

zenon manual
Variables

v.7.11

©2014 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely

with the written permission of the company COPA-DATA. The technical data contained herein has been

provided solely for informational purposes and is not legally binding. Subject to change, technical or

otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 7

2. Variables ... 7

3. Variables detail view of toolbar and context menu ... 9

4. Naming of objects .. 12

5. Activating variables in zenon .. 13

6. Data types ... 14

6.1 Data types detail view toolbar and context menu .. 19

6.2 Types of data types ... 20

6.2.1 Pre-configured simple data types... 21

6.2.2 User-defined simple data types ... 21

6.2.3 Structure data types ... 26

7. Drivers .. 31

7.1 Driver detail view toolbar and context menu ... 34

7.2 Driver object type ... 34

7.3 Creating a driver .. 35

7.4 Configuration of a driver ... 37

7.5 Driver simulation ... 40

7.5.1 Simulation static ... 41

7.5.2 Simulation - counting ... 41

7.5.3 Simulation - programmed .. 42

7.6 Change driver .. 68

7.7 Delete Driver ... 69

7.8 Driver variables ... 69

7.9 Driver documentations ... 75

8. Create, modify and use variables ... 76

8.1 Simple variables .. 78

8.1.1 Creating a simple variable .. 78

4

8.1.2 Changing the properties of a simple variable ... 80

8.1.3 Deleting simple variables ... 84

8.2 Arrays .. 84

8.2.1 Create array variable .. 86

8.2.2 Addressing .. 87

8.2.3 Changing the properties of an array... 92

8.2.4 De/activating array elements ... 94

8.3 Structure variables .. 95

8.3.1 Changing structure variables .. 97

8.3.2 Changing structure variables .. 106

8.3.3 Deleting structure variables ... 109

8.4 Project overlapping variables .. 109

9. Inheritance concept ... 110

9.1 Inheritance in zenon ... 111

9.1.1 Inheriting properties with structure datatypes and structure variables 112

9.2 Inheriting properties of a datatype with simple variables .. 112

9.2.1 Overwriting properties ... 113

9.2.2 Restoring the properties of a datatype .. 113

10. Value calculation ... 114

10.1 Hysteresis .. 114

11. Limits .. 115

11.1 Defining limits in the Editor .. 116

11.1.1 Delay ... 117

11.1.2 Threshold .. 119

11.1.3 Deduce limits from datatypes .. 120

11.1.4 Multiple selection ... 120

11.1.5 Deleting limits ... 121

11.1.6 Overlapping limits .. 121

11.2 Limits in the Runtime .. 121

11.2.1 End of a limit violation .. 122

11.3 Dynamic Limit Text .. 123

11.3.1 Dynamic key words in limit texts .. 126

12. Reaction matrices .. 127

5

12.1 Creating a reaction matrix .. 128

12.2 Editing a reaction matrix ... 129

12.3 Types of reaction matrices .. 131

12.3.1 Binary.. 132

12.3.2 Numerical ... 137

12.3.3 String .. 141

12.3.4 Multi-reaction matrices in general ... 145

12.3.5 Test ... 159

12.4 Dynamic limit texts in reaction matrices... 159

12.5 Status for value change and delay time .. 160

12.6 List of status bits ... 161

13. Functions for variables ... 163

13.1 Export data .. 164

13.2 Read a dBase-file ... 166

13.3 Print current values ... 167

13.4 HD administration active .. 171

13.5 HD administration inactive ... 171

13.6 Trend-values on/off .. 171

13.7 Setting values .. 172

13.7.1 for numeric variables .. 173

13.7.2 for binary variables ... 175

13.7.3 for string variables .. 178

13.7.4 Check write set value ... 180

13.8 Driver commands .. 181

13.9 Write time to variable ... 183

13.10 Read time from variable ... 183

14. Screen Variable diagnosis .. 184

14.1 Create screen Variable diagnosis .. 184

14.2 Screen switch - Variable diagnosis .. 188

15. measuring unit conversion ... 190

15.1 Units detail view of toolbar and context menu .. 191

15.2 Engineer measuring units ... 192

15.3 Allocate a base unit to a variable .. 194

6

15.4 Function measuring unit conversion ... 195

15.5 Runtime ... 196

Welcome to COPA-DATA help

7

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com

(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact

via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com (mailto:sales@copadata.com).

2. Variables

Variables, also called process variables or data points, are the interface between the data source (PLC,

field bus, etc.) and zenon. They represent certain measured values or states of the hardware, including

properties such as scaling, limit values, etc.

The variables are defined in the central variable list of a project and are available here from everywhere

(functions, screens, archives, etc.). Integration projects can directly access the variables of lower level

projects.

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

Variables

8

A variable is always based (on page 76) on two components: data type (on page 14) and driver object

type (cti.chm::/28685.htm). These two components are independent and thus can be configured

independently.

 License information

Part of the standard license of the Editor and Runtime.

PROJECT MANAGER CONTEXT MENU

Menu item Action

New variable... Opens the wizard for creating a new variable.

Export XML all... Exports all entries as an XML file.

Import XML... Imports entries from an XML file.

Extended import/export Opens the menu for importing and exporting S7 projects, dBase and

CSV.

Display unused variables Creates a project analysis for unused variables in the current project

and displays it as a result list in its own window.

Open in new window. Opens a new window in order to view and edit the variable. (Default:

at the bottom of the Editor.)

Editor profile Opens the drop-down list with predefined editor profiles.

Help Opens online help.

Each variable can have its own attributes. A total of 64 statuses/attributes have been defined.

cti.chm::/28685.htm

Variables detail view of toolbar and context menu

9

 Information

Screen elements that are linked to a variable that have neither a value nor a status are

switched to invisible in Runtime.

3. Variables detail view of toolbar and context menu

Variables detail view of toolbar and context menu

10

No. Symbol Action

01 New variable Opens the dialog for creating a new variable.

02 Copy Copies the selected entries to the clipboard.

03 Paste Pastes the contents of the clipboard. If an entry with the same name

already exists, the content is pasted as "Copy of...".

04 Delete Deletes selected entries after a confirmation from list.

05 Create standard

function

Opens the wizard for selecting the variables and the set values and

creates a matching function. The action is documented in the output

window.

06 Edit selected cell Opens the selected cell for editing. The binocular symbol in the

header shows which cell has been selected in a highlighted line. Only

cells that can be edited can be selected.

07 Replace text in selected

column

Opens the dialog for searching and replacing texts.

08 Replace text in limits Opens the dialog for the selection of the Dynamic properties Once

the property has been selected, the search and replace dialog is

opened by clicking on OK.

09 Properties Opens the Properties window for the selected entry.

10 Expand all Drop-down list in order to expand or to collapse all nodes or the

selected nodes.

11 Activate Activates the selected elements of a structure variable.

12 Deactivate Deactivates the selected elements of a structure variable.

13 Activate all Activates all inactive elements of a structure variable.

14 Export selected XML Exports selected entries as an XML file.

15 Import XML Imports XML files.

16 Import S7 project Imports a Simatic S7 project.

17 Activate Activates or deactivates the extended filter settings.

18 Jump back to starting

element

If you entered the list via function linked elements, the symbol

leads back to the start element.

Only available in the context menu when all linked elements are

opened.

19 Remove filter Removes all filter settings.

Variables detail view of toolbar and context menu

11

20 Help Opens online help.

Menu item Action

Variable new Opens the dialog for creating a new variable.

Copy Copies the selected entries to the clipboard.

Paste Pastes the contents of the clipboard. If an entry with the same name

already exists, the content is pasted as "Copy of...".

Delete Deletes selected entries after a confirmation from list.

Create standard function Opens the wizard for selecting the variables and the set values and

creates a matching function. The action is documented in the output

window.

Edit selected cell Opens the selected cell for editing. The binocular symbol in the header

shows which cell has been selected in a highlighted line. Only cells that

can be edited can be selected.

Replace text in selected

column
Opens the dialog for searching and replacing texts.

Replace text in limits Opens the dialog for the selection of the Dynamic properties Once

the property has been selected, the search and replace dialog is

opened by clicking on OK.

Properties Opens the Properties window for the selected entry.

Expand/reduce nodes Opens a menu with which you can expand or collapse the nodes.

Activate all Activates all inactive elements of a structure variable.

Activate Activates the selected elements of a structure variable.

Deactivate Deactivates the selected elements of a structure variable.

Export selected XML Exports all selected entries as an XML file.

Import XML Imports entries from an XML file.

Extended import/export Opens the menu for importing and exporting S7 projects, dBase and

CSV.

Variable use Creates a project analysis for selected variables in the current project

and displays it as a result list in its own window.

Naming of objects

12

Extended filter Opens a menu for activating or deactivating filters or for removing all

filter settings.

Linked elements Opens the submenu with linked elements.

Help Opens online help.

4. Naming of objects

The name of an object must be unique in zenon.

 Information

Note the following when assigning names:

 the characters # and @ are not permitted in variable names.

 The maximum length for Name, Identification and String archive

filler value is 128 characters each.

 The maximum length for Resources label is 255 characters.

The variable names are case-sensitive. You can create variables with the same name which only differ

from each other by writing a single letter in upper or in lower case. For example the variables test and

Test are two different variables.

 Identical names, which only differ from each other due to capitalization, can be a problem

with drivers or straton with:

1. Driver configuration:

If the driver name only differs in terms of capitalization, both drivers use the same allocation

file.

2. straton:

straton does not differentiate between upper and lower case. Two variables which differ in

zenon only by case sensitivity cannot be used in straton. This concerns variables:

 for a straton project with straton driver, IEC870 driver and IEC850 driver

 which are set to externally visible in zenon

Activating variables in zenon

13

 which are assigned to a driver for which a straton project for Simulation - programmed

has been created

 Information

Recommendation: Use unique object names which differ from each other not only by

case sensitivity.

5. Activating variables in zenon

Variables are activated in zenon when screens to which they are linked are opened. They are read from

this point onwards. When closing a variable, the linked variables are deactivated again and reading is

ended.

 Information

The switching time of screens in Runtime depends on the number of linked variables.

Only once all variables have been successfully signed in can the screen be operated.

If many variables are operated, this can slow the switching time. In this case, a

progress bar is shown, which displays the loading progress.

ACTIVATE (ADVISE):

Variable values are always queried by the driver. This happens regardless of whether they are needed at

the moment in the project or not, even if, for example, a variable has no limit value, is not displayed and

the value is also not recorded. The driver thus always has current values and the current status of the

variables and can provide these if necessary without querying them.

 Advantage: Data is immediately available. For example, the toggling of variable values in the

Write set value Function (on page 175) or in screen elements such as Switch is executed

more quickly because the variable does not need to be queried especially before switching.

 Disadvantage: Higher load for the communication to the control unit.

The following functionalities ensure that the variables are always activated:

Data types

14

 Alarms administration

 CEL

 Archive Manager

 VBA/VSTA Online Container

 PropertyHarddisk data storage active activated

 PropertyPermanently read variable activated

 Keep update list in the memory option is activated in the driver configuration (General

tab)

Variables that are activated via the Permanently read variable property are also available to

other Windows applications.

 If the variable value is to be toggled, we recommend activating the Permanently read

variable property.

QUERIES (REQUEST):

If variables are not activated, values and status are queried from the driver if necessary.

If variable values need to be asked especially, Runtime waits until the driver knows the value of the

variables. If the value is not available due to a breakdown in communication with the control unit, the

waiting time corresponds to the timeout time of the driver.

6. Data types

Each variable is based on an IEC data type. The data type has the same properties as the variable itself

(unit, signal resolution, limits, etc.). This does not include driver-specific properties such as addressing of

the PLC, for example. A data type is a variable template without connection to the process. This

connection to the process is only established with the driver object type (on page 34) for the variable.

On creating a new variable a data type has to be selected. All properties of the data type are inherited to

the variable. A reference to the properties of the data type is established, i.e. if a property of the data

type is changed, it is also changed in all variables linked to that data type.

If a property is a reference, it is marked with a symbol in the properties window.

Data types

15

This reference can also be cut. A more detailed description can be found in the Inheritance concept (on

page 110) chapter.

CONTEXT MENU PROJECT MANAGER

Menu item Action

New simple data type... Opens the dialog for creating a new data type.

New structure datatype... Opens the dialog for creating a new structure data type.

Export XML all ... Exports all entries as an XML file.

Import XML... Imports entries from an XML file.

Help Opens online help.

IEC DATATYPES:

IEC data types are standardized in the IEC 61131-3 by the IEC. At the the moment zenon supports the

following IEC data types:

Data types

16

Short name Long name Comment / value range Numbe
r of bits

BOOL Boolean Bit: 0/1 1

BYTE

SINT Short integer Signed byte:

-128 to 127

8

USINT Unsigned short integer Byte: 0 to 255 8

INT Integer Signed word:

-32768 to 32767

16

UINT Unsigned integer Word: 0 to 65535 16

DINT Double integer Signed double:

-2147483648 to 2147483647

32

UDINT Unsigned double

integer

Double:

0 to 4294967295

32

LINT Long Integer Because zenon cannot hold the value range

of a 64 bit number, the actual value range

is restricted to 52 bits. Numbers with signs

are possible from –2251799813685248 to

2251799813685247. Numbers outside of

this range cause a overflow or underflow,

according to a 52-bit integer.

The following components work with a full

64 bit resolution in the zenon Runtime:

1. The shared memory VBA

Interface, when the value was

entered in signal resolution.

2. The shared memory straton

interface.

3. The driver kit works for the

whole range of 64 bits, and so

do all the drivers, provided the

64 or 52

Data types

17

driver supports this IEC data

type. At the moment, these are

Sample32, Internal and

STRATON32.

 RGM and recipes cannot save even a 52

bit value with full accuracy.

Data types

18

ULINT Unsigned long integer Because zenon cannot hold the value range

of a 64 bit number, the actual value range

is restricted to 52 bits. Numbers without

signs are possible from 0 to

4503599627370496. Numbers outside of

this range cause a overflow or underflow,

according to a 52-bit integer.

The following components work with a full

64 bit resolution in the zenon Runtime:

1. The shared memory VBA

Interface, when the value was

entered in signal resolution.

2. The shared memory straton

interface.

3. The driver kit works for the

whole range of 64 bits, and so

do all the drivers, provided the

driver supports this IEC data

type. At the moment, these are

Sample32, Internal and

STRATON32.

RGM and recipes cannot save even a 52 bit

value with full accuracy.

64 or 52

REAL Real numbers Real numbers 32

LREAL Real numbers Real numbers 64

STRING Variable-length single

byte character string

ASCII string (the max. string length depends

on the driver).

The string length is set to 5 characters by

default. The correct length is to be given

during configuration if necessary.

>= 8 x

string

length

WSTRING Variable length

multi-byte character

string

Contains multi-byte strings, for example

strings in Unicode coding (UTF-8 etc).

The string length is set to 5 characters by

default. The correct length is to be given

during configuration if necessary.

>= N x

string

length

Data types

19

DATE Date IEC date in steps of 1 day 16

TIME Duration Duration in the IEC format. IEC time in

steps of 1 ms, signed integer

32

TOD Time of day Time of day in steps of 1 ms 32

DATE_AND_TIME Date and time of day Defines a period of time with 64 bit and is

saved in a binary-coded decimal format.

64

 Attention

In zenon the data types DATE, TIME, TOD are treated as a data type UDINT in the Unix

time format (bygone seconds since 01.01.1970). The data type DATE_AND_TIME equals

data type FLAOT in the Unix time format. With this the time is saved exactly to

millisecond, i.e. three digits after the decimal point. The driver coverts the data type used

in zenon to the corresponding data type and sends the new value to the PLC.

Not all drivers support these data types. Please check the corresponding driver

documentation whether the used driver supports the data types.

You can find information on how the inheritance of data type properties works in the Inheritance

concept (on page 110) section.

6.1 Data types detail view toolbar and context menu

Data types

20

CONTEXT MENU

Menu item Action

New simple data type Opens the dialog for creating a new simple data type.

New structure data type Opens the dialog for creating a new structure data type.

New structure element Opens the dialog for adding a structure element to a structure data

type.

Copy Copies the selected entries to the clipboard.

Paste Pastes the contents of the clipboard. If an entry with the same name

already exists, the content is pasted as "Copy of...".

Delete Deletes selected entries after a confirmation from list.

Edit selected cell Opens the selected cell for editing. The binocular symbol in the

header shows which cell has been selected in a highlighted line. Only

cells that can be edited can be selected.

Export selected XML Exports all selected entries as an XML file.

Import XML Imports entries from an XML file.

Remove all filters Removes all filter settings.

Edit selected cell Opens the selected cell for editing. The binocular symbol in the

header shows which cell has been selected in a highlighted line. Only

cells that can be edited can be selected.

Replace text in selected

column
Opens the dialog for searching and replacing texts.

Replace text in limits Opens the dialog for the selection of the Dynamic properties

Once the property has been selected, the search and replace dialog

is opened by clicking on OK.

Properties Opens the Properties window for the selected entry.

Help Opens online help.

6.2 Types of data types

Basically there a two different kinds of data types:

Data types

21

 simple data types; in turn, these consist of:

 pre-configured simple data types (on page 21)

 user-defined simple data types (on page 21)

 Structure data types (on page 26)

6.2.1 Pre-configured simple data types

These are delivered together with zenon and are immediately available when a new variable is created.

They conform to the standardized simple data types of IEC 61131-3 such as INT, USINT etc. They

define a set value area (fixed upper and lower limit) with a defined number of values. That is why real

numbers can be depicted as float-point numbers only with a certain accuracy.

The properties of the simple data types can be changed. The names of these data types always match

with the names of the basic IEC data types, these and the IEC data types cannot be deleted or renamed.

The data types only become visible in zenon, once a driver is created. Each driver opens a list of data

types it supports. If an IEC data type does not exist in the list of data types, it is not supported by any

driver in the project.

Changes in the properties of the data types affect all linked variables and thus also affect all linked

structure data types.

6.2.2 User-defined simple data types

These data types can be created by the user. On creating an existing data type is used. All properties of

this basic data type are copied to the new data type and can be changed later on. There is no

reference to the data type on which it was originally based. All data types can therefore be configured

independently of one another.

For the user-defined data types all properties including name and IEC data type can be changed.

Data types

22

 Attention

All variables that are based on a data type where the IEC data type is changed may need

to be subsequently configured manually.

Example

An IEC data type INT is changed to an IEC data type BOOL. All set value limits of all

variables and at all positions, where the variable is used (screens), are no longer correct.

It becomes even more critical, if the properties in the variables were overwritten and no

longer have a reference to the data type!

When creating a new user-defined data type, a basic data type that has the same IEC data type to that

which is needed should always be used.

 Attention

A subsequent change of the IEC data type explicitly is not recommended!

A number of settings depend on the IEC data type and have to be re-configured by hand

if the IEC data type is changed. (Example: Signal resolution, measuring range, hysteresis,

set value limits, non-linear value adjustment, etc.).

When changing the IEC data type, all properties specific to this data type have to be

checked! Sometimes, the properties have to be adapted before the change, since for

BOOL variables the signal resolution and the measuring range cannot be changed, for

example.

Data types

23

Creating a new user-defined datatype

Open the folder Variables and select Datatypes.

Now all existing datatypes are listed in the detail view. On the first opening only the pre-defined

datatypes corresponding to the IEC datatypes are in this list. A user-defined datatype is always based on

an IEC datatype. Click into the list with the right mouse button an in the context menu select Create

simple datatype....

Data types

24

In the dialog opening now enter the name of the user-defined datatype and select an existing datatype.

This datatype is a template for the new datatype to be created. All properties are copied into the new

one. They can subsequently be changed in the properties window. No reference to the basic datatype,

being the basis of the new one, exists any longer.

 Information

The name of the data type is limited to 128 characters.

Click on Finish. The new user-defined datatype now appears in the list of simple datatypes in the detail

view.

Changing the properties of a user-defined data type

The properties of a user-defined data type can be changed in the properties window, where all

properties of the data type are listed.

Data types

25

Please pay attention that you do not modify the IEC data type because thereby the signal resolution

would also be modified.

Deleting an user-defined datatype

Select the datatype to be deleted in the list in the detail view and confirm the delete action in the

following dialog box.

 Attention

If an user-defined datatype is deleted, all variables based on this datatype are also

deleted.

Data types

26

6.2.3 Structure data types

Structure data types are always user-defined data types (on page 14). In contrast to the simple data

types that only allow a flat variable list, they allow to build a structure. This structure can even be nested

and so it can become very complex.

If a structure variable is needed, a structure data type has to be created first. A structure consists of a

structure name and structure elements. Structure elements can be simple data types or other

structures. Structure elements can also be arrays (fields) with up to three dimensions.

 Attention

You must define, during creation, whether the structure element should use a linked

or embedded type. Changes afterwards are not possible.

EXAMPLE FOR A STRUCTURE DATATYPE:

Two structures are displayed in the illustration above.

The structure Controller consists of two elements: Engine speed set and Engine speed

actual.

 The structure element Engine speed actual is linked to the datatype INT, i.e. all

properties of the datatype INT are inherited to this structure element.

 The structure element Engine speed set is embedded into the structure. So all properties

of this datatype can be configured in the structure element itself.

The structure Engine consists of the following structure elements: Activity Input, Charging

Rate, Voltage, Temperature[3] and Engine Speed Control.

 The structure element Activity Input is linked to the pre-defined data type UINT - all

properties are taken from UINT.

Data types

27

 The structure element Charging Rate has the embedded data type INT - all properties can be

defined in the structure element.

 The structure element Voltage is linked to the user-defined data type Voltage. The element

gets all properties from this data type.

 The structure element Temperature is a one-dimensional array of three elements of the

pre-defined data type SINT.

 The structure element Engine Speed Control is linked to the structure Controller

mentioned above. Structures in a structure cannot be embedded. They are always linked to the

original structure. The structure contains two further structure elements: Engine Speed Set and

Engine Speed Actual, which get their properties from the original structure.

Creating a structure datatype

This is how you create a structure datatype:

1. Right click on a user-defined datatype in the list and select New structure datatype in the

context menu.

2. You define the names in the dialog box that now appears.

 The name of the data type is limited to 128 characters.

3. Confirm the settings with Finish. The name of the structure datatype can be changed later on in

the properties window.

4. Now a dialog opens, with which the first structure element can be created.

5. Give it a clear name.

Data types

28

6. Select the data type upon which the element should be based. Click on the ... button to open

the selection dialog.

You can also link structures as structure elements. It is not possible to embed structures as

structure elements. It is also only possible to link entire structures and not parts of a

structure.

7. Define if the data type is to be embedded or linked.

8. Define the array dimensions.

If you do not want to use an array, set the dimensions to 0.

9. Confirm the settings with Finish.

EMBED OR LINK

TAG Description

Embedded structure

elements

can have properties that differ from their basic datatypes. The

properties are defined individually for each structure element and are

saved there.

Linked structure

elements

Always get all their properties from the basic datatypes that they are

linked to. If the basic data type is changed, all linked elements are

changed in the same way!

Data types

29

Inserting further structure elements

To insert further structure elements:

1. Right-click on the desired structure data type.

2. Select New structure element... in the context menu.

3. Define it in the dialog box that opens

a) A clear description (name is limited to 128 characters)

b) the array dimensions and

c) whether you wish to embed or link the structure element.

If you now highlight the structure data type in the detail view, the existing structure elements are shown

as sub-points.

Changing the properties of a structure element

To change the properties of a structure element:

Data types

30

EMBEDDED STRUCTURE ELEMENTS

1. Highlight the structure element in the detail view.

2. Change the desired properties in the properties window

LINKED STRUCTURE ELEMENT

With linked structure elements, the following can be changed in the Properties window:

 Name

 Offsets

 Array dimensions

 Description

All other properties must be changed directly at the original data type.

 Attention

Note that changes to the data type have a direct effect on all variables related to them

and also have an effect on all other structure data types linked to this data type.

Changes to the data type are not recommended. These must be prepared and carried out

with due care. In particular when changing the IEC data type settings, measuring range

settings, set value limit settings, etc.

In certain circumstances, all variables and all screens in which these variables are used

must be manually adjusted afterwards!

Moving a structure element

Elements of a structure data type can be moved by dragging & dropping. To move elements:

1. Highlight the desired element.

2. You can also select several interrelated elements

3. Click in the selection and drag the element to the desired position

Drivers

31

For multi-user projects, a check is carried out to see if the status of the data type to be changed is set to

Allow changes or can be set to this.

MOVING SEVERAL OBJECTS

interrelated elements can be moved by dragging & dropping. For this, the following applies:

 Only interrelated structure elements can be moved.

 If a gap is recognized with multiple selection, the drop action is refused.

Deleting a structure datatype

To delete a structure data type:

1. Right-click on the structure data type in the list.

2. Select Delete in the context menu.

3. The structure data type is deleted with all its structure elements.

 Attention

When being deleted, all variables based on this structure data type are deleted!

7. Drivers

zenon offers more than 300 different connections to different PLCs, bus systems and applications.

Drivers

32

To communicate with a data source it is necessary to link an interface driver (protocol driver). The driver

establishes the connection between a PLC and zenon. The data source not necessarily is a PLC. The DDE

driver communicates with a DDE server, the OPC client driver with an OPC server, the SNMP driver with

SNMP agents, etc.

A number of different drivers are available and they also can be used at the same time.

 Attention

Under Windows CE only one type of a driver can be started at the time.

Menu item Action

New driver... Opens the detail view for selecting a driver.

Help Opens online help.

On creating a new variable, it has to be defined for which driver the variable is created.

The zenon drivers are protocol drivers. They should not be confused with the interface drivers of the

operating system (e.g. drivers for LAN cards of drivers for a serial interface). The zenon drivers are

always based on the interface drivers of the operating system and communicate with the respective

protocol (e.g. Modbus RTU, MPI, Melsec A, etc.) that is understandable for the PLC.

Basic drivers are available in zenon free of charge: Variables based on these drivers are not counted for

licensed I/Os:

Drivers

33

TAG Description

Simulator

driver SIMUL32

(Main.chm::/SIMUL32.c

hm::/SIMUL32.htm)

For internal variables.

These can be defined as failure-proof variables (hard disk data) or as flag types;

flag objects can automatically change their value for dynamic simulation

Mathematics

driver MATHDR32

(Main.chm::/MATHDR3

2.chm::/MATHDR32.ht

m)

Variables of this driver are used for the calculation of mathematical functions or

for counters.

System driver

Sysdrv

(Main.chm::/Sysdrv.ch

m::/Sysdrv.htm)

variables for monitoring and controlling the hardware, the network and other

project-specific properties.

Internal driver

Internal

(Main.chm::/Intern.ch

m::/Intern.htm)

User-defined variables without connection to a PLC. (Similar to the user-defined

variables of the system driver).

Each variable has an individual value. So it is not possible e.g. to extract bit or

byte variables from an integer variable.

Defining address information is not necessary, the according properties in the

properties window cannot be edited.

Detailed driver descriptions for the individual drivers can be found in the corresponding driver

documentation, which is available to you via the online help in the Driver chapter and on the installation

medium.

When a new driver is created, a selection dialog is opened, where all available drivers are listed. The

information for this dialog are in the files Treiber_DE.xml, Treiber_EN.xml etc. depending on

the language. You can open or edit these XML files with the driverinfo.exe. tool

main.chm::/SIMUL32.chm::/SIMUL32.htm
main.chm::/SIMUL32.chm::/SIMUL32.htm
main.chm::/MATHDR32.chm::/MATHDR32.htm
main.chm::/MATHDR32.chm::/MATHDR32.htm
main.chm::/MATHDR32.chm::/MATHDR32.htm
main.chm::/Sysdrv.chm::/Sysdrv.htm
main.chm::/Sysdrv.chm::/Sysdrv.htm
main.chm::/Intern.chm::/Intern.htm
main.chm::/Intern.chm::/Intern.htm

Drivers

34

7.1 Driver detail view toolbar and context menu

CONTEXT MENU

Menu item Action

Driver new Opens the dialog for creating a new driver.

Change driver Opens the selection window for defining a driver.

Delete Deletes selected entries after a confirmation from list.

Driver configuration Opens the dialog for configuring the driver.

Import variables from the

driver
Opens the dialog for importing variables.

Edit selected cell Opens the selected cell for editing. The binocular symbol in the

header shows which cell has been selected in a highlighted line.

Only cells that can be edited can be selected.

Replace text in selected

column
Opens the dialog for searching and replacing texts.

Properties Opens the Properties window for the selected entry.

Remove all filters Removes all filter settings.

Help Opens online help.

7.2 Driver object type

The driver object types define which area of a variable should be referred to in the PLC. At the moment

all manufacturer use different names for the areas of their PLCs. In the Siemens world there are

datablocks, markers, in/output etc. in the Modbus world there are coils and holding registers. Each

driver creates an internal list with the available driver object types. When creating a new variable, the

area in the PLC to which it is allocated must be specified.

THERE IS A STRICT DISTINCTION BETWEEN DATA TYPE AND DRIVER OBJECT TYPE

The strict distinction makes it possible to create a structure as a data type completely independently

and thus independently of the PLC. This structure as a variable can be linked to any driver. A structure

Drivers

35

can, for example, be linked to the corresponding driver 1:1 with a Siemens PLC as well as a Modbus PLC

with the corresponding drivers.

7.3 Creating a driver

In order to create a new driver:

1. Right-click on Driver in the Project Manage and select Driver new in the context menu.

Drivers

36

2. In the following dialog the control system offers a list of all available drivers.

3. Select the desired driver and give it a name:

 The driver name has to be unique, i.e. if one and the same driver is to be used

several times in one project, a new name has to be given each time.

 The driver name is part of the file name. Therefore it may only contain characters

which are supported by the operating system. Invalid characters are replaced by an

underscore (_).

Drivers

37

 This name cannot be changed later on.

4. Confirm the dialog with OK. In the following dialog the single configurations of the drivers are

defined.

Only the respective required drivers need to be loaded for a project. Later loading of an additional driver

is possible without problems.

 Information

For new projects and for existing projects which are converted to version 6.21 or higher,

the following drivers are created automatically:

 Internal

 MathDr32

 SysDrv.

7.4 Configuration of a driver

Drivers

38

Parameters Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:

A connection to the control is established.

 Simulation static

No communication between to the control is established,

the values are simulated by the driver. In this modus the

values remain constant or the variables keep the values

which were set by straton. Each variable has its own

memory area. E.g. two variables of the type marker with

offset 79 can have different values in the Runtime and do

not influence each other. Exception: The simulator driver.

 Simulation - counting

No communication between to the control is established,

the values are simulated by the driver. In this modus the

driver increments the values within a value range

automatically.

 Simulation - programmed

N communication is established to the PLC. The values are

calculated by a freely programmable simulation project.

The simulation project is created with the help of the straton

Workbench and runs in a straton Runtime which is

integrated in the driver. For details see chapter Driver

simulation (main.chm::/25206.htm).

Keep update list in

the memory

Variables which were requested once are still requested from the control

even if they are currently not needed.

This has the advantage that e.g. multiple screen switches after the screen

was opened for the first time are executed faster because the variables

need not be requested again. The disadvantage is a higher load for the

communication to the control.

Outputs writeable Active: Outputs can be written.

Inactive: Writing of outputs is prevented.

: Not available for every driver.

main.chm::/25206.htm

Drivers

39

Variable image

remanent

This option saves and restores the current value, time stamp and the states

of a data point.

Fundamental requirement: The variable must have a valid value and time

stamp.

The variable image is saved in mode hardware if:

 one of the states S_MERKER_1(0) up to S_MERKER8(7), REVISION(9), AUS(20)

or ERSATZWERT(27) is active

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not programmed simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a criterion

in order to restore the remanent variable image.

Stopped on Standby

Server

Setting for redundancy at drivers which allow only on

communication connection. For this the driver is stopped at the

Standby Server and only started at the upgrade.

 If this option is active, the gapless archiving is no longer

guaranteed.

Active: Sets the driver at the not-process-leading Server

automatically in a stop-like state. In contrast to stopping via driver

command, the variable does not receive status switched off

(statusverarbeitung.chm::/24150.htm) but an empty value. This

prevents that at the upgrade to the Server irrelevant values are

created in the AML, CEL and Historian.

Update time global Active: The set Update time global in ms is used for all

variables in the project. The priority set at the variables is not used.

Inactive: The set priorities are used for the individual variables.

Priority Here you set the polling times for the individual priorities. All variables with

the according priority are polled in the set time. The allocation is taken

statusverarbeitung.chm::/24150.htm

Drivers

40

place for each variable separately in the settings of the variable properties.

The communication of the individual variables are graduated in respect of

importance or necessary topicality using the priorities. Thus the

communication load is distributed better.

OK Accepts settings in all tabs and closes dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

UPDATE TIME FOR CYCLICAL DRIVER

The following applies for cyclical drivers:

For Set value, Advising of variables and Requests, a read cycle is immediately triggered for all drivers -

regardless of the set update time. This ensures that the value is immediately available for visualization

after writing. Update times can therefore be shorter than pre-set for cyclical drivers.

7.5 Driver simulation

If the underlying process is not available when configuring, this can be simulated and tested in advance.

Three modes are available for this:

 Simulation static (on page 41): constant values simulated by the driver

 Simulation - counting (on page 41): values simulated by the driver are counted up

 simulation - programmed (on page 42): Values are calculated via a simulation project with

straton

 Attention

If the driver is stopped in mode Simulation - counting, only the counting is stopped.

The variable is not switched to faulty. In all other modes the driver is really stopped.

Simulation - programmed is not supported by drivers for:

 Internal variables

 Mathematical variables

 Simulator variables

Drivers

41

 System variables

 Information

zenon variables which represent the straton IO variables are available in the project in

state Driver simulation programmed.

 License information

Part of the standard license of the Editor and Runtime.

7.5.1 Simulation static

For a static simulation, no communication to the control is established; the values are simulated by the

driver. In this mode the value remains constant. Values can be changed by the Runtime or the user. At a

restart of the Runtime with Simulation - static theses values will however not be saved and are lost.

7.5.2 Simulation - counting

For a counting simulation, no communication to the control is established; instead the values are

simulated by the driver. In this mode, the driver increments the values within a value range

automatically, starting with 0. If the maximum value has been reached, the counting process starts at 0

again.

 Information

For negative starting values, the counting process only starts at 0.

INT uses the maximum value from USINT to count.

Drivers

42

 Attention

If the driver is stopped in mode Simulation - counting, only the counting is stopped.

The variable is not switched to faulty. In all other modes the driver is really stopped.

7.5.3 Simulation - programmed

For Simulation - programmed, no communication is established to the PLC; instead, the values are

calculated by a freely programmable simulation project. The simulation project is created with the help

of the straton Workbench and runs in the straton Runtime. It enables the status and time stamp of

variables to be modified on the driver. Write commands to variables by zenon are forwarded to the

simulation, redundant servers and Standby Servers are synchronized. This is how you also simulate

complex processes.

To start the simulation program, select the Simulation - programmed mode in driver configuration (on

page 49).

 Information

Windows CE

Simulation - programmed is not available for Windows CE.

Drivers

43

Editor

Create project

To create a program for Simulation - programmed, you must:

 select a single process driver

 make sure that the project name is valid.

 Attention

Simulation - programmed is not supported by drivers for:

 Internal variables

 Mathematical variables

 Simulator variables

 System variables

To create a simulation project:

 click in the group Driver simulation project in the property Edit on Click here ->

 A new straton project is created.

 Name and port numbers for Event port and Standard port are automatically issued;

change these as you wish

 the straton Workbench is opened

The simulation project's workshop is automatically closed if:

 the zenon editor is closed

 a driver is deleted and its simulation project is currently being edited in Workbench

 the simulation project for the driver is deleted via the Delete property

 the simulation project is renamed

Drivers

44

PROJECT ARCHIVING

A straton project contains many files and folders. To manage them, in particular to simplify distributed

engineering, all files are archived in compressed form in the Simul_<Treiber-ID>.zip file in the

<Sql Projekt Pfad>\FILES\zenon\custom\drivers. This file is in the driver files in the

editor. When starting straton Workbench, the files are automatically decompressed are compressed

again when it is ended.

CREATING VARIABLES

When creating variables in a simulation project, the succession is important:

1. create the variable

2. select the valid data type in the straton Workbench

3. after that activate property embed symbol

 Variables are created with the PLC marker driver object type by default. This object

type does not support all data types for all drivers. If a variable is copied in the straton Workbench with

active property embed symbol, you must deactivate this property in order to change the data type.

With this the variable is then deleted in zenon.

 Information

Error message "Can not create variable"

A variable cannot be created in the simulation object if the driver does not have driver

object types - exception

driver variable - which support this data type.

On activation of embed symbol, the error message "can not create variable" is

displayed.

STRUCTURE DATA TYPES

At creating variable with a structure data type:

 they are created with the driver object type PLC marker if possible

 all driver object types with the exception of driver variable are tried until one can be used for

all elements

Drivers

45

 if no fitting driver object type is available,

 no variable is created for non-structure variables

 driver object type PLC marker is used for structure variables

A structure data type contains elements of type UINT and STRING. A variable is created for S7TCP driver

and embed symbol is activated.

 The variable is not created in PLC marker but as Ext. Data module, in which all structure

elements are present.

 A new type LINT is added; it is not supported by the Ext. Datablock.

 When a new variable is created, it is created as type PLC marker. Only the first complex

variable can be activated (UINT). The object type Ext. remains for the existing structure

variable Data and the last structure element (LINT) cannot be activated.

COMPILING THE FILES

If a simulation project is compiled in straton Workbench, this causes a variable to be created in zenon

and the Runtime program file.

When compiling, a subfolder is created in Runtime-Folder\RT\FILES\zenon\custom\drivers with the

name of the simulation project. The file with the code of the simulation is SIMULRT.COD is archived in

this folder.

The following message is displayed in the output window:

SIMULRT.COD

And if compiled with the C compiler, then also:

T5APP.DLL

 Attention

For multi-user projects (on page 47) you must not create simulation projects

offline. They cannot be deleted anymore.

Drivers

46

Delete project

To delete a simulation project:

1. click on the Click Here-> button in the Delete property in the Driver simulation

project group

2. confirm this when requested to do so

3. the ZIP file with the project files is deleted

4. the straton Workbench is ended

Note:

 the Runtime folder for the simulation project remains

 function Undo is not available for this action,

 click on Edit to create a new simulation project

 for multi-user projects (on page 47):

 the driver must be configured to Make changes possible so that the simulation

program can be deleted

 the project is not displayed as deleted on other Clients as long as it has not been

synchronized;

if you try to open a deleted project before it has been synchronized (click on Edit), a

new simulation project will be created

 you cannot reverse the deletion of single-user projects via Cancel changes

 Attention

The Simulation project is immediately removed from the local database and the server

database when deleted. This action cannot be undone!

 Manual deletion of the ZIP file of the driver also leads to the simulation project being deleted.

Requirement: The straton Workbench for this driver is not opened. We do not recommend doing it this

way!

Drivers

47

Distributed engineering

For multi-user projects, all running straton Workbenches that are part of the project are closed

when:

 Accept changes for modules that are completely locked for other users in Enable changes,

such as variables, drivers and data types

 Discard changes:

 new projects are not created on the server

 Changes in the simulation program are lost

 Driver files not present in the server database are also lost in the local database

 Synchronize:

changes made locally to the simulation program program are lost

 Update local version:

changes made locally to the simulation program in the simulation program are lost

 Attention

The status of the simulation project's ZIP file may not be additionally

modified(Accept Changes, Enable Changes, Discard Changes

multi-user status), to ensure correct Accept Changes and Enables Changes

for the driver!

DELETE PROJECT

For multi-user projects

 the driver must be configured to Make changes possible so that the simulation program can be

deleted

 the project is not displayed as deleted on other Clients as long as it has not been synchronized;

 if you try to open a deleted project before it has been synchronized (click on Edit), a

new simulation project will be created

 you cannot reverse the deletion of single-user projects via Cancel changes

Drivers

48

 Attention

A simulation project with the status of Enable Changes cannot be deleted (on

page 46) in Offline mode.

A simulation project created offline in a multi-user project can therefore no

longer be deleted.

Change driver

For a driver change in zenon the following is true:

 The simulation project is maintained.

 All ports are however set to 0. To receive working port numbers, open the project in the Editor.

At this new port numbers are entered automatically. Port numbers can also be assigned

manually.

 Attention

Drivers that are linked to a straton project using the integrated solution cannot be

exchanged.

XML export/import

A project in mode Simulation - programmed can be exported via XML. It can however not be imported as

new project for another driver.

Workaround:

1. Export the straton programs.

2. Import them to the new project for the new driver.

3. Replace the variables via search and replace.

Drivers

49

Driver configuration

There are four modes available when configuring the driver:

 Hardware

 Simulation - counting

 Simulation static

 Simulation - programmed

Select the simulation - programmed mode.

Driver variable status

The status of straton is shown in the driver variables SimulRTState at Offset 60. The variable is numerical

and cannot be written to. The value informs you of the status of Runtime:

Drivers

50

Bit Meaning Description

31 without application Runtime has not loaded a program, the program was stopped

or not loaded to Runtime.

30 not instanced Runtime was not instanced, for example because the DLL with

Runtime could not be loaded, there is too little memory, the

DLL is not present or is the wrong version.

18 p-code available p-code is available together with compiled code, switching is

possible.

17 compiled code active Runtime runs with compiled code (otherwise: interpreted

p-code)

16 compiled code available Compiled code from the C compiler is available

15 application is loaded An application is present, Runtime is running

14 can't start - missing handlers Some "C" functions are missing

13 active breakpoints installed At least one breakpoint was set by the debugger.

12 CT segment exists Application was compiled with the "complex variables in

separate segment".

11 Reserved (internal, for Runtime only.)

10 sysinfo request is available (internal, for Runtime only.)

9 freeze event production Binding does not transmit events.

8 single cycle mode (intern, for Runtime and debugger only.)

7 Reserved (internal, for Runtime only.)

6 locked variables At least one variable is blocked.

5 trigo functions are in degrees Trigonometric functions are stated in degrees.

4 log message(s) in stack (internal, for Runtime only.)

3 application stopped between 2

progs

Runtime stopped between two steps during debugging

2 application stopped on SFC breakpt (internal, for Runtime only.)

1 application stopped on error Runtime stopped with a serious error, restart required.

0 application is running TRUE = application is in "run" mode.

FALSE = application pauses in "cycle to cycle" mode.

Drivers

51

 Information

The driver variable SimulRTState with Offset 60 displays the status of Runtime on the

server. This is also true when the variable is displayed on the Standby.

Cyclical synchronization

Simulations run in a network on the server and Standby Server independently of one another. When the

Standby Server starts, there is a synchronization with the server, however:

 This first synchronization is postponed by the packet runtime

 Small differences in the execution lead to growing diversion

The status of the simulated variables also therefore becomes different. In order to keep these

differences low, use the Transfer driver simulation image to standby to synchronize the simulation

image:

 create a new function

Drivers

52

 Select Transfer driver simulation image to standby

 The dialog to select the driver opens

 In the list, all process-connected drivers (with the exception of the simulator) are available

(clicking on the column heading changes the sorting)

 Select the driver that is to be synchronized

Drivers

53

 Each time a function is called up on the Standby Server, an image is requested from the server

for the selected driver

The differences in the current simulation status can be minimized through cyclical activation. Adapt the

grid of the execution to the extent of the data to be synced, because this places a load on the network

and computer.

The Execution of the function is set at Standby Server and fixed; it cannot be changed. It only

happens if:

 The computer is the Standby Server

 The Server is online

 The project is a network project

 Drivers were selected for syncing

TO CHANGE THE SELECTION OF THE DRIVERS

 In the driver properties, click in the General group in the Tag properties

 The dialog for selecting the driver opens

straton Workbench

The Simulation - programmed is programmed in the in the straton Workbench, which works in close

conjunction with the zenon Editor. For the simulation, (in contrast to the integrated solution) only the

variables of a driver are exchanged between the editors.

DEFINITION OF THE VARIABLES TO BE EXCHANGED:

When starting straton Workbench, all driver variables that are not yet present in straton are created as

global variables. The Embed symbol is automatically activated for these.

If a new variable is defined in Workbench in the global or retain area, this is only visible in straton. To

make it visible in zenon too, the Embed symbols option must be activated. From this point in time, all

variables are updated by both editors.

Drivers

54

If the Embed symbol option is deactivated, the variable is deleted in the zenon editor. This action

enables global or retain variables to be defined in straton, which are not visible for zenon.

For a newly-created variable created by the straton Workbench in zenon, an attempt is made to assign

this to the SPSMERKER area. In the event that the zenon driver (on page 43) does not support the

configured data type, a search is made for the first data area that supports the data type. If no area is

found, the variable cannot be created.

A variable is only locked if in the case of a multi-user project and the enable changes status has

not been set.

PROJECT SETTINGS

Some settings under Project -> Project parameters... >-Further options-> Extended in straton influence the

functionality of the simulation.

Drivers

55

Extended settings Description

Runtime: execute mode

Mode: triggered

cycle time: 1/4 to 1/3 of the driver update time

for frequent value changes to simulated variables lead to increased

load placed on the computer.

compiler/options: Embed

symbols of all variables

 Deactivate.

Active: Data for a variable are exchanged, because the symbol

names are assigned in Runtime.

But: Changes to the configuration of the variables are not updated

between zenon and straton. It is no longer possible to make changes

online.

compiler/options: Retain

capitalization of

symbols

without effect: Variable names are always converted to capitals in

Runtime.

compiler/options: Create

status bits for variables

with a profile

Active: The status of variables is simulated or reacted to in the

simulation program.

"C" compiler Native code is supported.

Name of the DLL that the compiled code must contain:

t5app.dll.

Runtime

Functionality

straton Runtime offers the following functions:

 File transfer

 Data types:

 BOOL

 BYTE

Drivers

56

 DINT

 DWORD

 INT

 LINT

 LREAL

 REAL

 SINT

 STRING

 TIME

 UDINT

 UINT

 USINT

 WORD

 zenon arrays (see also Arrays and simulation (on page 57))

 Date stamp/time stamp

 Digital recording of values

 Dynamically linked function blocks, stored in t5block*.dll

 Hot Restart

 Logging:

 Trace messages from the program (printf)

 Error messages in Runtime

 all sent to Workbench and to the diagnosis server

 Machine code: Native compiled code with C post compiler (not available under Windows CE)

 Online Change

 Programming languages: IL, AS, FDB, LD, ST

 Retain Data (remanant Data)

 Special function blocks and features:

 Data serialization

 dynamic memory allocation

Drivers

57

 embedded recipes

 embedded variable lists

 File Management

 Files

 Math

 Random

 Signals

 String tables

 Trigonometry

 Time

 Spontaneous communication

 Value change as an event

 16 connections

 Hysteresis

 UDP & TCP/IP for IEC languages

 Variable interlocking

Arrays and simulation

To simulate multidimensional arrays at driver simulation, you must activate property 'Save complex

variables in own segment' in the straton Workbench.

ARRAYS WITH START INDEX 1

If at a simulation arrays with start index 1 exist, these arrays are created with one more index in the

straton Workbench.

 Example

In zenon an array has indices 1 to 4. This array has the indices 0 to 4 in the straton

Workbench.

This guarantees that the same indices are used in zenon and in straton. Index 0 is not transferred to the

driver.

Drivers

58

If you change array in the straton Workbench, you must consider this additional index.

Runtime files

When creating the Runtime files, a subfolder with the name of the simulation project is created in the

Runtime folder of the project in the path \RT\FILES\zenon\custom\drivers. The file with

the code of the simulation is simulrt.cod and is archived in this folder.

Once successfully compiled in the Workbench and transferred to the Runtime folder, the following

message is shown in the output window of the Editor:

SIMULRT.COD

And if compiled with the C compiler, then also:

T5APP.DLL

The Runtime files for the simulation are created as a subfolder of the driver files. For remote transport,

the and all information contained in it is transferred to the target computer

Data exchange

The exchange of data from straton Runtime to the driver starts with the 2nd cycle of straton Runtime.

Therefore the first run is available to initialize all variables in Runtime.

Data is only exchanged if:

 The variable is requested and:

 did not yet receive a value

 does not have the status Switched off (OFF/_VSB_N_UPD) or Alternate

value (ALT_VAL/_VSB_AVALUE) in the driver

 is still required by the driver.

 has changed value or status

The exchange of data to the driver is carried out asynchronously to the Runtime cycle. The driver runs

through the value changes once per update cycle. All values changed - with the exception of the

Switched off (OFF/_VSB_N_UPD) or Alternate value (ALT_VAL/_VSB_AVALUE) status - are

entered into the list of variables to be updated in the driver and sent to Runtime.

Drivers

59

TRANSFER DRIVER SIMULATION IMAGE TO STANDBY FUNCTION

This function is only executed on the Standby Server (for configuration, see Cyclical comparison (on page

51) chapter). The data is synchronously fetched from the driver on the server that is compiling the

image. The driver has 5 seconds of time for this. Because the data for the image is created in the same

thread in which the simulation is running, it must be ensured that the simulation is processed within 5

seconds. If this time is exceeded, no image is transferred for this driver.

VALUE SIMULATION

Value changes are not transferred immediately, but stored in a buffer. The size of the buffer amounts to

8192 value changes or the five time the number of variables, according to whatever value is greater. The

delay in transferring resulting from the driver cycle can be up to 100 ms. If the value changes again

whilst it is waiting to be transferred, all values that have not yet been transferred are sent to Runtime

and the new value is then noted. This can lead to an increased load for the computer and network, but

ensures that all values are transferred in Runtime.

DRIVER WRITE COMMAND

If simulation - programmed is configured and active, the write commands at standby are passed

through in Runtime.

Write operations are carried out by the driver asynchronously to Runtime. Data is exchanged via a

buffer. The size of the buffer amounts to 8192 value changes or the five time the number of variables,

according to whatever value is greater.

Write commands are ran through after their values are changed in Runtime. If a write command cannot

be executed correctly, the error message Write queue full! Write command for <DP-Name> lost! is

displayed.

If the status bits are activated, setting Writing successful will display if the value was written

from the driver to the value of the variable. The Runtime program should delete this status again after

processing the write command. A status bit that is already active does not cause any delay in the driver

writing again. Write commands are also executed if the Runtime program was stopped by a breakpoint.

 Not all write commands from the driver must be visible in Runtime. If several write commands

are in the buffer,only the last one is visible in Runtime.

SWITCH OFF VARIABLES, SWITCH TO SUBSTITUTE VALUE

If the variable is switched off or switched to a substitute value, this is not recognizable for Runtime.

Changes in values that are also carried out by Runtime are not assigned to the variables in the driver. If

Drivers

60

the variables are again switched to spontaneous value or activated, the current value is again carried

over from Runtime to the driver. When turning off the spontaneous value, status bit OFF is set. When

you switch back to the spontaneous value, the OFF bit is reset.

Data storage

RETAIN DATA

Retain data is stored in the SimulRt<TreiberID>.ret file. One file such as this is created per simulation,

provided retain variables are present. The file is taken into account when a comparison is carried out in

the network.

DRIVER REMANENT

The Simulation - programmed setting at the driver start is not a criterion in order to restore the

remanant variable image (on page 37).

Redundancy

START ON THE STANDBY SERVER

If the driver is already running on a Standby Server, then the image for the simulation should already be

available. In this case, the simulation is started "hot" with this image. If there is no image, a warm a start

is carried out.

TRANSFER DRIVER SIMULATION IMAGE TO STANDBY FUNCTION

This function is only executed on the Standby Server (for configuration, see Cyclical comparison (on page

51) chapter). The data is synchronously fetched from the driver on the server that is compiling the

image. The driver has 5 seconds of time for this. Because the data for the image is created in the same

thread in which the simulation is running, it must be ensured that the simulation is processed within 5

seconds. If this time is exceeded, no image is transferred for this driver.

SYNCHRONIZATION

In addition to the program files of the simulation, the following are also compared:

Drivers

61

 Retain data (*.ret)

 all *.simul files

This file extension is created by the simulation program for simulation specific files and archived

in the folder with the computer description below the Runtime folder.

Status

STATUS SIMULATION

For the status simulation, in straton under Project -> Project parameters -> Extended -> Compiler -> Options ->

Create status bits for variables with a profile must be active. If the status of a variable is modified, this

triggers the transmission of a variable to the driver.

Changes to the following states does not trigger a value change at the driver and is also not taken over

from the simulation:

 Real time external (T_EXTERN/_VSB_RT_E)

 Real time internal (T_INTERN/_VSB_RT_I)

 Standard time (T_STD/_VSB_WINTER)

 Writing acknowledged (WR_ACK/_VSB_WR_ACK)

 Writing successful (WR_SUC/_VSB_WR_SUC)

 Normal status (NORM/_VSB_NORM)

 Deviation from normal status (N_NORM/_VSB_ABNORM)

 Select in the network (NET_SEL/_VSB_SELEC)

 Runtime exceeded (TIMEOUT/_VSB_RTE)

 In process (PROGRESS/_VSB_DIREC)

 Switched off (OFF/_VSB_N_UPD)

 Substitute value (ALT_VAL/_VSB_AVALUE)

 Information

State bit Writing successful (WR_SUC/_VSB_WR_SUC) is available in the

Runtime program and can be set back in order to display successful writing.

Drivers

62

However only setting back the state does not trigger the transfer to the

<CD_PRODCUTNAME> Runtime. Only value changes are transferred from the driver to

the Runtime.

The following status bits cancel each other out:

Bit Description

17: Spontaneous

(SPONT/_VSB_SPONT)

Status Spontaneous is set. This is the status set if status handling is

turned off or no status was defined. Status GI + INAVLID is deleted.

18: Invalid

(INVALID/_VSB_I_BIT)

Status INVALID is set. Status SPONTAN + GI is deleted.

16: General query

(GI/_VSB_GR)

Status General query is set. Status SPONTAN + INAVLID is

deleted.

8: Select in the

network

(NET_SEL/_VSB_SELEC)

If this status bit is active (BSO activation/deactivation) the following

status bits are accepted with 0 and also transmitted as 0 to the driver to

identify a change:

 Select in the network (NET_SEL)

 Cause of transmission (COTx)

 Select (SE_870)

 N_CONF (P/N-BIT)

 Test bit (TEST)

 Writing successful (WR_SUC)

SELECT BEFORE OPERATE (SBO)

Status simulation must be available in the Runtime program in order for Select Before Operate to

be reacted to. The procedure for Select Before Operate is defined in Runtime.

ACTIVATION

If a SBO select is sent to the driver, it triggers a value being written with state Select in the network

(NET_SEL) + cause of transmission (COT_act).

Drivers

63

A corresponding SBO procedure must be implemented and must start in Runtime.

The state bit Select in the network (NET_SEL) must be set back in the Runtime program.

DEACTIVATION

The deactivation triggers the writing of a values with status Select in the network (NET_SEL) + Cause of

transmission (COT_deact).

The SBO procedure must be ended in Runtime accordingly.

The state bit Select in the network (NET_SEL) must be set back in the Runtime program.

Start / stop

DRIVER START

The value updating only starts at the Standby Server if the driver has received the process image from its

server. The image must be received within the time out module, otherwise the driver will start without

an image. If the Standby Server is upgraded to the server within the waiting waiting time, waiting is also

ended. Drivers that start in a network project or without a network have no waiting time. This behavior

applies for both the simulation as well as for the hardware mode.

RUNTIME START

If the driver starts the simulation - programmed, the first stage is loading the DLL with the simulation

Runtime. After this, Runtime is parametered and the Runtime program starts, provided it can be

successfully loaded.

If an image of Runtime is present, Runtime is started hot with this. Otherwise, a warm start is

carried out. If this is also not possible, an attempt is made to start Runtime cold. If there is no valid

program, Runtime boots up stopped. The status of all variables is set to INVALID.

The simulation program runs in it own thread and is therefore completely independent from the driver

cycle.

Drivers

64

 Information

Retain variables

Retain data contain only the value of the straton variables not their status. This means

for the start:

 Warm start: The status which was set for a variable is restored - regardless of whether it is a retain

variable or not.

 Cold start with retain variables: Only the value of the retain variable in straton is restored, not the

status.

STOP RUNTIME

If Runtime is stopped, the status INVALID is set for all variables. Variables that are requested when

Runtime is stopped have the status INVALID as initialization. Runtime secures the data for the warm

start and online change:

 SIMULRT.HOT: contains the data for the hot restart.

 SIMULRT.UPD: contains the data for the online change.

Both these files are created in the Runtime program folder. Runtime must have write authorization for

this folder.

RELOAD

 Recompiling the simulation project:

 causes the corresponding driver to be reloaded.

 Modification of the Time Out module:

is not recognized as a change by Runtime and does not cause the driver to be reloaded.

Standard implementation in the driver kit triggers a hot restart when reloading the simulation project. If

this is not possible (for example because the program is different), a cold start is carried out with

retain.

REMOVING RUNTIME

If Runtime is running, this is stopped. Before Runtime is removed, all outstanding value updates are sent

to the driver. Only then is Runtime released and SimulRuntime.dll removed from the PC.

Drivers

65

Driver commands

Driver commands (on page 181) are used to influence drivers via zenon, e.g. start and stop.

The engineering is implemented with the help of function Driver commands.

STOP/START DRIVER

If the driver is stopped in simulation - programmed mode, this will result in Runtime being removed

from the memory. All variables obtain status INVALID. When the driver is restarted, the simulation is

reloaded and Runtime is started.

SWITCH HARDWARE/SIMULATION DRIVER

When switching between modes Hardware and Simulation, the driver behaves according to the

following pattern:

1. If the driver was configured for hardware mode in the Editor:

 the driver is set to mode Simulation static after function Driver command is executed

with parameter Driver in simulation mode.

2. If the driver was configured in the Editor for one of the simulation modes (static, counting,

programmed:

 the driver is set to hardware mode and communicated with the control after function

Driver command is executed with parameter Driver in hardware mode.

 the driver then changes back to the configured simulation mode after function Driver

command was executed with parameter Driver in simulation mode

Variable assignment

The zenon driver is allocated to the straton variables via the names converted into capital letters. If the

zenon Runtime requests a variable from the driver, it forwards this to the simulation. If no simulation is

loaded, the variable receives status Switched off (OFF/VSB_N_UPD) when the driver is stopped.

Otherwise it receives status Invalid (INVALID/_VSB_I_BIT). Variables of driver variable object type

are never requested by the simulation.

Drivers

66

Time stamp

To use the time stamp, in straton under Project -> Project parameters -> Extended -> Compiler -> Options

->Statusbit create for variables with profile must be activated.

If in the Runtime program, the date for a variable is set, the value of the date and time is used as the

time stamp. When the date or time changes during the last cycle, this always triggers a transfer of the

value to the driver. This also applies if neither the value nor the status have changed.

Most drivers only transfer a new time stamp if the value and/or status change at the same time. An

example of an exception is the IEC870 driver, which also transfers new timestamps from the hardware

(or Simulation - programmed) with the same value and same status to Runtime.

 Information

It must be ensured that the date and time always increase. If this is not the case, this can

lead to problems when archiving. The date must be a value greater or less than 0.

Variables stamped by the Runtime program receive the status Real time external

(T_EXTERN/_VSB_RT_E).

All variables to be transferred to the driver that are not stamped by Runtime receive a joint time stamp

in the cycle. This ensures that the time corresponds to that of the change. These drivers receive the

status Real time internal (T_INTERN/_VSB_RT_I).

DATE & TIME

The following applies for all date and time information:

 Times are UTC.

 All times must be between 02. 01. 1970 and 2038.

 Dates are converted into a string in the format YYYY/MM/DD.

 The time is converted into the format HH:MM:SS.

Pleas not for variables in simulation projects

The following is true for the creation and modification of variables in simulation projects:

1. straton

Drivers

67

If variables are created for a simulation project in the straton Workbench, they do not have a

valid addressing for the communication. If the communication is switch to hardware, the

communication can be interrupted when the new variables are used in screens without a

adjusting the addressing correctly.

2. Rename

If a variable is renamed in a simulation project, the name of the variable is also changed in

zenon accordingly. So for example you must adjust the names of variables which are used

in a VBA project also in the VBA code.

3. Integrated solutions

Variables of integrated solutions such as straton, IEC870 or IEC850 must not be renamed in

the simulation project. In this case the variables lose their project information.

For example: If you rename Project0/Global/NewVar to myNeVariablenwVar in the simulation

project, it becomes myNewVar in zenon. After the renaming a communication with the straton

Runtime is impossible.

4. Communication based on variable names

Variables of a driver which communicates based on the variable names must not be

renamed in the simulation project.

5. Deleting or importing variables

If a variable is deleted or imported while online change is activated in straton, all variables

are removed and inserted again in straton.

6. Variables with active "embed" symbol

Variables which exist in a program and whoses "embed" symbol is active are not available

via the Shared Memory interface in zenon. If a variable with an active "embed" symbol is

moved from the global area to a program, the variable is deleted in zenon.

Error messages

Engineering in the zenon Editor

Drivers

68

Error message Cause and solution

The choosen name is already used for

another driver or contains invalid

characters! Please choose a different

name.

The new name of the simulation project is already used in the

project or is not valid.

 Give it a valid name

The simulation project from the <File

name>/<Description> driver has not

been compiled and cannot be supported!

Please compile the project in

Workbench.

A simulation project is available for the driver in Workbench. This

was not compiled however.

 Start the straton Workbench with this driver's simulation project

 compile the project

Hint: I does not make a difference if the diver settings are set to

simulation - programmed in the driver settings

Write queue full! Write command for

<Name Variable> lost!

Displays the loss of a write command.

7.6 Change driver

Drivers can be changed in zenon. The variables remain accessible and functional after the driver has

been changed, provided that they are present in the driver that has been changed. The change of the

driver definition is only possible for the released drivers which have been declared as being compatible.

 Attention

Drivers that are linked to a straton project using the integrated solution cannot be

exchanged.

To change an existing driver:

1. Select the driver to be changed in the detail view

2. open the context menu with a right-click

3. Select the Change driver command

4. The same dialog dialog (on page 35) for creating a driver is opened

5. select the new driver

Drivers

69

The necessary settings for the driver(s) (interfaces, interrupt address, etc.) are defined when the

variables are configured.

 Example

The address concept for zenon is not available when a project is being created. Only the

variables to be used have been defined.

To allow parallel processing of a project, the driver for simulator variables is

included as driver. The generation of the screens with dynamic linkages and the on-line

test (setpoint input, etc.) can be carried out.

Once the final address concept with the linkage to zenon is available, the driver is

changed and can be used under project conditions.

The change of a driver is only possible under the prerequisite that the driver used during

the configuring and finally used in the end has the same properties (variable types).

7.7 Delete Driver

To delete a driver, select the drive in the detail view in the context menu or use the Delete command in

the toolbar. The deletion process must be confirmed with a confirmation request.

 All variables belonging to it are also deleted.

7.8 Driver variables

The driver kit implements a number of driver variables. These are divided into:

 Information

 Configuration

 Statistics and

 Error messages

The definitions of the variables defined in the driver kit are available in the import file drvvar.dbf (on

the CD in the directory: CD_Drive:/Predefined/Variables) and can be imported from there.

Drivers

70

Variable names must be unique in zenon. If driver variables are to be imported from drvvar.dbf

again, the variables that were imported beforehand must be renamed.

 Information

Not every driver supports all driver variants.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Driver variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one connection at

a a time

Drivers

71

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon service pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 12:00

AM

Connection in hold

LineStateConferenced BOOL 12:00

AM

Connection in conference mode.

LineStateOnHoldPendConf BOOL 12:00

AM

Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

Drivers

72

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and

no OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver

simulation.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically

reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial

interface. Writing to this variable

immediately results in the method

SrvDrvVarApplyCom being called (which

currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the

modem. Writing this variable immediately

calls the method SrvDrvVarApplyModem.

This closes the current connection and

opens a new one according to the settings

PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone

number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be

Drivers

73

kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the

modem

ComPort UINT 9 Number of the serial interface.

Baud rate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial

interface

Value = 0 if the driver cannot establish any

serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be

established automatically for

reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone

number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer

occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem

connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is

accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a

connection.

Drivers

74

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is

required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is

required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required

to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required

to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read

all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read

all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group

Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group

Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group

High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group

Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

Drivers

75

ERROR MESSAGES

Name from import Type Offset Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error

occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error

occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error

occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error

occurred.

RdErrHwAdresse DINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

7.9 Driver documentations

Please find information on all zenon drivers in the corresponding driver documentation. You can find

them in chapter Driver.

 Information

If you cannot find a driver documentation, you will receive help from

support@copadata.com.

Create, modify and use variables

76

8. Create, modify and use variables

Variables can be created:

 as simple variables (on page 78)

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

2. The dialog for configuring variables is opened

3. configure the variable

main.chm::/15262.htm
main.chm::/15278.htm

Create, modify and use variables

77

4. The settings that are possible depends on the type of variables

Parameters Description

Name Distinct name of the variable. If a variable with the same name already

exists in the project, no additional variable can be created with this name.

Maximum length: 128 characters

 The characters # and @ are not permitted in variable names. If

non-permitted characters are used, creation of variables cannot be

completed and the Finish button remains inactive.

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for internal

variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is

automatically loaded.

Driver object type

(cti.chm::/28685.h

tm)

Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm
cti.chm::/28685.htm

Create, modify and use variables

78

Data type (on page 14) Select the desired data type (on page 14). Click on the ... button to open

the selection dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays (on

page 84) chapter.

Addressing options Expanded settings for arrays (on page 84) and structure variables (on page

95). You can find details in the respective section.

Automatic element

activation

Expanded settings for arrays (on page 84) and structure variables (on page

95). You can find details in the respective section.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

 If a change is made to a data type that does not support the set signal

range, the signal range is amended automatically. For example, for a change from INT to SINT,

the signal range is changed to 127. The amendment is also carried out if the signal range was

not inherited from the data type. In this case, the measuring range must be adapted manually.

8.1 Simple variables

Simple variables always consist of a data type (on page 14) and a driver object type

(cti.chm::/28685.htm). They form the basis for array variables (on page 84) and structure variables (on

page 95).

8.1.1 Creating a simple variable

In the Project manager right-click on Variable and select New variable... in the context menu.

cti.chm::/28685.htm

Create, modify and use variables

79

Define name, driver (C_Drivers.htm) , driver object type (on page 34) and data type (on page 14) in the

following dialog.

Property Description

Name Distinct name of the variable. If a variable with the same name already

exists in the project, no additional variable can be created with the same

name.

Driver Select the desired driver from the drop-down list.

Driver object type Select the appropriate driver object type from the drop-down list.

Data type Select the desired data type (on page 14). Click on the ... button to open

the selection dialog.

The newly created variable is displayed in the detail view of the project manager. You can edit additional

properties of the variable in its property window.

C_Drivers.htm

Create, modify and use variables

80

8.1.2 Changing the properties of a simple variable

Changes of variable properties are done in the properties window. Select the variable to change in the

detail view and enter the desired changes in the properties window.

Modify variable

The dialog Modify variable is opened if one ore more variables are selected and one of the following

properties is selected:

1. Data type

2. Driver

3. Driver object type

4. Array settings

a) Dim 1

b) Dim 2

c) Dim 3

d) Start index

5. Offset calculation

6. Data type

Here, settings are changed for all variables which have been selected with multiple selection to make

them uniform.

Create, modify and use variables

81

MODIFICATION, IF SEVERAL VARIABLES HAVE BEEN SELECTED:

If the value of the selected property is the same for all selected variables, it is displayed in the dialog;

otherwise the entry stays empty. Empty means, that the setting has not been defined. If a selection has

been done, it is no longer possible to make 'no selection'. If this is desired, the dialog has to be closed

with Cancel and then reopened (exception: (Exception: checkboxes).

As long as the driver has not been specified, the combobox Driver object type lists all driver object

types available for the driver of the selected variable. As soon as a driver is selected, only the driver

object types of the specified driver are listed. If a driver from or to a straton driver is changed, the name

of the variable is automatically changed and adopted.

With multiple variables selected, checkboxes can have one of three states: on, off and undefined.

Fields that are not defined are not changed at the variable. If a field has been specified, it sets the new

value for all selected variables.

CHECK BEFORE THE MODIFICATION:

For each variable before modification it is checked, if the resulting settings are allowed.

Create, modify and use variables

82

 Example

Example for an invalid modification: An array variable and a simple variable have been

selected; the array dimension is changed. Error: A simple variable must not subsequently

be changed to an array variable.

For variables that cannot be changed to the new settings, an error message is generated. Before the

modification these are listed in the dialog 'Error modifying variable (on page 82)', after the

modification in the output window of the Editor.

Error modifying variable

If a modification for one or more variables is not possible, the dialog Error modifying variable opens.

Here the variables that cannot be changed in this way, are listed. It is opened, before the

modification is made and only if there are variables that cannot be changed. The entries can be sorted

and filtered.

Create, modify and use variables

83

TAG Description

Name Name of the variable, which cannot be changed.

Drivers Name of the driver with the driver identification, on which the variable is based.

Data type Datatype used by the variable.

Driver

object type

Driver object type that the variable uses.

Message Description of the cause, why the variable cannot be changed.

Cancel Modifying the variable is stopped. No modifications are made.

Ignore all All variables, which cannot be changed, are ignored. The variables, which can be

changed, are modified. A message for all ignored variables is generated in the output

window. The text is the same as in the 'Message'.

Back Return to modification dialog.

Status Line Number of selected variables and obstacles. The variable is considered

non-modifiable once the first obstacle is recognized. Thee can be more obstacles,

which then are not analyzed. In complex variables (arrays or structures) also all

activated variables are checked, if they can handle the changes. A message is

generated for each non-modifiable, activated variable. This means, that the number

of obstacles can be higher than the number of selected variables.

Create, modify and use variables

84

8.1.3 Deleting simple variables

In the detail view, click on the variable to be deleted with the right mouse button to get the delete

option in the following context menu:

 Clicking on Delete opens the following security dialog:

8.2 Arrays

Arrays are fields of data types or variables. We make a distinction:

 Data type arrays: Can only be implemented in structures.

 Variables Arrays: Can also be implemented with simple data types.

Arrays can have up to three dimensions.

Create, modify and use variables

85

 Example

Example for a two-dimensional array variable:

Engine speed [2.3]

This variable consists of six variables (2x3):

 Engine Speed [1.1]

 Engine Speed [1.2]

 Engine Speed [1.3]

 Engine Speed [2.1]

 Engine Speed [2.2]

 Engine speed [2.3]

Internal arrays are handled like structures (on page 95). That especially concerns addressing.

 Attention

Array variables that are based on a stratonNG or straton32 driver must not start with 1.

A zenon array with dimensions 1,2,2 is created as a simple variable in straton.

INACTIVE VARIABLES

Single variables of an array can be set inactive. Inactive variable

 Not available in zenon

 Are not registered with the driver

 Are not taken into account when the I/Os for the license size are calculated

In this way, reserve variables can be created in an array, which can be activated at a later point in time

e.g. when expanding.

SIZE OF BLOCK ARRAY (UP TO VERSION 5.50)

Up to version 5.50, the size of the block array could be defined using the Block array size

property. It is therefore possible to use only one licensed variable, for example, in the RGM or in VBA,

but to indirectly address several variables with drivers that use offset addresses. This property remains

for compatibility reasons.

Create, modify and use variables

86

 The internal driver does not support this property. A value can be defined in the

Editor, but no variables are displayed (value is always 0).

8.2.1 Create array variable

Simple array variables are created like simple variables (on page 78).

Property Description

Name Distinct name of the variable. If a variable with the same name

already exists in the project, no additional variable can be created

with this name.

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for

internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is

automatically loaded.

Driver object type Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm

Create, modify and use variables

87

Data type Select the desired data type (on page 14). Click on the ... button to

open the selection dialog.

Automatic addressing zenon calculates an automatic (on page 87) address allocation. This

depends on the granularity of the driver object type used and the IEC

data type on which the data type used is based.

Offset address

follows data type

offset and start

offset

The offset follows the projected offset and bit for the structure

element allocated.

Manual addressing Manual (on page 91) addressing.

Each data type starts

with new offset

Defines how single array elements are positioned with automatic

addressing.

Active: a new offset is started for each array.

Inactive: Offsets are used in full (variables are addressed in a

row).

Activate all elements On creating the new array variable all elements are automatically

activated

Activate elements

manually

The elements are not activated when created. They have to activated

in the variable list individually. This can be done via the context menu

of the variable list.

8.2.2 Addressing

Arrays are usually addressed automatically. In doing so, the following is given for the array variables:

 Net address

 Start offset

 Data block (optional)

 Bit number (optional)

Nothing more has to be set for single array elements. The address is calculated automatically.

If arrays are to be addressed manually, the Manual addressing option has to be deactivated, either

when creating the array or at a later point in time in the properties window.

Create, modify and use variables

88

The address is calculated again when changes are made to:

 Data type of an array

 Driver object type

 Drivers

 Array dimension

Example for an array with automatic addressing for a INT variable

We would like to create an array of five integer variables.

BASIC CONFIGURATION

In the variables configuration dialog

 Name: Free issue

 Driver: S7 TCP/IP

 Driver object type: Ext. Data blocks

 Data type: INT

 Array: Start index is 1

 Dim 1: 5

 Dim 2: 0

 Addressing: Automatic addressing

 Each data type starts with new offset: active

 Element activation: Activate all elements

Create, modify and use variables

89

After clicking OK, the five defined variables are created in the variable list. Additionally a corresponding

array variable is created in which we can set the array properties.

DETAIL CONFIGURATION

When selecting the array variable in the detail view, the properties of the whole array can be edited in

the properties window. The most important settings are in the group "Addressing". There we set the

following for the array:

 Data block

 Network address (=bus address)

 Start offset

As "Automatic addressing" was activated, all the addresses of the single array elements depend on this

start offset. In our example, we change the Data block to 50, we leave the network address at 0

and we change the offset to 100.

The granularity of the S7 datablocks is 8 bit. So the datablock area is byte-oriented. Each INT variable

needs 16 bits. This results in the following automatic addressing for our array:

Create, modify and use variables

90

Array Net address Data block Offset

Array of INT[1] 0 50 100

Array of INT[2] 0 50 102

Array of INT[3] 0 50 104

Array of INT[4] 0 50 106

Array of INT[5] 0 50 108

Each offset is two higher than the previous, as a 16 bit variable needs two 8 bit offsets.

Taking a S5 driver instead of the S7 driver changes the addressing. On the S5, the datablock area has a

granularity of 16 bits. The datablock area of a S5 PLC is word-oriented. Identical projecting would lead to

the following result:

Array Net address Data block Offset

Array of INT[1] 0 50 100NT

Array of INT[2] 0 50 101

Array of INT[3] 0 50 102

Array of INT[4] 0 50 103

Array of INT[5] 0 50 104

each offset now is only 1 higher than the previous, as a 16 bit variable needs only one 16 bit offset.

Example for an array with automatic addressing for a BOOL variable

We proceed as in the example of automatic addressing (on page 88) with INT data type; however we use

the standard data type BOOL as a data type. All other settings stay as described there and we now

create a new array variable.

We set the following values in the array variable properties:

Data block: 50

Net address: 0

Offset: 100

Bit number: 0

With an S7 driver, the following screen results with automatic addressing:

Create, modify and use variables

91

Array Net address Data block Offset Bit number

Array of INT[1] 0 50 100 0

Array of INT[2] 0 50 101 0

Array of INT[3] 0 50 102 0

Array of INT[4] 0 50 103 0

Array of INT[5] 0 50 104 0

A 1 bit variable has enough room in a 8 bit offset. Due to the Each data type starts with new

offset option being activated, each array element starts a new offset.

If we deactivate this property in the array variable, we get the following addressing:

Array Net address Data block Offset Bit number

Array of INT[1] 0 50 100 0

Array of INT[2] 0 50 100 1

Array of INT[3] 0 50 100 2

Array of INT[4] 0 50 100 3

Array of INT[5] 0 50 100 4

Now the bits are all in one offset. If the offset would not be big enough (e.g. array of 20 BOOL variable),

the next bit would be the first of the next offset. An array of 20 BOOL variable would be from offset 100

bit number 0 to offset 102 bit number 3.

Example for an array with manual addressing

For manual addressing, the Manual addressing property must be selected in the variable

configuration. The the address information can be issued manually for each array element for:

 Net address

 Offset

 Data block (optional)

 Bit number (optional)

This could then look as follows for the example of array with automatic addressing for a BOOL variable

(on page 90):

Create, modify and use variables

92

Array Net address Data block Offset Bit number

Array of INT[1] 0 50 100 0

Array of INT[2] 0 50 100 2

Array of INT[3] 0 50 101 0

Array of INT[4] 0 50 101 2

Array of INT[5] 0 50 102 0

 Attention

If either the start offset of the array or the size of the array dimension is changed, all

address information (offset and bit address) is newly calculated.

If the start offset is changed, the offsets of the variables already activated are also

changed by the delta of the change. The offset difference between the activated variable

and the array variables is thus retained.

8.2.3 Changing the properties of an array

The properties are changed using the Properties window and the Modify variable dialog.

Note two special properties in particular:

 Last used offsetshows which offset (including bit number) was the last used in automatic

addressing.

 Size in bytes: shows how many bytes are used by the selected array.

The following cannot be changed:

 Name

Create, modify and use variables

93

 Activating the elements

Property Description

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for

internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is

automatically loaded.

Driver object type Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm

Create, modify and use variables

94

Data type Select the desired data type (on page 14). Click on the ... button to

open the selection dialog.

Automatic addressing zenon calculates an automatic (on page 101) address allocation. This

depends on the granularity of the driver object type used and the IEC

data type on which the data type used is based.

Offset address

follows data type

offset and start

offset

The offset follows the projected offset and bit for the structure

element allocated.

Manual addressing Manual (on page 105) or semi-automatic addressing.

Each data type starts

with new offset

Defines how single array elements are positioned with automatic

addressing.

Active: a new offset is started for each array.

Inactive: Offsets are used in full (variables are addressed in a

row).

NOTES ON CHANGING THE IEC DATA TYPE

If the data type of an array is changed, then the following applies:

 As long as the value of the current signal range is within the signal range of the data type, no

amendment is made.

 The measuring range is not adapted.

Exception: Signal and measurements ranges are always adapted for the BOOL data type.

For the adaptation of the signal range, the new signal range must be less than the previous one:

 SingalbereichMin is only adapted if SignalbereichMinNeu <is SignalbereichMinAlt

 SignalbereichMax is only adapted if SignalbereichMaxNeu < is SignalbereichMinAlt

8.2.4 De/activating array elements

Each array element can be de/activated individually. Activating is either done on creating the array

(activate all elements) or manually via the context menus of the single array elements. Inactive array

Create, modify and use variables

95

elements are handled by automatic addressing as though they were active. The inactive elements are

place holders, that can be activated at any time.

8.3 Structure variables

A structure consists of individual elements. These are always data types. On creating a structure

element always an existing data type has to be selected. Structure elements can be either embedded or

linked.

TAG Description

Embedded structure

elements

can have properties that differ from their basic datatypes. The

properties are defined individually for each structure element and are

saved there.

Linked structure

elements

Always get all their properties from the basic datatypes that they are

linked to. If the basic data type is changed, all linked elements are

changed in the same way!

STRUCTURE DATA TYPES

You can find details on creating structure data types in the Data types (on page 14)/Structure data types

(on page 26) section.

STRUCTURE VARIABLES

Structure variables are always based on a structure data type. So as a matter of principle they get the

structure of the basic datatype. When creating a structure variable, a number of options can be defined:

Create, modify and use variables

96

TAG Description

Arrays It is possible to select whether the structure is created as a single structure variable

or as an array. Up to three dimensions can be defined for a structure array.

Addressing The structure variable can now be addressed manually or automatically. As a

default addressing is defined automatically. The calculation of the addressing

thereby depends on the granularity of the driver object type that is used and the

structure elements that are used.

With automatic addressing, each data type can be started with a new offset.

Activating

elements with

structure

variables

It can be set, whether all elements of the structure should be activated.

Activating means, that all elements are set active. Active variables can be used in

zenon at once. Inactive variables are not available to zenon, are not counted for the

licensed I/Os and are not registered in the driver. Therefore reserve areas can be

created in a structure, which can be activated at a later point in time. All elements

of a structure variable can be activated or deactivated via the context menu at any

time.

 Deactivated structure variables are also taken into account when addresses

are calculated. If this is not desired, the addresses must either be issued manually

or the corresponding structure element must be deleted from the data type.

BEHAVIOR DURING XML IMPORT

Structures which differ from existing ones can be imported in already existing structures. Variables

based on this are automatically adapted.

 The structure elements are identified by their name.

 At already existing structure elements the type is adapted if necessary.

 Non-existing elements are added.

 Elements which do not exist in the structure data type are removed.

At the import of structure variables, active and inactive variables are imported. Existing imports are not

overwritten at the import. If an inactive variable is imported to a project and then activated, it stays

active even after a new XML import.

Create, modify and use variables

97

8.3.1 Changing structure variables

To create a structure variable:

1. Create a simple variable (on page 76)

2. Select a structure data type as the data type

3. Select the driver and driver object type

4. Define the array dimensions

Property Description

Name Distinct name of the variable. If a variable with the same name

already exists in the project, no additional variable can be created

with this name.

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for

internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is

automatically loaded.

main.chm::/Intern.chm::/Intern.htm

Create, modify and use variables

98

Driver object type Select the appropriate driver object type from the drop-down list.

Data type Select the desired data type (on page 14). Click on the ... button to

open the selection dialog.

Automatic addressing zenon calculates an automatic (on page 101) address allocation. This

depends on the granularity of the driver object type used and the IEC

data type on which the data type used is based.

Offset address

follows data type

offset and start

offset

The offset follows the projected offset and bit for the structure

element allocated.

Manual addressing Manual (on page 105) or semi-automatic addressing.

Each data type starts

with new offset

Defines how single structure elements are positioned with automatic

addressing.

Active: a new offset is started for each structure element. A bit

offset > 0 increases the offset by 1.

Inactive: Offsets are used in full (variables are addressed in a

row).

Activate all elements All elements are automatically activated when the new structure

variable is created.

Activate elements

manually

The elements are not activated when created. They have to activated

in the variable list individually. This can be done via the context menu

of the variable list.

DATATYPE ORGANIZATION WITH AUTOMATIC ADDRESSING

 A driver BYTE granularity can only use the bit 0 to 7 with BOOL. All other data types start at bit

0.

 With WORD: BOOL bits 0 to 15, U(S)INT the bits 0 and 8. All other data types start at bit 0.

 With DWORD: BOOL bits 0 to 31, U(S)INT the bits 0, 8, 16, 24. (U)INT - the bits 0 and 16. All other

data types start at bit 0.

 Strings must always start at bit 0.

As a result of this: If, with the current address, the > bit offset is 0, the variable is set to bit 0 and

offset+1.

Create, modify and use variables

99

USINT = 8 bit, WORD granularity = 16 bit.

The variable can only start with the bits 0 or 8. If, for example 2 is planned as a bit offset and the

current address is Offset=0 Bit=0, the variable is set to Offset 0 Bit 8. If the current address

were Offset=0 and Bit=7, to Offset=1 Bit=0

Simple structure with automatic addressing

EXAMPLE

The first step is to create a structure data type. To do this, we create a slider structure with four

elements:

 Engine speed set (UINT),

 Engine speed actual (USINT),

 Array [2] of

 on/off (BOOL) and

 monitoring (SINT).

Then we have to create a structure variable with the Create variable (on page 97) dialog, which is

based on this data type. For this example, we use:

 the S7 TCP/IP driver

 the Range data block

 the array dimension 0

 the activated options

 Automatic addressing

 Each data type starts with new offset

 Activate all elements

Create, modify and use variables

100

The defined structure with all elements appears in the variable list after confirming the settings with

Finish.

When selecting the structure variable "Engine Speed Control" in the detail view, the properties of the

whole structure can be edited in the properties window. The most important settings are in the group

Addressing. There the datablock, the net address (= bus address) and the start offset can

be changed. As Automatic addressing was activated, all the addresses of the single structure

elements depend on this start offset.

In our example, we use the settings:

Data block: 50

Offset: 100

Net address: 0

The granularity of the S7 datablocks is 8 bit. So the datablock area is byte-oriented. Each UINT variable

needs 16 bits, each USINT variable 8 bits, each BOOL variable 1 bit and each SINT variable 8 bits.

This results in the following automatic addressing for our structure:

Variable Net address Data block Offset Bit number

Engine Speed Control.Engine Speed

Set
0 50 100 0

Engine Speed Control.Engine Speed

Actual
0 50 102 0

Engine Speed Control.Engine

Speed.On/Off[1]
0 50 104 0

Engine Speed Control.Engine

Speed.On/Off[2]
0 50 105 1

Engine Speed Control.Engine

Speed.Monitoring
0 50 106 0

"Last used offset": 106 bit 7

The individual elements of the structure variable are thus optimally fit into the offsets.

Create, modify and use variables

101

The 8 bit variable "Engine Speed Control.Engine Speed.Set" uses one offset, the 16 bit variable

"Engine Speed Control.Engine Speed.Actual" uses two offsets, the two BOOL variable use two bit in

one offset and the variable "Engine Speed Control.Engine Speed.Monitoring" uses one offset.

The addresses can be changed in the structure data type or in the address settings of the structure

variable, but not in the single structure variable elements. That would only be possible with manual

addressing.

Taking a S5 driver instead of the S7 driver changes the addressing. On the S5, the datablock area has a

granularity of 16 bits. The datablock area of a S5 PLC is word-oriented.

Identical projecting would lead to the following result:

Variable Net address Data block Offset Bit number

Engine Speed Control.Engine Speed

Set
0 50 100 0

Engine Speed Control.Engine Speed

Actual
0 50 101 0

Engine Speed Control.Engine

Speed.On/Off[1]
0 50 102 0

Engine Speed Control.Engine

Speed.On/Off[2]
0 50 102 1

Engine Speed Control.Engine

Speed.Monitoring
0 50 102 8

"Last used offset": 102 bit 15

The individual elements of the structure variable are again optimally adapted to the offsets here.

The 8 bit "Engine Speed Control.Engine Speed.Set" variable uses half an offset (bits 0 to 7), the 16 bit

variable "Engine Speed Control.Engine Speed.Actual" uses one offset. The two BOOL variables only

use the first two bits of the offset 102 and so the variable "Engine Speed Control.Engine

Speed.Monitoring" starts in the same offset with bit number 8.

Structure variable as an array with automatic addressing

ARRAY WITH A STRUCTURE ELEMENT WITH SIMPLE DATA TYPE

Variables are addressed in packed form, based on the offset with the structure element, according to

IEC data type and granularity. There is thus no difference to "packed" addressing.

Create, modify and use variables

102

STRUCTURE VARIABLE AS AN ARRAY

The address of the first structure element of the index n is derived from the address of the last structure

element at the index n-1 plus the offset at the structure element.

If the Each data type starts with new offset property is

 active: The index always starts at a whole offset (bit is 0, maybe shifted by the offset at the

structure element).

 inactive: is "packed" according to data type and granularity and shifted by the offset of the

structure element. Regardless of this, the variable is set up according to data type and

granularity.

We use the same example as in the Simple structure with automatic addressing (on page 99), however

we change the array dimension 1 from 0 to 2 in the structure variable properties.

After clicking on Finish, the variable list looks as follows:

The existing structure was changed to the effect that now each structure element is available twice.

For our example with the S7 driver, this results in the following automatic addressing, provided that we

activated: Each data type starts with new offset:

Create, modify and use variables

103

Variable Net address Data block Offset Bit number

Engine Speed Control[1].Engine

Speed.Set
0 50 100 0

Engine Speed Control[1].Engine

Speed.Actual
0 50 101 0

Engine Speed Control[1].Engine

Speed.Ein/Aus[1]
0 50 103 0

Engine Speed Control[1].Engine

Speed.Ein/Aus[2]
0 50 103 1

Engine Speed Control[1].Engine

Speed.Monitoring
0 50 104 0

Engine Speed Control[2].Engine

Speed.Set
0 50 105 0

Engine Speed Control[2].Engine

Speed.Actual
0 50 106 0

Engine Speed Control[2].Engine

Speed.Ein/Aus[2]
0 50 108 0

Engine Speed Control[2].Engine

Speed.Ein/Aus[2]
0 50 108 1

Engine Speed Control[2].Engine

Speed.Monitoring
0 50 109 0

"Last used offset": 109 bit 7

The array structure was created exactly like a simple structure. The second structure array starts exactly,

where the first ends.

Changing the driver to S5 results in the following:

Create, modify and use variables

104

Variable Net address Data block Offset Bit number

Engine Speed Control[1].Engine

Speed.Set
0 50 100 0

Engine Speed Control[1].Engine

Speed.Actual
0 50 101 0

Engine Speed Control[1].Engine

Speed.Ein/Aus[1]
0 50 102 0

Engine Speed Control[1].Engine

Speed.Ein/Aus[2]
0 50 102 1

Engine Speed Control[1].Engine

Speed.Monitoring
0 50 102 8

Engine Speed Control[2].Engine

Speed.Set
0 50 103 0

Engine Speed Control[2].Engine

Speed.Actual
0 50 104 0

Engine Speed Control[2].Engine

Speed.Ein/Aus[2]
0 50 105 0

Engine Speed Control[2].Engine

Speed.Ein/Aus[2]
0 50 105 1

Engine Speed Control[2].Engine

Speed.Monitoring
0 50 105 7

"Last used offset": 105 bit 15

EACH DATA TYPE STARTS WITH NEW OFFSET

The array structure was created exactly like a simple structure. The second structure array starts exactly,

where the first ends. Here, differences are possible, depending on the Each data type starts

with new offset option: If this option is activated, the next structure array always starts at a new

offset, even if the next structure would fit into the current offset.

Create, modify and use variables

105

 Example

The last structure element is a SINT (8 bits) and uses offset 102 bits 0 to 7. For the

example of the S5 driver (16 bit offsets) the next structure would start as shown

below:

 Option "Each data type starts with new offset" activated: Offset 103 bit 0

 Option "Each data type starts with new offset" deactivated: Offset 102 bit 8. The structures are

now directly after one another.

Manual addressing

Addresses can be issued semi-automatically or completely manually with manual addressing.

SEMI-AUTOMATIC SOLUTION

The offsets and the bit numbers are defined in the structure elements in the data type. But there only a

relative offset is defined. In the structure variable, a start offset is defined and all relative offsets are

added to this start offset.

As in Simple structure with automatic addressing (on page 99), we create the structure slider

structure data type. A desired offset is then set for the individual structure elements, for example offset

3 for the Engine speed set structure element.

For structure variables, the automatic addressing option is activated when it is created. A start

offset of 100 is defined in the properties of the structure variable. zenon then calculates, at the address

of the "Drehzahl-Regelung.Drehzahl.Soll" variable, the offset 103 (100 from the structure + 3 of

the structure element).

If the relative offset is to be subsequently changed, the following steps have to be carried out:

 First the offset in the structure element in the data type has to be changed.

 Then the start offset must be changed for the structure variable (for example to 101).

 And then back to the initial offset (100 in our example).

Create, modify and use variables

106

Background: The new address calculation is only done, when the start offset in the structure variable is

changed, and not if only the offset in a structure element is changed.

FULLY MANUAL SOLUTION

Basically the projecting is the same as for the semi-automatic solution with the exception, that in the

structure variable the addresses are entered by hand for each element.

If the start-offset of a structure variable is changed, the offsets of the variables already activated are

also changed by the delta of the change. The offset difference between the activated variable and the

array variables is thus retained.

8.3.2 Changing structure variables

Changes are made via the Properties and Variable dialogs.

The following cannot be changed:

 Name

Create, modify and use variables

107

 Activating the elements

Property Description

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for

internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is

automatically loaded.

Driver object type Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm

Create, modify and use variables

108

Data type Select the desired data type (on page 14). Click on the ... button to

open the selection dialog.

Automatic addressing zenon calculates an automatic (on page 101) address allocation. This

depends on the granularity of the driver object type used and the IEC

data type on which the data type used is based.

Offset address

follows data type

offset and start

offset

The offset follows the projected offset and bit for the structure

element allocated.

Manual addressing Manual (on page 105) or semi-automatic addressing.

Each data type starts

with new offset

Defines how single structure elements are positioned with automatic

addressing.

Active: a new offset is started for each structure element.

Inactive: Offsets are used in full (variables are addressed in a

row).

Changing the properties

Changes are made in the properties window.

Note that changes in the structure variable can affect the single elements of the structure variable (e.g.

address calculation when you change the start offset or the driver). The properties of each element of

the structure variable can be changed individually. Changes can either be made in the single elements or

in the structure elements of the basic structure data type. The changes then are inherited. (See the

Inheritance concept (on page 110) chapter in relation to this)

De/activating structure elements

The element has to be selected and then the appropriate command from the context menu is executed.

Inactive array elements are treated as though they were active by the automatic addressing. The

inactive elements are place holders, that can be activated at any time.

Inactive variable

 Not available in zenon

 Are not registered with the driver

Create, modify and use variables

109

 Are not taken into account when the I/Os for the license size are calculated

IMPORTANT NOTES

Note when deactivating variables:

 Variable references in screen elements are lost in deactivation. These connections can only be

restored manually.

 If a structure element is based on an IEC data type that is not permitted with the selected driver,

then this element cannot be activated.

 If variables are deactivated and then again activated, the dynamic elements for these variables

are not updated in the Editor. In order to update them, click on the corresponding variable in the

property window of the element.

Changing the sequence

The sequence of the structure elements of a structure variable can only be changed in the

corresponding structure data type. When changing the structure data type all structure variables based

on it are also changed!

8.3.3 Deleting structure variables

Highlight the variable in the detail view and press the Delete key.

8.4 Project overlapping variables

Variables can also be selected from other projects and used throughout the project. This is also possible

in different hierarchies. Variables from superordinate projects, projects at the same level and

subordinate projects, but also variables from unconnected projects can be used as desired.

To use variables throughout a project, all projects concerned must, in Runtime:

 Be loaded

Inheritance concept

110

 Contactable in the network zenon does not check the contactability in the network in Runtime.

In the project, the variables that come from other projects are displayed with the following wording:

[Project name]#[Variable name], for example Project1#WIZ_VAR_10

If cross-project use is not possible, projects in the variable selection dialog are displayed as grayed out.

 If project names are subsequently changed or projects are copied, the correct assignment must be

ensured. For this use the dialog for replacing project references.

 Attention

Note the special conditions for cross-project variables in the command.

9. Inheritance concept

Inheritance means that the properties of an object are passed on to an object based on the first

one. The inherited object in principle gets all properties from the basic object, but single properties or

even all can be changed = overwritten.

Inheritance concept

111

In contrast there is also the possibility of linking. Here again the new object gets all the properties

from the basic object, but they cannot be changed/overwritten in the basic object. Changes are only

possible in the basic object.

For both cases the following is true: If a property in the basic object is changed, all objects based on this

basic object are also changed. So the single properties are not saved in the object, there is only a

reference to the basic object.

 As soon as a value is overwritten (changed), this property loses its reference to the basic

object. If such an overwritten property is changed in the basic object, these changed no longer effect

the inherited object. This is only true for the properties that lost their reference to the basic object. All

other properties still have their reference to the basic object. An overwritten property can at any time

be changed back to a referenced property.

9.1 Inheritance in zenon

In zenon the base objects are the data types. Both simple and structure data types link their properties

to the variables based on them.

The variables are the objects based on the data types. In principle, they inherit all their properties.

Exceptions are properties which

Can be only set at the variable, e.g. the addressing that is based on the driver object type and not the

data type.

In the structures there are the structure elements. These can be either embedded or linked. If they

are linked, they get all the properties from the data type that they are linked to. All changes in the basic

data type are directly passed on. But no properties can be overwritten, as they only are linked and not

inherited.

The embedded structure elements of a structure data type in principle do not have a reference to their

basic data type at all. They are copies, where all properties can be changed individually. Changes in the

basic data type do not effect them. Embedded structure elements can at any time be changed back to

linked structure elements and vice versa.

Inheritance concept

112

9.1.1 Inheriting properties with structure datatypes and structure variables

Structure variables are handled in the same way as simple variables. But the properties have to be set

for every single structure element. Each element of a structure variable is linked to a structure element

of the structure data type it is based on.

Additionally a structure element again can be linked to a data type.

So the structure variable element inherits the properties from the structure element, which again can be

linked to a data type.

It becomes even more complex, if structures are used in structures:

In the example the variable is Motor.Drehzahl Regelung. Drezahl is deduced from the structure Motor.

This again contains the structure element Speed Control, which again is a structure. This structure is

linked to the Engine structure, as structures in structures can only be linked. In this structure, Speed

Control is linked to the data type INT.

So if there are changes in this data type, these changes directly affect the variables Engine.Speed

Control. Engine.Speed Actual.

So be careful with changes in data types.

Overwriting properties or restoring the inheritance from the data type are done as described above.

9.2 Inheriting properties of a datatype with simple variables

All properties are inherited from a data type when a new variable is created. This is marked with a

checkmark in the property.

Inheritance concept

113

In this example all properties are inherited from the data type except "Unit". This property was

overwritten in the variable. If the unit of measurement property is changed in the basic data type, the

unit of measurement property is changed for all variables based on this data type. But not in variable,

where this property was overwritten (changed).

 Attention

Please be aware, that changes to the data type always change all variables based on

that data type (except properties that were overwritten accordingly).

9.2.1 Overwriting properties

Properties of variables can be overwritten in two ways:

 The property is changed with the keyboard or the mouse As soon as the change is saved, the

reference to the data type is lost.

 The reference of this property can cut from the data type via the context menu. In this case

either only the selected property or all properties of the variable can be separated from the data

type. (Screenshot!)

As soon as a property was overwritten, the checkmark disappears. All changes in the data type do no

longer effect these overwritten properties of the variable.

9.2.2 Restoring the properties of a datatype

Select the overwritten property and in the context menu execute Link all properties with datatype

or only Link<Name>with datatype. This property or all properties again are marked with the checkmark.

Value calculation

114

10. Value calculation

The value calculation defines the value range of a variable using different properties.

Fluctuating values can be picked up using different properties, in order to prevent unwanted reactions

such as alarms or archive entries. In doing so, a distinction is made between:

 Hysteresis: Prevents the transfer of fluctuating values from the driver to variables.

 Prevents the creation of archive entries for fluctuating values in relation to the measuring range.

 Threshold value: Prevents unwanted reactions such as alarms for fluctuating numerical

values (on page 119).

10.1 Hysteresis

Hysteresis defines the area within which a value change is ignored. This avoid fluctuating values that

would constantly trigger limit breaches being displayed in a screen element.

In <CD_ PRODUCTNAME>, hysteresis can be stipulated in the properties of the variables (Value

calculation/Hysteresis) for:

 Value calculations of the variables: Positive for signal properties and Negative for

signal for signal range

Values that change that are within hysteresis are not transferred to variables from the driver.

 Entries in the archive in the event of a value change: Positive for archive und

Negative for archive properties for measuring range

Changed values that are within the hysteresis are not entered into the archive.

Limits

115

 Example

A limit value of 50° C is defined. The temperature normally fluctuates somewhat.

Therefore the limit is breached each time the 50° limit is exceeded or gone under, which

triggers an alarm and an entry in the archive.

If hysteresis is defined for the variable:

 Positive for signal: 2

 Negative for signal: 2

And for the archive as hysteresis:

 Positive for archive: 8

 Negative for signal: 6

Then:

 Only exceeding 52° and going below 48° is considered a limit breach

 Only once 58° is exceeded or 44° is gone below is an archive entry created

 Hysteresis that is to avoid unwanted reactions (such as alarms) to limit breaches due to

fluctuating values can be created using threshold values (on page 119).

 Information

Not every driver supports hysteresis. You can find information on whether your driver

supports hysteresis in the documentation for the corresponding driver.

11. Limits

Limits have the task to trigger a reaction, as soon as a limit or a status is violated or reached. The limit is

entered in the Editor and fixed or is set variably depending on the value of a variable in the Runtime.

The kinds of reaction can be manifold. For example: Color changes, entries in alarm and chronologic

event list, function calls etc. are possible. The execution of the reaction is carried out in zenon.

The engineering of

Limits

116

 limits defines the behavior of numerical variables.

 Status defines the behavior for binary variables (low, high or logical 0, 1).

Note: For reasons of universal validity, the term "limit" also is used for "status" hereafter.

If an additional evaluation of the variable's status information is needed, this has to be carried out using

a reaction matrix.

More information on reaction matrices can be found in the chapter Reaction matrix (on page 127).

USE WITH EPLAN

With an alarm, an EPLAN document can also be called up. To do this, the EPLAN connection must be

licensed and the path to the EPLAN program must be defined in the zenon6.ini file.

Configuration:

 Input of the character sequence $PRG:xxxxxx in the Help file property in the Limits group

xxxxxx is the placeholder for the parameters to be given

 The Help chapter property is ignored, but must not be empty

For details, see the Calling up EPLAN from the help chapter in the Runtime help manual.

11.1 Defining limits in the Editor

Selecting a variable in the detail view of the Project Manager shows all the properties of the selected

variable in the properties window.

To create a new limit, click New limit. Each time you click on Insert limits, a new limit (Limit 1,

Limit 2, …) is added to the list.

Limits

117

All available properties for defining limits are listed in the properties window and are described in the

properties help. The context sensitive help is automatically displayed when selecting a property.

Any number of limits can be defined per variable.

Clicking on the plus in front of the property Limit opens the list. All defined limits are listed in this group.

Now a limit can be selected to open the properties of this limit.

11.1.1 Delay

The Delay time [s] property can be used to configure a value for a time delay in the properties for

the limit. This value defined the time range in seconds in which the limit breach must occur in order for

the action defined for the limit breach to be carried out.

Default value: 0 - no delay

Maximum value: 4294967295 seconds

The delay time applies regardless of which way the limit as breached.

 Engineering

 Limit value 1 has a value of 50.

 Limit value 2 has a value of 100.

Limits

118

 The delay time is 3 s.

1. The value increases to 110.

 After the breach has occurred for 3 seconds, the limit breach for the value 100 is

displayed.

2. The value decreases to 70.

 Once this value has lasted for 3 seconds, the alarm for the limit breach 100 is

deactivated and a limit breach for the value 50 is displayed.

3. If the value goes below 40, the alarm is deactivated after 3 seconds.

TIME STAMP AND VALUE

The time of the first violation is entered as the time stamp for the limit violation in the AML and the CEL.

The first value after the delay time is entered as value, not the value that triggers the alarm.

Key:

Limits

119

Digit Description

1 Time of limit breach.

Start of the configured delay time.

Value to be triggered.

2 End of the configured delay time. Alarm received:

 Time: Time of limit violation (1)

 Value displayed: Value after the delay time (2)

 Attention

In combination with the Flashing property, this property has the following effect in

the network:

 Limit value with flashing and without delay:

Linked elements will flash on the server and on the clients.

 Limit value with flashing and delay:

Linked elements will only flash on the server, not on the clients.

 Alarm with flashing and without delay:

Linked elements will flash on the server and on the clients.

 Alarm with flashing and delay:

Linked elements will flash on the server and on the clients.

11.1.2 Threshold

Thresholds prevent unwanted reactions to fluctuating numerical values. They create a limit hysteresis.

The limit is therefore a different one for the start of the limit breach than the end of the limit breach.

For example: Limit max. at 100, threshold value 10. As soon as the value of the variable reaches 100,

the limit is violated. If the values goes down to 95, nothing happens. Only once the value goes down to

89 does the limit violation end.

Limits

120

Thresholds can be set for maximum or minimum. For maximum, the threshold moves downwards, and

upwards for minimum.

 a maximum value of 900 and a threshold of 10 result in 890

The limit will be violated when exceeding 900 and the critical area will be left when falling under 890.

 A minimum value of 900 and a threshold of 10 result in 910

The limit will be breached when falling below 900 and leaves the critical area again when exceeding 910.

As opposed to hysteresis (on page 114), this property does not influence the display of the value, only

the alarm behavior.

11.1.3 Deduce limits from datatypes

Limits can already be defined in the datatype. The limits engineered there are available in all variables

based on that data type. The inheritance concept works here as described above: all properties are

inherited from the datatype and can be overwritten in each single variable. So a limit also can be

deactivated in a single variable. A limit inherited from the datatype cannot be deleted in a single

variable (deleting is only possible in the datatype). But further limits can be added in the variable. These

variable-specific limits of course can be deleted in the variable.

More information on reaction matrices can be found in the chapter Datatypes (on page 14).

11.1.4 Multiple selection

If several variables are selected, the properties of all these variables can be edited at the same time. If

one of the selected variables does not have the limit to be edited, it will not be added there.

With this multi-selection properties, that differ from variable to variable, are displayed in red in the

properties window. (The property of the first selected variable is displayed). If properties do not exist for

all the selected variables (e.g. limits), they are marked in yellow.

Limits

121

11.1.5 Deleting limits

Click “delete limit” in the properties.

11.1.6 Overlapping limits

Analog limits can be defined overlapping. In this case zenon automatically checks which limit is valid.

 Example

Limit 1 (maximum) is defined 100. Limit 2 (maximum) is defined 200. If the variable in the

Runtime gets a value between 100 and 199, limit 1 is violated. If the value is higher than

200, limit 2 is violated.

11.2 Limits in the Runtime

For binary variables zenon reacts on reaching the status (positive edge). For numerical variables the

control system reacts on reaching or violating the defined maximum (equal or bigger) and reaching or

violating the defined minimum (equal or smaller). This is called a limit violation.

Limits

122

 Information

A binary variable has two limits, a Min limit and a Max limit. Care that: Enter the Min

limit as limit 1, and the Max limit as limit 2.

At the calculation of limits of numerical variables, the raw value of the variable (signal resolution) for the

use in zenon is always calculated in a linear way unless it is defined differently with function 'non

linear value adjustment".

 A temperature sensor sends its value to the control. The corresponding byte variable has a

signal resolution of 0...255. In zenon the corresponding variable has a measuring range from 0..100.

Hence:

Control Control
system

0 0

127 50

255 100

If a limit is violated, when zenon is started, the reaction is executed immediately on starting the

Runtime.

 If the reaction should be an entry in the alarm or CEL list, the system first checks whether

the entry already exists from the previous session. If this is true, the entry is not done again! So double

entries are avoided. All other reactions are nevertheless executed.

 Attention

Only one limit of a variable can be active at a time.

More information on the conversion of the signal range to the measuring range can be found in the

properties help section of the properties window if you select the "Value" property.

11.2.1 End of a limit violation

If a limit is violated, a value change within the limit range does not lead to a new reaction.

 A limit range of 100-200 is configured. If the value changes from 110 to 115, there is

no further reaction. If the value changes to 210, there is a reaction again because of the next limit.

Limits

123

Unwanted reactions for fluctuating numerical values can be avoided by using thresholds (on page 119).

11.3 Dynamic Limit Text

The dynamic limit text allows it to include the current values of other variables in the limit text of a

variable or a Reaction matrices (on page 127) (Rema). At that a fixed text can be linked via an index with

key words generated from a language table (see also Using key words in text lists (on page 126)). In the

Runtime this limit text can be displayed in the Alarm Message List, Chronologic Event List and/or the

alarm status bar. In the dynamic elements Link text and Status the dynamic limit text cannot be

displayed.

SYNTAX

The following nomenclature is valid for the parameterization of the limit texts:

TAG Description

$ Denotes a dynamic limit text; this character must be on the first position in the limit

text.

; Separator of commands. Is used in order to separate the constant text from the

dynamic text. When separating variables, no space must be left between the

separator and the variable.

@Text Text from the currently loaded language table

%PV Value of another variable with the name „PV“

@Text+%PV Composed keyword for the text from the currently loaded language table. Here the

value of variable 'PV' is saved and when being displayed a text is searched in the

language table which is a combination of 'text' and variable value.

This text encoding works only for the Alarm Message List or the Chronological Event List. In text

elements this functionality is not available. The using of combined keywords makes it possible to create

dynamic limit texts which can have more than 80 characters.

 Example 1

Limit text = $@Text; X-Pos ;%Value1; Y-Pos ;%Value2

The following preconditions are valid:

 @Text is a key word in the language table corresponding to „Text from

Limits

124

table“

 Value1 is an integer variable with the value 14

 Value2 is an integer variable with the value 12

Output = Text from table X-Pos 14 Y-Pos 12

 Example 2

$OFF in position ;%String1

The following preconditions are valid:

 %String1 is a string variable with the content „ORT“

Output = OUT in position ORT

 Example 3

$%@message_+value1

The following prerequisites apply:

 @message_ is a part of a keyword in the language table

 Value1 is an integer variable with the value 12

With the combined keyword, the result is the keyword „message_12“ and the

corresponding text from the language table

 Example 4

$%@message_+String1

The following prerequisites apply:

 @message_ is a part of a keyword in the language table

 String1 is a string variable with the content „zenon“.

With the combined keyword, the result is the keyword „message_zenon“ and the

Limits

125

corresponding text from the language table

LIMITS FOR DYNAMIC LIMIT TEXTS

The storage of dynamic limit texts leads to a number of limits:

1. Static text is stored in the storage area of the limit text:

maximal 128 characters

2. Values of the linked variables are stored in the storage area of the commentary text:

Maximum 80 characters.

3. If dynamic limit texts are used, no commentaries can be used for these alarms.

This limits can be evaded:

EXTENSION FOR LONG DYNAMIC LIMIT TEXTS.

Variable values for dynamic limit texts can be evacuated in an own file.

: In the project properties in group Alarm Message List the property Long dynamic

limit texts AML or in group Chronological Event List the property Long dynamic limit texts

CEL is active.

Instead of the commentary field the values are stored in an own file. 264 bytes are available per limit.

Per variable 10 bytes of these are used for internal structure information.

 Dynamic limit with a string variable:

Of the 264 byte

 10 byte are used for structural information

 254 byte are available for the content of the string variable

 Dynamic limit with a string variable and a word variable:

Of the 264 byte

 20 byte are used for structural information

 2 byte for the content of the word variable

 244 byte are available for the content of the string variable

Limits

126

The strict limitation to three variables per limit text no longer exists.

The file names for the additional created files are Dxxx.aml or Dxxx.cel.

For the ring buffer the additional information is saved in aml.bin und cel.bin.

ERROR TEXTS DURING RUNTIME:

TAG Description

 XXX The value of a linked variable has changed.

--- values of linked variables are not available (can happen at program start).

>3 number of linked variables is higher than 3 (so value cannot be saved).

11.3.1 Dynamic key words in limit texts

Alarm messages from Boolean variables do not provide the reason why an alarm was triggered when

dealing with collective messages. The cause can be transferred using an index variable, so that the limit

text prints out the cause for the alarm anyway. The correct text is found and displayed using the

dynamic limit text (see Language switching chapter). For this, no fixed word can be used as a key word,

but instead a dynamic one. This is comprised of prefix+value of index variable:
%@errornr+mIndex

It is possible to use multi-dimensional key words (several indices).

For example: fixed text; @Motorfehler%meinIndex1-%meinIndex2 becomes, for example

@Motorfehler4-67 in Runtime. This key word is then searched for in the language table and the

respective text is displayed.

EXAMPLES

$@error in module: ;%moduleNr;@error type: ;%@errornr+mIndex;

Description:

$ defines a dynamic limit value text.

@error in module: a normal key word from the language table

Reaction matrices

127

%moduleNr: Is replaced by the value of the ModuleNr value in Runtime (Functionality of the dynamic

limit text)

@error type: a normal key word from the language table

@errornr: The first part of the dynamic key word

+mIndex: Is replaced in Runtime by the value of the mIndex variable and supplements the keyword
@errornr

Value of mIndex Keyword

1 @errornr1

2 @errornr2

$%@Message_+Internal_UINT_001;/;%@Reason_+Internal_STRING_004

If Index_UINT_001 has the value 4 and Index_STRING_004 has the value 'Fire', then the

texts Message_4 and Cause_of_fire are searched for in the language table and displayed in the

AML/CEL.

12. Reaction matrices

 Information

Limit information can be defined centrally in a reaction matrix (abbr. rema).

When for example for a number of filling levels the same filling level control is carried

out, it can be defined in a single reaction matrix. This makes it possible to change for

example the value of the lower limit at a central point.

ADVANTAGES WITH RESPECT TO LIMITS:

 Reaction matrices can be used multiple times. A reaction matrix can be linked to several

variables that even can be based on different data types.

Reaction matrices

128

 Reaction matrices can handle each value change of a numeric variable as a new limit violation.

This is not possible in limits.

 With reaction matrixes, a status such as invalid, for example, (see status processing) can be

requested. This is also not possible with limit values.

More information on limits can be found in the chapter Limits (on page 116).

12.1 Creating a reaction matrix

Select "Reaction matrix" in the Project Manager and open the context menu with the right mouse

button. There, select Reaction matrix new....

In the appearing dialog, enter the name and the type of the reaction matrix. Please be aware that the

type cannot be changed later on. The name however can be changed at any time.

The several types of reaction matrices are used for the following evaluations:

Parameters Description

Binary Evaluation of discrete states (bit-oriented)

Numerical Evaluation of analog states (value-oriented)

Multi binary Extended evaluation of 32 bit variables; the first 16 bits determine the value of the

variable and are passed on as numeric value; rerouting of status bits; special function

(switch-off of data points when status bit is set) (Protective data configuring - only

SAT-specific)

Multi

numeric

Extended evaluation with simultaneous status routing and special function

(switch-off of data points when status bit is set)

String collation

Reaction matrices

129

12.2 Editing a reaction matrix

In order to edit a reaction matrix:

 select the reaction matrix from the detail view

 select the desired command from the context menu

CONTEXT MENU DETAIL VIEW REACTION MATRIX

TAG Description

New reaction matrix Creates a new reaction matrix.

Configuration Opens the dialog for configuring the reaction matrix.

Copy Copy selected reaction matrix.

Paste Paste copied or cut reaction matrix.

Delete Delete selected reaction matrix.

Export selected XML Exports selected reaction matrices as an XML file.

All filters removed. Removes all filter settings.

Edit selected cell Opens cell for editing if the cell is allowed to be edited in the list.

Properties Opens the property window.

Help Opens the online help.

DIALOG STATES AND REACTIONS

By clicking Configuration the dialog for configuring the states is opened. The configuration possibilities

depend on the type of reaction matrix.

In list States you can also select more than one status at a time and edit them. Different settings are

highlighted with the help of a red background or a red frame.

Reaction matrices

130

 Thus you can change the status and the value for more the one state.

CONTEXT MENU STATES

In the list field States the following commands are available in the context menu:

Reaction matrices

131

Command Description

Creating a new status Creates a new status based on the currently selected state.

Create a new sub-status Only for multi-binary: Creates a new sub-status for the selected status.

Copy Copies selected status to the clipboard.

: You can only copy main states. Sub-stated are copied

together with their main states.

Paste Pastes the selected status from the clipboard.

Delete Deletes selected status from the list. The default status cannot be deleted.

Test Opens the dialog for testing the status.

Up Moves selected entries up. (Also possible with Drag&Drop.)

Down Moves selected entry down. (Also possible with Drag

& Drop.)

Help Opens the online help for the respective reaction matrix.

You can find general settings and the definition of the values at the respective Rema:

 Binary (on page 132)

 Numerical (on page 137)

 String (on page 141)

 Multi-binary states and reactions (on page 148)

 Multi-numeric states and reactions (on page 151)

 Information

In case of reload or Server-Standby Switch, the present responses or writing affirmations

are distorted.

12.3 Types of reaction matrices

There are five types of reaction matrices available:

Reaction matrices

132

 Binary (on page 132)

 Numerical (on page 137)

 String (on page 141)

 Multibinary (on page 148)

 Multi numeric (on page 151)

For the types multi binary and multi numeric you can also configure AML/CEL text (on page 156), Status

routing (on page 156) and variable treatment (on page 157).

12.3.1 Binary

A binary reaction matrix is used for the evaluation of any kind of flags and status bits of variables. The

evaluation is bit-oriented. Also analog variables can be evaluated in this way.

Reaction matrices

133

TAG Description

States List of the engineered states with value, state and cause

of transmission.

New state Creates a new status based on the currently selected

state.

Sub-status Only for multi-binary: Creates a new sub-status for the

selected status.

Delete Deletes all selected statues from the list.

Test Opens the dialog (on page 159) for testing the status.

Up Moves selected states up.

Down Moves selected states down.

Status Selection of the states.

Cause of Transmission Additional status for cause of transmission.

Function Opens the dialog for linking a function. You can deselect

an already linked function with the help of button No

selection in this dialog.

Call via the Alarm Message List Only available if you activated option In Alarm

Message List in AML/CEL.

Active: Function is called via the AML.

Additional attributes

Limit color Color when a limit has been violated.

Flashing Active: Flashes when a limit has been violated.

Invisible Active: Will be switch to invisible when a limit has

been violated.

Help file Clicking on ... opens the dialog to open a help file in

chm format. It must have already been created in the

project manager under files/help.

In Runtime, the linked help file is opened if the

corresponding alarm is selected and the Call help

button is clicked.

 The property can only be configured if the In

Alarm Message List property is active.

Reaction matrices

134

Help chapter Indication of the help chapter.

 Only available if the In Alarm Message

List property is activated.

Additional information 1 In the Runtime the additional information entered

can be assessed in a VBA macro.

Additional information 2 In the Runtime the additional information entered can be

assessed in a VBA macro.

AML/CEL

In Alarm Message List Active: Will be entered in the AML.

Acknowledging Only available if In Alarm Message List is

activated.

Active: Must be acknowledged.

Comment required To be able to acknowledge the alarm, a comment must

be entered beforehand. The user must be authorized to

carry out the necessary function.

Delete Only available if In Alarm Message List is

activated.

Active: Must be deleted.

Print Only available if In Alarm Message List is

activated.

Active: Will be printed via the set standard printer.

In Chronologic Event List Active: Will be entered in the CEL.

: If the initial value (the first value that comes from

the controller) or the value when Runtime is started

already violates the limit value or the Rema status is

active as a result, no entry is created in the CEL. Only

once the limit violation has been rectified and then is

violated again, or the state becomes inactive and then

active again, is a CEL entry generated.

Alarm/event group Allocation to an alarm/event group.

Alarm/event class Allocation to an alarm/event class.

VALUE

Reaction matrices

135

TAG Description

Value Current value of variable.

Limit value text Text which is displayed when at a limit violation.

Delay Time period which the limit violation must last in order

for the limit to be active.

Status text for counter in the

mathematics driver

Assignment of four possible status numbers for a counter

(mathdr32.chm::/23818.htm) in the mathematics driver.

For this the variable must have a reaction matrix.

The definition of the combination of state and/or status value is made by way of releasing the option

fields. The state value is the binary encoded non-scaled value of the variables. The value

transformed into the measuring range (linear or non-linear value adjustment) is not considered!

The bit assignment is:

Status:

Non-scaled value

bit "0" set

2^0 = 1

Non-scaled value

bit "1" set

2^1 = 2

Non-scaled value

bit "2" set

2^2 = 4

Two linkages are possible. The meaning of the fields is

Status:

not considered dot, not set

check for "0" 0, bit is checked for logical value "0"

check for "1" 1, bit is checked for logical value "1"

The sequence of the configuring is decisive for the later use. During the processing of the reaction

matrix in online operation the check of the state and status bit combination is started in the top line.

The check in the Runtime system is continued until the line which meets the given states. All other

states are not checked further. If no line fulfills the current variable condition, the default entry applies.

This enables prioritization of the limit texts for the chronological event list, alarming and the alarm

information list. The status evaluation is done in the same way as the value evaluation of the variable.

mathdr32.chm::/23818.htm

Reaction matrices

136

ANALYSIS

In binary variables only bit 0 is evaluated. The other bits are ignored, In 8 bit variables (IEC data types

SINT, USINT) only the bits 0 to 7 are evaluated, and so on.

Example (single information and monitoring for
disturbance)

check whether

INVALID-bit is

set

................,1...

Check whether

bit 0 is set

...............0,

Check whether

bit 1 is set

...............1,

In the above example, irrespective of the condition of the single information, the check is completed

after the first line when the INVALID bit is present (no connection to PLC - data point disturbed). The

variable properties (alarm, blinking, CEL, etc.) are controlled exclusively by this condition. Once the

INVALID bit is no longer present, the other lines are processed. If the sequence is to be changed, then

this can be effected with the selection of the respective line and the operations New, Delete, Upwards

und Down.

Reaction matrices

137

12.3.2 Numerical

A numeric reaction matrix is used for the evaluation of any kind of limit states and status bits of the

variables. In contrast to the binary matrix here the numerical values are evaluated. Not the PLC value

but the adjusted measuring range value (linear or non-linear value adjustment) is used.

Reaction matrices

138

TAG Description

States List of the engineered states with value, state and cause

of transmission.

New state Creates a new status based on the currently selected

state.

Sub-status Only for multi-binary: Creates a new sub-status for the

selected status.

Delete Deletes all selected statues from the list.

Test Opens the dialog (on page 159) for testing the status.

Up Moves selected states up.

Down Moves selected states down.

Status Selection of the states.

Cause of Transmission Additional status for cause of transmission.

Function Opens the dialog for linking a function. You can deselect

an already linked function with the help of button No

selection in this dialog.

Call via the Alarm Message List Only available if you activated option In Alarm

Message List in AML/CEL.

Active: Function is called via the AML.

Additional attributes

Limit color Color when a limit has been violated.

Flashing Active: Flashes when a limit has been violated.

Invisible Active: Will be switch to invisible when a limit has

been violated.

Help file Clicking on ... opens the dialog to open a help file in

chm format. It must have already been created in the

project manager under files/help.

In Runtime, the linked help file is opened if the

corresponding alarm is selected and the Call help

button is clicked.

 The property can only be configured if the In

Alarm Message List property is active.

Reaction matrices

139

Help chapter Indication of the help chapter.

 Only available if the In Alarm Message

List property is activated.

Additional information 1 In the Runtime the additional information entered

can be assessed in a VBA macro.

Additional information 2 In the Runtime the additional information entered can be

assessed in a VBA macro.

AML/CEL

In Alarm Message List Active: Will be entered in the AML.

Acknowledging Only available if In Alarm Message List is

activated.

Active: Must be acknowledged.

Comment required To be able to acknowledge the alarm, a comment must

be entered beforehand. The user must be authorized to

carry out the necessary function.

Delete Only available if In Alarm Message List is

activated.

Active: Must be deleted.

Print Only available if In Alarm Message List is

activated.

Active: Will be printed via the set standard printer.

In Chronologic Event List Active: Will be entered in the CEL.

: If the initial value (the first value that comes from

the controller) or the value when Runtime is started

already violates the limit value or the Rema status is

active as a result, no entry is created in the CEL. Only

once the limit violation has been rectified and then is

violated again, or the state becomes inactive and then

active again, is a CEL entry generated.

Alarm/event group Allocation to an alarm/event group.

Alarm/event class Allocation to an alarm/event class.

VALUE

Reaction matrices

140

TAG Description

Value Definition of the declaration of value:

 any: any change of value violates the limit

 greater: Enter of a limit

 smaller: Enter of a limit

 equal: Enter of a limit

 Area: Enter of an area (from ... to)

Limit value text Text which is displayed when at a limit violation.

Treat each change of value as new

limit violation

Active: Each change in value is displayed as a limit

violation.

Delay Time period which the limit violation must last in order for

the limit to be active.

Status text for counter in the

mathematics driver

Assignment of four possible status numbers for a counter

(mathdr32.chm::/23818.htm) in the mathematics driver.

For this the variable must have a reaction matrix.

 Information

A decimal value can be entered with either a comma or a point as a decimal separator, it

will automatically be changed to a point.

mathdr32.chm::/23818.htm

Reaction matrices

141

12.3.3 String

A string reaction matrix is used for the evaluation of limit values and status bits of the string variables. In

addition to the known configurations of limit value and status combinations, further configurations are

possible.

Reaction matrices

142

TAG Description

States List of the engineered states with value, state and cause

of transmission.

New state Creates a new status based on the currently selected

state.

Sub-status Only for multi-binary: Creates a new sub-status for the

selected status.

Delete Deletes all selected statues from the list.

Test Opens the dialog (on page 159) for testing the status.

Up Moves selected states up.

Down Moves selected states down.

Status Selection of the states.

Cause of Transmission Additional status for cause of transmission.

Function Opens the dialog for linking a function. You can deselect

an already linked function with the help of button No

selection in this dialog.

Call via the Alarm Message List Only available if you activated option In Alarm

Message List in AML/CEL.

Active: Function is called via the AML.

Additional attributes

Limit color Color when a limit has been violated.

Flashing Active: Flashes when a limit has been violated.

Invisible Active: Will be switch to invisible when a limit has

been violated.

Help file Clicking on ... opens the dialog to open a help file in

chm format. It must have already been created in the

project manager under files/help.

In Runtime, the linked help file is opened if the

corresponding alarm is selected and the Call help

button is clicked.

 The property can only be configured if the In

Alarm Message List property is active.

Reaction matrices

143

Help chapter Indication of the help chapter.

 Only available if the In Alarm Message

List property is activated.

Additional information 1 In the Runtime the additional information entered

can be assessed in a VBA macro.

Additional information 2 In the Runtime the additional information entered can be

assessed in a VBA macro.

AML/CEL

In Alarm Message List Active: Will be entered in the AML.

Acknowledging Only available if In Alarm Message List is

activated.

Active: Must be acknowledged.

Comment required To be able to acknowledge the alarm, a comment must

be entered beforehand. The user must be authorized to

carry out the necessary function.

Delete Only available if In Alarm Message List is

activated.

Active: Must be deleted.

Print Only available if In Alarm Message List is

activated.

Active: Will be printed via the set standard printer.

In Chronologic Event List Active: Will be entered in the CEL.

: If the initial value (the first value that comes from

the controller) or the value when Runtime is started

already violates the limit value or the Rema status is

active as a result, no entry is created in the CEL. Only

once the limit violation has been rectified and then is

violated again, or the state becomes inactive and then

active again, is a CEL entry generated.

Alarm/event group Allocation to an alarm/event group.

Alarm/event class Allocation to an alarm/event class.

VALUE

Reaction matrices

144

TAG Description

Value Definition of the declaration of value:

 any: any change of value violates the limit

 greater: Enter of a limit

 smaller: Enter of a limit

 equal: Enter of a limit

 Area: Enter of an area (from ... to)

Note capitalization On comparing with the limit string differences in capitalization

are regarded.

Regard wildcards The limit string can have wildcards.

(Wildcards are only allowed as prefix or suffix; e.g. *xxx or xxx*.)

Limit value text Text which is displayed when at a limit violation.

Treat each change of value

as new limit violation

Active: Each change in value is displayed as a limit violation.

Delay Time period which the limit violation must last in order for the

limit to be active.

Status text for counter in

the mathematics driver

Assignment of four possible status numbers for a counter

(mathdr32.chm::/23818.htm) in the mathematics driver. For this

the variable must have a reaction matrix.

 Example

Example 1:

In the sequence of execution Capital after minuscule:

Strings: “My”, “name”, “is”, “XY”

Sequence of Execution:

is, Name, My, Henson.

Reason:

is starts with a minusculo, therefore it is higher than the other strings.

Name, N is higher than M and H, My, M is higher than H

mathdr32.chm::/23818.htm

Reaction matrices

145

12.3.4 Multi-reaction matrices in general

Tabs Description

States and reactions Configuration for the states and reactions for the Multi-binary (on page

148) reaction matrix and the Multi-numeric (on page 151) reaction

matrix.

AML/CEL-Text (on page 156) Configuration for the output of the value next to the limit text in the

AML and CEL.

Status routing (on page 156) Configuration of the status routing.

Special functions (on page

157)

Configuration of special functions.

 Status bits NORM and N_NORM are available for both types of multi reaction matrices but not for

the standard matrices.

INFORMATION PROCESSING

The upper 16 bits (bit 16 ... 31) are used in the protective data configuring for the information

processing; the information number is stored in the upper 16 bits.

Reaction matrices

146

The function of the multi-binary reaction matrix is identical to the binary response matrix for the main

states. If any of the main states are changed, the respective configuring states (alarm, CEL, text, etc.) are

executed:

 If a main state has substates, the substates are checked first on reaching the main state.

 If no substate corresponds to the current state of the variables, the respective state configuring

(alarm, CEL, text, etc.) of the main state is executed.

 If the substate corresponds with the current state of the variables, the respective state

configuring (alarm, CEL, text, etc.) of the substate is carried out.

 If the state of the variables changes from the substate to the main state, there is no new output

to the chronologic event list and the alarm list (e.g. breaker tripping treatment in the SAT

system).

TAG Description

Main value Engineering

-> Lower valuexxxxxx00 no alarm, CEL text off

-> xxxxx100 alarm, CEL text Breaker tripping off

xxxxxx01 no alarm, CEL text On

xxxxxx10 alarm, CEL text Difference

xxxxxx11 alarm, CEL text Malfunction

Change from "ON"

to "OFF"

no alarm, CEL entry "on"

Change from "ON"

to "OFF"

Alarm entry Breaker tripping off, CEL text Breaker tripping off

-> Acknowledgement of the breaker tripping (change of BREAKER TRIPPING OFF

to OFF)

cleared alarm breaker tripping off, no renewed CEL text

For the output in the CEL and in the process screens the entire contents of the variable can be separated

to two parts. One part is used for the limit definition, the second part (value) is used in the screens.

(Field of application: protection telegrams in SAT 1703).

CAUSE OF TRANSMISSION

Multi-binary and multi-analog reaction matrixes allow evaluation of the transfer cause accordingly

 The IEC 60870-5-101/104 standard. The transmission cause consists of:

Reaction matrices

147

Bit Description

6 bit Value of the cause of transmission 0 ... 63

1 bit N_CONF (P/N-Bit):

0 = positive

1 = negative confirmation

1 bit Test bit

In the reaction matrix, the identification of the transmission cause + the N_CONF Bit (P/N bit) can be

assigned to each status. So the status is only violated, if the received transmission cause is the same as

the defined transmission cause.

TAG Description

Transfer cause checkbox Activates the evaluation of the transfer cause input field.

Transfer cause input field Expects a value of 0-63 as identification of the transfer

cause.

Reaction matrices

148

Multi-binary states and reactions

A multi-binary reaction matrix is used for the evaluation of value, state and status bits of digital

variables. The lower bits (bit 0.15) are used as value for the display in screens (dynamic elements) and in

the chronologic events list (field "value"). In addition to the known configurations of value and status

combinations, further configurations are possible.

Reaction matrices

149

TAG Description

States List of the engineered states with value, state and cause

of transmission.

New state Creates a new status based on the currently selected

state.

Sub-status Only for multi-binary: Creates a new sub-status for the

selected status.

Delete Deletes all selected statues from the list.

Test Opens the dialog (on page 159) for testing the status.

Up Moves selected states up.

Down Moves selected states down.

Status Selection of the states.

Cause of Transmission Additional status for cause of transmission.

Function Opens the dialog for linking a function. You can deselect

an already linked function with the help of button No

selection in this dialog.

Call via the Alarm Message List Only available if you activated option In Alarm

Message List in AML/CEL.

Active: Function is called via the AML.

Additional attributes

Limit color Color when a limit has been violated.

Flashing Active: Flashes when a limit has been violated.

Invisible Active: Will be switch to invisible when a limit has

been violated.

Help file Clicking on ... opens the dialog to open a help file in

chm format. It must have already been created in the

project manager under files/help.

In Runtime, the linked help file is opened if the

corresponding alarm is selected and the Call help

button is clicked.

 The property can only be configured if the In

Alarm Message List property is active.

Reaction matrices

150

Help chapter Indication of the help chapter.

 Only available if the In Alarm Message

List property is activated.

Additional information 1 In the Runtime the additional information entered

can be assessed in a VBA macro.

Additional information 2 In the Runtime the additional information entered can be

assessed in a VBA macro.

AML/CEL

In Alarm Message List Active: Will be entered in the AML.

Acknowledging Only available if In Alarm Message List is

activated.

Active: Must be acknowledged.

Comment required To be able to acknowledge the alarm, a comment must

be entered beforehand. The user must be authorized to

carry out the necessary function.

Delete Only available if In Alarm Message List is

activated.

Active: Must be deleted.

Print Only available if In Alarm Message List is

activated.

Active: Will be printed via the set standard printer.

In Chronologic Event List Active: Will be entered in the CEL.

: If the initial value (the first value that comes from

the controller) or the value when Runtime is started

already violates the limit value or the Rema status is

active as a result, no entry is created in the CEL. Only

once the limit violation has been rectified and then is

violated again, or the state becomes inactive and then

active again, is a CEL entry generated.

Alarm/event group Allocation to an alarm/event group.

Alarm/event class Allocation to an alarm/event class.

CHECKBOX STATUS

Reaction matrices

151

Each status can have one of 5 possible states. They are defined by clicking in the checkbox before the respective

status.

Possible states:

 not considered (dot)

 on (1)

 off (0)

 coming (arrow upwards)

 going (arrow downwards)

 alternating (dual arrow)

VALUE

TAG Description

Value Current value of variable.

Limit value text Text which is displayed when at a limit violation.

Delay Time period which the limit violation must last in order for

the limit to be active.

Status text for counter in the

mathematics driver

Assignment of four possible status numbers for a counter

(mathdr32.chm::/23818.htm) in the mathematics driver.

For this the variable must have a reaction matrix.

 Information

A decimal value can be entered with either a comma or a point as a decimal separator, it

will automatically be changed to a point.

Multi-numeric states and reactions

A multi-numeric reaction matrix is used for the evaluation of limit values and status bits of the

variables. In addition to the known configurations of limit value and status combinations, further

configurations are possible.

mathdr32.chm::/23818.htm

Reaction matrices

152

Reaction matrices

153

TAG Description

States List of the engineered states with value, state and cause

of transmission.

New state Creates a new status based on the currently selected

state.

Sub-status Only for multi-binary: Creates a new sub-status for the

selected status.

Delete Deletes all selected statues from the list.

Test Opens the dialog (on page 159) for testing the status.

Up Moves selected states up.

Down Moves selected states down.

Status Selection of the states.

Cause of Transmission Additional status for cause of transmission.

Function Opens the dialog for linking a function. You can deselect

an already linked function with the help of button No

selection in this dialog.

Call via the Alarm Message List Only available if you activated option In Alarm

Message List in AML/CEL.

Active: Function is called via the AML.

Additional attributes

Limit color Color when a limit has been violated.

Flashing Active: Flashes when a limit has been violated.

Invisible Active: Will be switch to invisible when a limit has

been violated.

Help file Clicking on ... opens the dialog to open a help file in

chm format. It must have already been created in the

project manager under files/help.

In Runtime, the linked help file is opened if the

corresponding alarm is selected and the Call help

button is clicked.

 The property can only be configured if the In

Alarm Message List property is active.

Reaction matrices

154

Help chapter Indication of the help chapter.

 Only available if the In Alarm Message

List property is activated.

Additional information 1 In the Runtime the additional information entered

can be assessed in a VBA macro.

Additional information 2 In the Runtime the additional information entered can be

assessed in a VBA macro.

AML/CEL

In Alarm Message List Active: Will be entered in the AML.

Acknowledging Only available if In Alarm Message List is

activated.

Active: Must be acknowledged.

Comment required To be able to acknowledge the alarm, a comment must

be entered beforehand. The user must be authorized to

carry out the necessary function.

Delete Only available if In Alarm Message List is

activated.

Active: Must be deleted.

Print Only available if In Alarm Message List is

activated.

Active: Will be printed via the set standard printer.

In Chronologic Event List Active: Will be entered in the CEL.

: If the initial value (the first value that comes from

the controller) or the value when Runtime is started

already violates the limit value or the Rema status is

active as a result, no entry is created in the CEL. Only

once the limit violation has been rectified and then is

violated again, or the state becomes inactive and then

active again, is a CEL entry generated.

Alarm/event group Allocation to an alarm/event group.

Alarm/event class Allocation to an alarm/event class.

VALUE

Reaction matrices

155

TAG Description

Value Definition of the declaration of value:

 any: any change of value violates the limit

 greater: Enter of a limit

 smaller: Enter of a limit

 equal: Enter of a limit

 Area: Enter of an area (from ... to)

Limit value text Text which is displayed when at a limit violation.

Treat each change of value as new

limit violation

Active: Each change in value is displayed as a limit

violation.

Delay Time period which the limit violation must last in order for

the limit to be active.

Status text for counter in the

mathematics driver

Assignment of four possible status numbers for a counter

(mathdr32.chm::/23818.htm) in the mathematics driver.

For this the variable must have a reaction matrix.

 Information

A decimal value can be entered with either a comma or a point as a decimal separator, it

will automatically be changed to a point.

mathdr32.chm::/23818.htm

Reaction matrices

156

Configuration AML/CEL text

In this tab the output for AML and CEL is configured.

Configuration status routing

In this tab the status routing is configured. Routes bits (also negated ones) to other bits.

Reaction matrices

157

Possible sources: Value bit 0 ... 31l

Parameters Description

Source bit Select source bit from list box

NEG Negate source bit during the routing

Status bit Select target bit from list box

Accept Accept selected routing

Delete Delete selected routing;Beware: There is no further query

Up Move selected routing in the sequence upwards

Down Move selected routing in the sequence downwards

Configuration special functions

In this tab special functions are configured.

Reaction matrices

158

With active status bits variables can be switched off automatically or status changes (for reset) can be

let pass at switched off variables. For details see chapter Status definition.

TAG Description

switch off for status bits where the data point is to be switched off Check for "0" or "1" is

possible

allow to pass for status bits where a change in status is to be allowed to pass

No old/new

comparison

No monitoring of changes

No old/new

comparison for

ET-route

No monitoring of changes on the real-time route

Reaction matrices

159

12.3.5 Test

Makes it possible for settings for the reaction matrix to be tested. Depending on the configuration of the

reaction matrix, a simulation of what happens when defined values are reached is carried out. Entries in

the CEL or AML are simulated. This feature concerns SICAM 230.

TAG Description

Status To simulate status changes.

Value Simulation of value changes.

Test result Output of changes from status and value in CEL and AML.

SendenEZ Send changes in real time.

SendenNEZ Send changes.

12.4 Dynamic limit texts in reaction matrices

Dynamic limit texts can also be displayed in reaction matrices:

Reaction matrices

160

$ %PV

$ @text

See also Dynamic limit text (on page 123).

Reaction matrices can be used for multiple variables.

12.5 Status for value change and delay time

A status can generate alarms depending on values and delay time. For example, an alarm can be created

if a variable has not changed for a certain time.

Configuration:

 Value: any

 Treat each change of value as new limit violation: acive

 Delay: >0

In this case:

 the alarm is activated if the value is a longer constant than the delay time.

 If the value changes within the delay time, the delay time restarts. For example, an alarm

can be created if a variable has not changed for a certain time.

Reaction matrices

161

12.6 List of status bits

Bit number Short term Long name straton label

0 M1 User status 1 _VSB_ST_M1

1 M2 User status 2 _VSB_ST_M2

2 M3 User status 3 _VSB_ST_M3

3 M4 User status 4 _VSB_ST_M4

4 M5 User status 5 _VSB_ST_M5

5 M6 User status 6 _VSB_ST_M6

6 M7 User status 7 _VSB_ST_M7

7 M8 User status 8 _VSB_ST_M8

8 NET_SEL Select in the network _VSB_SELEC

9 REVISION Revision _VSB_REV

10 PROGRESS In operation _VSB_DIREC

11 TIMEOUT Runtime exceedance _VSB_RTE

12 MAN_VAL Manual value _VSB_MVALUE

13 M14 User status 14 _VSB_ST_14

14 M15 User status 15 _VSB_ST_15

15 M16 User status 16 _VSB_ST_16

16 GI General interrogation _VSB_GR

17 SPONT Spontaneous _VSB_SPONT

18 INVALID Invalid _VSB_I_BIT

19 T_CHG_A Daylight saving time/winter time

announcement

_VSB_SUWI

20 OFF Switched off _VSB_N_UPD

21 T_EXTERN Real time external _VSB_RT_E

22 T_INTERN Real time internal _VSB_RT_I

23 N_SORTAB Not sortable _VSB_NSORT

Reaction matrices

162

24 FM_TR Fault message transformer value _VSB_DM_TR

25 RM_TR Working message transformer

value

_VSB_RM_TR

26 INFO Information for the variable _VSB_INFO

27 ALT_VAL Substitute value

If no value was transferred, the

defined alternate value is used

otherwise the last valid value is

used.

_VSB_AVALUE

28 RES28 Reserved for internal use (alarm

flashing)

_VSB_RES28

29 N_UPDATE Not updated _VSB_ACTUAL

30 T_STD Standard time _VSB_WINTER

31 RES31 Reserved for internal use (alarm

flashing)

_VSB_RES31

32 COT0 Cause of transmission bit 1 _VSB_TCB0

33 COT1 Cause of transmission bit 2 _VSB_TCB1

34 COT2 Cause of transmission bit 3 _VSB_TCB2

35 COT3 Cause of transmission bit 4 _VSB_TCB3

36 COT4 Cause of transmission bit 5 _VSB_TCB4

37 COT5 Cause of transmission bit 6 _VSB_TCB5

38 N_CONF Negative acceptance of Select by

device (IEC60870 [P/N])

_VSB_PN_BIT

39 TEST Test bit (IEC 60870 [T]) _VSB_T_BIT

40 WR_ACK Writing acknowledged _VSB_WR_ACK

41 WR_SUC Writing successful _VSB_WR_SUC

42 NORM Normal status _VSB_NORM

43 N_NORM Deviation normal status _VSB_ABNORM

44 BL_870 IEC 60870 Status: blocked _VSB_BL_BIT

45 SB_870 IEC 60870 Status: substituted _VSB_SP_BIT

Functions for variables

163

46 NT_870 IEC 60870 Status: not topical _VSB_NT_BIT

47 OV_870 IEC 60870 Status: overflow _VSB_OV_BIT

48 SE_870 IEC 60870 Status: select _VSB_SE_BIT

49 T_INVAL Time invalid not defined

50 CB_TRIP Breaker tripping detected not defined

51 CB_TR_I Breaker tripping detection inactive not defined

52 RES52 reserved not defined

53 RES53 reserved not defined

54 RES54 reserved not defined

55 RES55 reserved not defined

56 RES56 reserved not defined

57 RES57 reserved not defined

58 RES58 reserved not defined

59 RES59 reserved not defined

60 RES60 reserved not defined

61 RES61 reserved not defined

62 RES62 reserved not defined

63 RES63 reserved not defined

 Information

In formulas all status bits are available. For other use the availability can be reduced.

You can read details on status processing in the Status processing chapter.

13. Functions for variables

Functions make it possible to start commands in Runtime using a button or script.

Functions for variables

164

To create a function:

1. select New function... in the context menu or in the tool bar

2. Navigate to the Variable

3. select the desired function

13.1 Export data

This function makes it possible to export variable data in Runtime.

The export format and the file name are defined in the Editor. The storage location when executed in

Runtime is the Export folder in the Runtime folder.

: You can get to the project folder by highlighting the project in the Editor and pressing the key

combination Ctrl+Alt+R.

To create the function:

1. Create a new function (on page 163)

2. Select Export data

Functions for variables

165

3. The configuration dialog is opened

Functions for variables

166

TAG Description

Output format

Format Select one of the possible file types:

 dBase IV (*.dbf)

 XML (*.xml)

 CSV text file (*.txt)

As Unicode This checkbox is only active if you have selected CSV (*.txt) as the file type.

Active: File is saved in Unicode (UTF-16).

File names Create the filenames.

A maximum of 8 characters are permitted for DBF files.

 The name can no longer be changed in Runtime.

Runtime storage location: Export folder in Runtime folder.

Variables

Variable

selection

Selection of variables to be exported. A click on the button opens the dialog to

select variables.

This selection can no longer be changed in Runtime.

For a variable to be selectable, you must activate property Harddisk

data storage active in group Harddisk data storage for this

variable.

Reinitialize

values

For the HD values, a ring buffer is filled and stored.

Active: The ring buffer is emptied and reinitialized for the export.

Inactive: The ring buffer is kept for the export:

13.2 Read a dBase-file

This function is used to read in a DBase file again and issue it as a recipe during online operation.

Give the dBase file as the transfer parameter. The file and directory name have to be DOS compatible.

This file contains the process variable names and the according set values. If the defined variable exists

in the project, the value defined in the dBase file is written to the PLC as a new set value.

Functions for variables

167

The dBaseIV file must have the following structure and contents:

Description Type Value Comment

NAME Char 32 process variable name

WERT Num 20 Technical value

TYP Char 8 Data type (C=String, N=Numeric)

DIRECTION Char 12

13.3 Print current values

This function is used to create a simple log of current variable values (process and derived variables)

during online operation.

Give a formatting file as the transfer parameter. This function is configured via an input dialog.

Configurable options are:

Functions for variables

168

Parameters Description

System buttons OK, Cancel, Help

With dialog cancel displays abort dialog during generation in online operation

Select format file Opens a dialog box for the selection of the *.FRM file. This file is created

with the button below. The format FRM is described further below in this

chapter.

Start format editor starts text editor for creation of file

Font sets font which will be used

Select the file (*.FRM file type by clicking on the “Select format file” button.

Defined keywords are used in the format file. The corresponding variable parameters are entered during

online operation instead of the keywords.

 Keywords:

Keyword Description

@TTA.name outputs variable names

@TTA.wert outputs current technical value; outputs binary status as value or string variable

@TTA.einheit outputs unit defined for process variable

@TTA.text outputs text defined for process variable

@TTA.status outputs current status bit of process variables in succession with short names (from

ZENON6.INI)

The following keywords are available for formatting the output page or as general information:

Keyword Description

%DATE outputs current date

%TIME outputs current time

%PAGE outputs current page number

Texts for the header and footer can be defined. The sections (header, main section, footer) have to be

marked in front and behind the section with "%%". Three empty lines have to be entered behind the last

"%%".

Using tabs will result in problems when outputting texts of different lengths. Only empty spaces can be

used for positioning The “@” key character is not counted.

Functions for variables

169

%%

Page header

%%

%%

%date Measuring value log of equipment XYZ %time o' clock

Identification techn. value unit of measurement

Value 1 @Value1.wert bar

Value 2 @VALUE2.wert kV

 Value 3 @VALUE3.wert ºF

Page %page

%%

%%

Page footer

%%

Header text

21.02.1995 Measuring value log of equipment XYZ 12:00 o' clock

Identification techn. value unit of measurement

Value 1 0.63 bar

Value 2 9.98 kV

> Value 3 17.3 ºF

> Page 5

Footer text

If the desired format of the current values is narrower as the space between the TTA key words, a QRF

file with the same name can be used. In the QRF file the process variables are assigned to defined

markers. Each marker (xxx) begins with a “$” and is defined with a certain syntax.

 define $xxx as
Variable

Functions for variables

170

- xxx freely chosen identifier or

number

Variable Variable name

 These markers can be accessed in the FRM file The variable parameters are then addressed via other

parameters.

$xxx.

1

process variable name

$xxx.

2

Technical value

$xxx.

3

Unit

$xxx.

4

Status text

 Variable names with a period must be set in apostrophes, for example: "Variable.Test".

Example of a QRF file's structure:

define $001 as TTA1

define $002 as TTA2

%%

Header text

%%

%%

Main section

Value of TTA1= @$001.2

Value of TTA2= @$002.2

%%

%%

Footer text

%%

Functions for variables

171

Header text

Value of TTA1= 100.25

Value of TTA2= 25.745

Footer text

13.4 HD administration active

This function is used to activate HD administration (filing of the online values with configured HD

feature; online trend) during online operation.

No transfer parameters are needed.

13.5 HD administration inactive

This function is used to deactivate HD administration (filing of the online values with configured HD

feature ; online trend) during online operation.

 Attention

No more values are saved! Online values are updated. No transfer parameters are

needed.

13.6 Trend-values on/off

This function is used to switch HD administration (filing of the online values with configured HD feature;

online trend) between the two states during online operation. The states stored in the file

project.ini will be read in when online operation is started.

Functions for variables

172

[DEFAULT

]

...

HDDATEN= 0 -

inactive

 1 - active

13.7 Setting values

This function is used to set a set value for a variable in online operation.

The variable, the set value and the way how to set the value have to be given as transfer parameters.

This function is configured via an input dialog. The function is configured with its own dialogs for:

 numerical variables (on page 173)

 binary variables (on page 175)

 string variables (on page 178)

The set value dialog box is used for input in Runtime. If the keyboard screen SETVALUEKBD is available in

the project, it is used automatically.

 Information

In case of reload or Server-Standby Switch, the present responses or writing affirmations

are distorted.

Functions for variables

173

13.7.1 for numeric variables

Functions for variables

174

TAG Description

Set value settings Configuration of the target value.

Set value Input of the set value to be set for the variable.

Minimum Input of the minimum value.

Maximum Input of the maximum value.

Use set value limits of the

variable

Active: The set value limits are taken from the variable

definition (Description/Set value).

Inactive: The set value limits can directly be defined in the

function (Minimum and Max).

Options Configuration of the options.

Propose current value Active: The value is read from the hardware and then is

proposed as a default or directly sent to the hardware.

Additionally the caption of the field Set value changes to

Change by and the value entered there is added to the default

(subtracted if negative value).

Inactive: The value defined under Set value is proposed

as a default or directly sent to the hardware.

Direct to the hardware Active: After activating the function the value is directly

sent to the hardware not asking for a further confirmation.

Inactive: Before sending the value to the hardware the set

value dialog is opened and the user can change the settings in

the Runtime.

Wait for writing

confirmation

Active: The function only finshes execution once a positive

confirmation of the write action is received or the fixed defined

timeout of 30 seconds is over.

In scripts this can make sure, that the following function is not

started, before this one is finished.

The confirmation can also be evaluated with the status bit

WR-SUC.

Inactive: Do not wait for the writing confirmation.

Write set value via Configuration of how the target value is to be set:

 Standard dialog box: Set value in Runtime set using a

dialog box.

 Screen: Set value in Runtime set using a screen.

 Program: Set value in Runtime set using a program. Selection

Functions for variables

175

by clicking on the ... button.

OK Configuration is accepted, function created and the dialog is

closed.

Cancel Configuration is rejected, function created without parameters

and the dialog is closed.

Help Online help is opened.

 Information

A decimal value can be entered with a colon as well as with a point, the decimal point

will automatically be changed to a point.

13.7.2 for binary variables

Functions for variables

176

TAG Description

LOW (0) Value of variables will be set to LOW (0)

HIGH (1) Value of variables will be set to HIGH (1)

TOGGLE Value of variable is switched to complementary status.

 If the variable value is to be toggled, we recommend activating the

Permanently read variable property. Otherwise Runtime waits

until the driver knows the value of the variables. If the value is not

available due to a breakdown in communication with the control unit,

the waiting time corresponds to the timeout time of the driver.

 TAG Description

Functions for variables

177

Set value settings Configuration of the target value.

Set value Input of the set value to be set for the variable.

Minimum Input of the minimum value.

Maximum Input of the maximum value.

Use set value

limits of the

variable

Active: The set value limits are taken from the variable definition

(Description/Set value).

Inactive: The set value limits can directly be defined in the function

(Minimum and Max).

Options Configuration of the options.

Propose current

value

Active: The value is read from the hardware and then is proposed as a default

or directly sent to the hardware. Additionally the caption of the field Set value

changes to Change by and the value entered there is added to the default

(subtracted if negative value).

Inactive: The value defined under Set value is proposed as a default or

directly sent to the hardware.

Direct to the

hardware

Active: After activating the function the value is directly sent to the hardware

not asking for a further confirmation.

Inactive: Before sending the value to the hardware the set value dialog is

opened and the user can change the settings in the Runtime.

Wait for

writing

confirmation

Active: The function only finshes execution once a positive confirmation of

the write action is received or the fixed defined timeout of 30 seconds is over.

In scripts this can make sure, that the following function is not started, before

this one is finished.

The confirmation can also be evaluated with the status bit WR-SUC.

Inactive: Do not wait for the writing confirmation.

Write set value

via

Configuration of how the target value is to be set:

 Standard dialog box: Set value in Runtime set using a dialog box.

 Screen: Set value in Runtime set using a screen.

 Program: Set value in Runtime set using a program. Selection by clicking on the

... button.

OK Configuration is accepted, function created and the dialog is closed.

Cancel Configuration is rejected, function created without parameters and the dialog is

closed.

Help Online help is opened.

Functions for variables

178

13.7.3 for string variables

Functions for variables

179

TAG Description

Set value settings Configuration of the target value.

Set value Input of the set value to be set for the variable.

Options Configuration of the options.

Propose current value Active: The value is read from the hardware and then is

proposed as a default or directly sent to the hardware.

Additionally the caption of the field Set value changes to

Change by and the value entered there is added to the default

(subtracted if negative value).

Inactive: The value defined under Set value is proposed

as a default or directly sent to the hardware.

Direct to the hardware Active: After activating the function the value is directly

sent to the hardware not asking for a further confirmation.

Inactive: Before sending the value to the hardware the set

value dialog is opened and the user can change the settings in

the Runtime.

Wait for writing

confirmation

Active: The function only finshes execution once a positive

confirmation of the write action is received or the fixed defined

timeout of 30 seconds is over.

In scripts this can make sure, that the following function is not

started, before this one is finished.

The confirmation can also be evaluated with the status bit

WR-SUC.

Inactive: Do not wait for the writing confirmation.

Write set value via Configuration of how the target value is to be set:

 Standard dialog box: Set value in Runtime set using a

dialog box.

 Screen: Set value in Runtime set using a screen.

 Program: Set value in Runtime set using a program. Selection

by clicking on the ... button.

OK Configuration is accepted, function created and the dialog is

closed.

Cancel Configuration is rejected, function created without parameters

and the dialog is closed.

Help Online help is opened.

Functions for variables

180

13.7.4 Check write set value

When writing values, the value receives a status bit that is has been written. If the writting process is

successful, the corresponding status bit is set:

 WR-ACK

The driver received a value for writing.

 WR-SUC

Value 1: Writing successful.

Value 0: Writing not successful. The value could not be written.

 Information

In case of reload or Server-Standby switch, the currently active responses or writing

affirmations are discarded.

This status combination are active until the next value change is triggered. Then both states are set to 0

until the writing action is finished. For evaluation the following bit combination must be requested in

the reaction matrix:

WR-ACK, WR-SUC

Result:

 WR-ACK 1, WR-SUC 1: Writing action successful.

 WR-ACK 1, WR-SUC 0: Writing action not successful.

 Attention

The mechanism only shows, that the writing action was successful (or not successful) to

the PLC. This does not mean, that the value has indeed been changed in the PLC, since

the PLC can reset/overwrite the value immediately. (For example for writing the outputs

or the transient bits which are only set for a short time.)

Functions for variables

181

MODULES

This mechanism can be used in the following modules:

 function Write set value (on page 172): Activate option Wait for writing

confirmation in the configuration dialog of the function.

 Standard recipes: Activate property Write synchronously .

 Recipegroup Manager: Activate property Write synchronously.

 Command

 Function Write set value

For the entry in the CEL you must activate property Function Set SV in node

Chronological Event List in the project settings. After this the positive or negative

response the execution of the function is written to the CEL.

 Standard recipes and Recipegroup Manager

For the entry in the CEL a system driver variable is used which is set to 1 when a recipe is

written successfully. A global variable is evaluated on the Server, a local variable on every

Client in order to determine when the recipe executed last was written completely.

With this variables a CEL entry can be created via limit or reaction matrix (on page 127). The

query is carried out via a multi analog (on page 151) or a multi binary (on page 148) reaction

matrix.

13.8 Driver commands

This chapter describes standard functions that are valid for most zenon drivers. Not all functions

described here are available for every driver. For example, a driver that does not, according to the data

sheet, support a modem connection also does not have any modem functions.

Driver commands are used to influence drivers using zenon; start and stop for example.

The engineering is implemented with the help of function Driver commands. To do this:

 create a new function

Functions for variables

182

 select Variables -> Driver commands

 The dialog for configuration is opened

Parameters Description

Drivers Drop-down list with all drivers which are loaded in the project.

Current state Fixed entry which has no function in the current version.

Driver commands Drop-down list for the selection of the command.

 Start driver (online

mode)

Driver is reinitialized and started.

 Stop driver (offline

mode)

Driver is stopped. No new data is accepted.

 If the driver is in offline mode, all variables that were

created for this driver receive the status switched off

(OFF; Bit 20).

 Driver in simulation

mode

Driver is set into simulation mode.

The values of all variables of the driver are simulated by the

driver. No values from the connected hardware (e.g. PLC, bus

system, ...) are displayed.

 Driver in hardware mode Driver is set into hardware mode.

For the variables of the driver the values from the connected

hardware (e.g. PLC, bus system, ...) are displayed.

 Driver-specific

command

Enter driver-specific commands. Opens input field in order to

enter a command.

 Activate driver write

set value

Write set value to a driver is allowed.

Functions for variables

183

 Deactivate driver

write set value

Write set value to a driver is prohibited.

 Establish connection

with modem

Establish connection (for modem drivers) Opens the input fields

for the hardware address and for the telephone number.

 Disconnect from modem Terminate connection (for modem drivers)

Show this dialog in the

Runtime

The dialog is shown in Runtime so that changes can be made.

If the computer, on which the driver command function is executed, is part of the zenon network,

additional actions are carried out. A special network command is sent from the computer to the project

server, which then executes the desired action on its driver. In addition, the Server sends the same

driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby

both have a working and independent connection to the hardware.

13.9 Write time to variable

With this function a connected PLC can be synchronized with the PC. When executing this function, the

System time is taken and saved in a String varialbe of the format: DD.MM.YYYY HH:MM:SS

The name of the variable has to be given as a parameter.

13.10 Read time from variable

With this function the PC can be synchronized with a connected PLC. On executing the function a string

variable is read from the PLC. If the difference between PC and PLC time is larger than one second, the

Screen Variable diagnosis

184

PC system time is set and an entry in the CEL is generated. The string variable must have the following

format: DD.MM.YYYY HH:MM:SS.

 Time is saved as local time. For details see chapter Handling of date and time in chapter Runtime.

The name of the variable has to be given as a parameter.

14. Screen Variable diagnosis

By using screen Variable diagnosis, variables can be displayed and set values can be written in the

Runtime. You will find more information on the pre-defined screen types in the chapter 'Screens /

Screen types'.)

14.1 Create screen Variable diagnosis

In order to create screen Variable diagnosis:

 create a new screen

 select Variable diagnosis as screen type

 an empty screen is created

Screen Variable diagnosis

185

 select the menu item Add template from menu Control elements or select the desired control

elements for the operation in the Runtime

Screen Variable diagnosis

186

Control element Description

Insert template Opens the dialog for selecting a template for the screen type.

Templates are shipped together with zenon and can also be

created by the user.

Templates add pre-defined control elements to pre-defined

locations in the screen. Elements that are not necessary can

also be removed individually once they have been created.

Additional elements are selected from the drop-down list and

palced in the screen. Elements can be moved in the screen and

placed individually.

Display options Control elements for the display.

Variable diagnosis List field in the Runtime.

Value display: Decimal The variable values in the list (actual value, set value) are

displayed decimal.

Value display: Hexadecimal The variable values in the list (actual value, set value) are

displayed hexadecimal.

Value display: Binary The variable values in the list (actual value, set value) are

displayed binary.

Value display: Octal The variable values in the list (actual value, set value) are

displayed octal.

Value display: Exponential The variable values in the list (actual value, set value) are

displayed decimal exponential.

Variables

Add variable Add a variable to the list in the Runtime

Delete variable
Remove variable from the list in the Runtime

Update value

Updating actual value ON Switch on automatic updating of current variable values.

Updating actual value OFF Switch off automatic updating of current variable values.

Update actual value
Update the current values of the variables.

All variables: Write set value Write the set values of all variables to the hardware.

Screen Variable diagnosis

187

Selected variables: Write set value Write the set values of the selected variables to the hardware.

Edit set value
Edit the set value of the selected variable.

Selected variables

Switch to spontaneous value Switch selected variable to spontaneous value.

Switch to alternate value Switch selected variable to alternate value.

Modify alternate value Modify the alternate value of the selected variable.

Set revision Switch on the revision for selected variables.

To do this, the REVISION status bit (bit 09) is set.

Reset revision Switch off the revision for selected variables.

To do this, the REVISION status bit (bit 09) is reset.

Set OFF status Switch on the spontaneous value for the selected variable.

To do this, the OFF status bit (bit 20) is reset.

Reset OFF status Switch off the spontaneous value for the selected variable.

To do this, the OFF status bit (bit 20) is set.

Filter profiles Buttons for filter settings in Runtime.

Profile selection Select profile from list.

Save Saves current setting as a profile.

Delete Deletes selected profile.

Import Imports filter profiles from export file.

Export Exports filter profiles in the file.

 Information

A decimal value can be entered with either a comma or a point as a decimal separator, it

will automatically be changed to a point.

In order to use the variable diagnosis in the Runtime, create a function screen switch (on page 188) to

the screen.

Screen Variable diagnosis

188

 Information

You can filter for the NORM and N_NORM status bits.

14.2 Screen switch - Variable diagnosis

The parameters needed for opening a screen of the type Variable diagnosis are the variables to be

displayed in the screen and the default set values for the selected variables.

In order to create a function to switch to the screen Variable diagnosis:

 select New Function

 select screen switch

 select the screen Variable diagnosis (on page 184)

 the dialog for the configuration is opened

Screen Variable diagnosis

189

TAG Description

Variables List of the variables and their properties.

Add variable Opens the dialog for the variable selection in order to add one or more

variables.

Release variable Selected variables are released from the screen.

Edit set value The default set values for the variables of the screen can be changed. Set

values can also be changed by clicking the cell with the set value.

Options

Base for display Defines the display of the values in the Runtime.

Possible values:

 Decimal

 Hexadecimal

 Binary

 Octal

 Decimal exponential

Refresh actual

values on

Active: The actual values are updated when the window is called up in the

Runtime.

Show this dialog

in the Runtime

Active: Opens the dialog when the screen is opened in the Runtime.

 Information

You can change the columns (displayed text, column type and column width) by

right-clicking the column header. You can find the setting for this in the context menu.

They are transferred from the Editor to the Runtime and can be changed their in the

same name if necessary.

measuring unit conversion

190

15. measuring unit conversion

measuring unit conversion enables conversion and switching of base units into conversion units, for

example meters into yards or meters into decimeters, centimeters and millimeters. A base unit contains

the initial value for a conversion. The conversion measuring unit contains the converted value in relation

to the base value. Both have a unit name. A Factor, a Offset and a Shift of the decimal

point can be defined for conversion units, based on the relevant base unit.

A base unit can be selected when setting parameters for a variable. It is possible to switch between the

different units during runtime using the Unit switching (on page 195) function.

 License information

Part of the standard license of the Editor and Runtime.

Menu item Action

New base unit Creates a new base unit.

Export XML all Exports all entries as an XML file.

Import XML Imports measuring units from an XML file.

Help Opens online help.

 Information

You must not use the unit conversion together with the report function variablerw.

This report function provides a unit conversion for older projects. If the unit defined

in the measuring unit conversion of a variable is changed by the report function in

Runtime, you must carry out the configuration in the measuring unit conversion

again.

measuring unit conversion

191

15.1 Units detail view of toolbar and context menu

Menu item Action

New base unit Creates a new base unit.

Export XML all Exports all entries as an XML file.

Import XML Imports measuring units from an XML file.

Help Opens online help.

CONTEXT MENU AND TOOL BAR BASE UNIT/CONVERSION UNIT

measuring unit conversion

192

Menu item Action

New base unit Creates a new base unit.

New conversion unit Creates a new conversion unit for the superordinate base unit.

Linked elements:

Jump back to starting

element

Drop-down list with link back to the element from which you can reach

the measuring unit.

Only available if the unit is linked to another element.

Rename Makes it possible to rename the unit.

 If units are renamed, all measuring units that are already

linked to variables or used in functions must then have the respective

variable or command amended manually. See also: Allocate a base unit

to a variable (on page 194) Measuring Unit conversion function (on

page 195).

Export XML all Exports all entries as an XML file.

Import XML Imports measuring units from an XML file.

Copy Copies the selected entries to the clipboard.

Paste Pastes the contents of the clipboard. If an entry with the same name

already exists, the content is pasted as "Copy of".

Delete Deletes selected entries.

Help Opens online help.

15.2 Engineer measuring units

You must create a base unit and a conversion unit for the conversion, as well as defining the parameters

for conversion. The conversion is carried out using the formula y=kx+d (Austria) or y=mx+b (Germany).

Each base unit can be allocated to a variable (on page 194) as a measuring unit.

 select the measuring units node in Project Manager

 right-click on measuring units

 select the New base unit command from the context menu

measuring unit conversion

193

 a new entry is created in the list

 give the measuring unit a name

 create the conversion unit

 right-click on a base unit

 select the Conversion unit command from the context menu

 a new entry is created in the list

 give the unit a name

 define a Factor for the conversion

 define a value for the Shift of the decimal point

 define a value for the Offset

measuring unit conversion

194

15.3 Allocate a base unit to a variable

Base units are allocated to a variable in the Measuring unit property (General node).

You are free to name units as you wish here. If the measuring unit conversion is used during runtime,

select a pre-defined basis unit from the drop-down list.

Hint: If you give it a name of your choice, it is best to create a link with the same name straight away in

Node units - the basic unit (on page 192).

You must create a Unit conversion function (on page 195) in order to be able to convert during runtime.

 Attention

If a measuring unit is subsequently renamed, variables already linked to this are not

automatically renamed.

To rename measuring units already linked:

 select detail view in Project Manager

 select the measuring units column or add this to the view if it is still displayed

 in the context menu, select the Text command in Replace selected column

 In the opening dialog, search by name and replace it with the new name

measuring unit conversion

195

15.4 Function measuring unit conversion

In order to carry out measuring unit conversion in the Runtime, create function unit conversion:

 select the Functions node in Project Manager

 in the context menu, select the command New function...

 navigate to the variable

 Select the measuring unit conversion function

Note: The execution of function Unit conversion triggers a refresh of the report if it is

displayed at the moment.

 The dialog for the definition of the measuring unit conversion opens.

measuring unit conversion

196

Property Description

Unit conversion Dialog for the allocation of conversion units to basic units.

Base unit List of the created basic units.

Switch to Drop-down list for the selection of the conversion unit.

You can either select a conversion unit or the basic unit.

Engineered conversion unit: In the Runtime the basic unit

is converted to the conversion unit.

<Base unit>: The basic unit is still active in the Runtime.

 Information

The units are not exported with the XML export of this function. You must export the

units separately.

 Attention

If a measuring unit is renamed afterwards, the renamed basic unit is automatically taken

into consideration in the function. However you must change the conversion units

manually.

15.5 Runtime

Each variable value for each input or output in addition to those used as standard when converting

signal units to measuring range units is converted in runtime.

 Output: A conversion unit for a variable is activated with the Unit switch function (on page 195).

The value in measuring units is subject to the pre-defined offset and factor. In addition, to

convert the value into a string, the number of decimals set for a variable is corrected

accordingly.

 Input The conversion is carried out along the lines of output in the other direction.

measuring unit conversion

197

 At the export the new units are exported.

 Values that are saved as a string are not recalculated for output. These values remain in the

measuring unit that was active at the time of creating the string. This particularly affects all

values inserted into the text of a CEL entry, such as "Set value changed from OLD to NEW" etc.

 Operating hours and operations counters in Industrial Maintenance Manager are always

displayed in base units here.

 Outputs in the EMS screen are always displayed in the base unit.

Values above VBA are always accessed in base units. For example, Variable.Value does not provide a

value with units switched, because it is not a value output. 4 new functions have been incorporated into

Variable. so that unit switching can also be used above VBA:

Keyword Description

SecondaryUnitName gives the name of the conversion unit set

SecondaryUnitDigits gives the decimals for the conversion unit set

CalcSecondaryUnitValue converts the value of the base unit into the value of the

conversion unit

CalcPrimaryUnitValue converts the value of the conversion unit into the value of the

base unit

	1. Welcome to COPA-DATA help
	2. Variables
	3. Variables detail view of toolbar and context menu
	4. Naming of objects
	5. Activating variables in zenon
	6. Data types
	6.1 Data types detail view toolbar and context menu
	6.2 Types of data types
	6.2.1 Pre-configured simple data types
	6.2.2 User-defined simple data types
	Creating a new user-defined datatype
	Changing the properties of a user-defined data type
	Deleting an user-defined datatype

	6.2.3 Structure data types
	Creating a structure datatype
	Inserting further structure elements
	Changing the properties of a structure element
	Moving a structure element
	Deleting a structure datatype

	7. Drivers
	7.1 Driver detail view toolbar and context menu
	7.2 Driver object type
	7.3 Creating a driver
	7.4 Configuration of a driver
	7.5 Driver simulation
	7.5.1 Simulation static
	7.5.2 Simulation - counting
	7.5.3 Simulation - programmed
	Editor
	Create project
	Delete project
	Distributed engineering
	Change driver
	XML export/import

	Driver configuration
	Driver variable status
	Cyclical synchronization

	straton Workbench
	Runtime
	Functionality
	Arrays and simulation
	Runtime files
	Data exchange
	Data storage
	Redundancy
	Status
	Start / stop
	Driver commands
	Variable assignment
	Time stamp

	Pleas not for variables in simulation projects
	Error messages

	7.6 Change driver
	7.7 Delete Driver
	7.8 Driver variables
	7.9 Driver documentations

	8. Create, modify and use variables
	8.1 Simple variables
	8.1.1 Creating a simple variable
	8.1.2 Changing the properties of a simple variable
	Modify variable
	Error modifying variable

	8.1.3 Deleting simple variables

	8.2 Arrays
	8.2.1 Create array variable
	8.2.2 Addressing
	Example for an array with automatic addressing for a INT variable
	Example for an array with automatic addressing for a BOOL variable
	Example for an array with manual addressing

	8.2.3 Changing the properties of an array
	8.2.4 De/activating array elements

	8.3 Structure variables
	8.3.1 Changing structure variables
	Simple structure with automatic addressing
	Structure variable as an array with automatic addressing
	Manual addressing

	8.3.2 Changing structure variables
	Changing the properties
	De/activating structure elements
	Changing the sequence

	8.3.3 Deleting structure variables

	8.4 Project overlapping variables

	9. Inheritance concept
	9.1 Inheritance in zenon
	9.1.1 Inheriting properties with structure datatypes and structure variables

	9.2 Inheriting properties of a datatype with simple variables
	9.2.1 Overwriting properties
	9.2.2 Restoring the properties of a datatype

	10. Value calculation
	10.1 Hysteresis

	11. Limits
	11.1 Defining limits in the Editor
	11.1.1 Delay
	11.1.2 Threshold
	11.1.3 Deduce limits from datatypes
	11.1.4 Multiple selection
	11.1.5 Deleting limits
	11.1.6 Overlapping limits

	11.2 Limits in the Runtime
	11.2.1 End of a limit violation

	11.3 Dynamic Limit Text
	11.3.1 Dynamic key words in limit texts

	12. Reaction matrices
	12.1 Creating a reaction matrix
	12.2 Editing a reaction matrix
	12.3 Types of reaction matrices
	12.3.1 Binary
	12.3.2 Numerical
	12.3.3 String
	12.3.4 Multi-reaction matrices in general
	Multi-binary states and reactions
	Multi-numeric states and reactions
	Configuration AML/CEL text
	Configuration status routing
	Configuration special functions

	12.3.5 Test

	12.4 Dynamic limit texts in reaction matrices
	12.5 Status for value change and delay time
	12.6 List of status bits

	13. Functions for variables
	13.1 Export data
	13.2 Read a dBase-file
	13.3 Print current values
	13.4 HD administration active
	13.5 HD administration inactive
	13.6 Trend-values on/off
	13.7 Setting values
	13.7.1 for numeric variables
	13.7.2 for binary variables
	13.7.3 for string variables
	13.7.4 Check write set value

	13.8 Driver commands
	13.9 Write time to variable
	13.10 Read time from variable

	14. Screen Variable diagnosis
	14.1 Create screen Variable diagnosis
	14.2 Screen switch - Variable diagnosis

	15. measuring unit conversion
	15.1 Units detail view of toolbar and context menu
	15.2 Engineer measuring units
	15.3 Allocate a base unit to a variable
	15.4 Function measuring unit conversion
	15.5 Runtime

