Sub and Function Procedures in Code

	3.3.8 Coding Conventions
	Constant Naming Conventions
	Variable Naming Conventions
	Variable Scope
	Variable Scope Prefixes

	Descriptive Variable and Procedure Names
	Object Naming Conventions
	Code Commenting Conventions
	Code formating

	4. Macro list
	4.1 VBA toolbar and context menu detail view
	4.2 VBA on 64-bit systems
	4.3 Basics
	4.3.1 Object PROPERTIES
	4.3.2 Object METHODS
	4.3.3 Object EVENTS
	4.3.4 VBA object structure in zenon
	4.3.5 How to use VBA macros
	Inserting existing macros

	4.3.6 How to insert an ActiveX element in zenon?
	4.3.7 Access from an external program
	Visual Basic 6

	4.3.8 Functionality of online variables
	Functionality of the event:
	Define and create container
	Put variables in the container
	Create event
	Activate event
	Switching off the event
	Remove on closing

	4.3.9 List of status bits
	4.3.10 Lasso for selecting dynamic elements in the Runtime

	4.4 Macros in the Editor
	4.4.1 Tool bar macro list
	4.4.2 Linking macros

	4.5 Functions in zenon
	4.5.1 Execute VBA Macro
	Macro selection

	4.6 Developing wizard in VBA
	4.6.1 Using a wizard
	4.6.2 Structure of a wizard
	4.6.3 Integration in VBA
	4.6.4 Developing a wizard
	4.6.5 Updating wizards

	4.7 Frequently asked questions
	4.7.1 Why does the button stay pressed?
	4.7.2 Macro is not performed with the first click
	4.7.3 Macros no longer work in the Runtime?
	4.7.4 Windows CE and VBA

	4.8 Examples
	4.8.1 MouseEvents and ActiveX Control initialization
	4.8.2 Display variable information
	4.8.3 Read and write variable values
	4.8.4 Read and write variables and implement online variables
	4.8.5 Use dialog multiple times
	4.8.6 Alarm – Events and ActiveX Control handling
	4.8.7 Access to alarms
	4.8.8 Set switch (working with process variables)

	5. VSTA
	5.1 Basics
	5.1.1 Setting up the VSTA environment
	5.1.2 Access to the object model in zenon
	5.1.3 Functions in zenon
	5.1.4 Debugging VSTA add-in
	5.1.5 New events in VSTA
	5.1.6 Creating a backup of VSTA projects

	5.2 Creating a VSTA project
	5.2.1 VSTA projects in the Editor
	5.2.2 VSTA projects in Runtime
	5.2.3 Developing wizards in VSTA

	5.3 Examples
	5.3.1 Creating variables in the zenon Editor
	5.3.2 Writing project information in the zenon output window
	5.3.3 Reading variables from zenon via regular expressions

