

zenon driver manual
SNMP32

v.7.20

©2015 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 5

2. SNMP32 .. 6

3. SNMP32 - Data sheet ... 7

4. Driver history .. 8

5. Requirements .. 9

5.1 PC .. 9

5.2 PLC... 9

6. Configuration .. 10

6.1 Creating a driver .. 10

6.2 Settings in the driver dialog .. 12

6.2.1 General ... 12

6.2.2 Configuration .. 16

6.2.3 SNMP Agents .. 18

6.2.4 Offline MIB list .. 22

6.2.5 Example configuration.. 30

7. Creating variables .. 32

7.1 Creating variables in the Editor ... 32

7.2 Addressing ... 36

7.3 Driver objects and datatypes .. 36

7.3.1 Driver objects ... 37

7.3.2 Mapping of the data types ... 38

7.4 Creating variables by importing .. 39

7.4.1 XML import ... 40

7.4.2 Import variables from the driver .. 40

7.4.3 DBF Import/Export ... 46

7.5 Driver variables ... 51

8. Driver-specific functions .. 58

4

9. Driver commands .. 59

10. Error analysis ... 61

10.1 Analysis tool .. 61

10.2 Troubleshooting .. 63

10.3 Check list ... 66

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

SNMP32

6

2. SNMP32

DEFINITION OF TERMS

SNMP: Simple Network Management Protocol

This protocol is used for remote maintenance, diagnosis and the protection of
networks and hosts. SNMP can be used to manage devices that execute an SNMP
agent.

SNMP agent Serves as a so-called provider, i.e.: it provides information about one device to
other SNMP management workstations (in our case to zenon with the SNMP
driver). These cyclically poll the SNMP agents for information about the
corresponding device properties.

SNMP object Parts of a device accessed by the SNMP agent or modified by an SNMP agent are
called SNMP objects.

MIB Management Information Bases

Is a logical database, which contains a group/collection of SNMP objects. As
different network management services can be used for different device types
and protocols, each service has its own MIB.

OID Object Identifier

Is a specific detail information of a SNMP object.

TCP/IP Transmission Control Protocol / Internet Protocol

This is a four layer set of manufacturer-independent, frequently used application
and transport protocols. Is used by the zenon SNMP driver to read network
information via SNMP.

ICMP Internet Control Message Protocol

This protocol sends error and control messages to the participating computers
during the transmission process.

Ping Checks the accessibility of another computer.

TRAP In SNMP this is a message, which an agent sends to a management system.
Therefore the occurrence of an event is displayed on the host, where the agent is
executed. The SNMP service can e.g. be configured in the way, that it sends a
trap when receiving an information request that neither contains the correct
community name nor an accepted host name for the service.

SNMP32 - Data sheet

7

3. SNMP32 - Data sheet

General:

Driver file name SNMP32.exe

Driver name SNMP Driver

PLC types Devices supporting SNMP

PLC manufacturer SNMP;

Driver supports:

Protocol SNMPv1; SNMPv2c;

Addressing: Address-based x

Addressing: Name-based x

Spontaneous
communication

x

Polling communication x

Online browsing x

Offline browsing -

Real-time capable -

Blockwrite -

Modem capable -

Serial logging -

RDA numerical -

RDA String -

Driver history

8

Requirements:

Hardware PC Standard network card

Software PC - the Windows "SNMP Trap" service must be installed and started-
firewalls must be configured to allow UDP traffic on port 161 and
port 162 (or allow snmptrap.exe)

Hardware PLC -

Software PLC SNMP-Agent (Server)

Requires v-dll -

Platforms:

Operating systems Windows 7, 8, 8.1 Server 2008R2, Server 2012, Server 2012R2;

CE platforms -;

4. Driver history

Date Driver version Change

07.07.08 1400 Created driver documentation

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of
this version. This is the number in the 4th position of the file version,
For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build
number 4228.

Expansions or error rectifications will be incorporated into a build in the future and are then available
form the next consecutive build number.

Requirements

9

 Example

A driver extension was implemented in build 4228. The driver that you are using is build
number 8322. Because the build number of your driver is higher than the build number of
the extension, the extension is included. The version number of the driver (the first three
digits of the file version) do not have any significance in relation to this. The drivers are
version-agnostic

5. Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 PC

HARDWARE

 Network card.

SOFTWARE

 TCP/IP protocol

 Installed and running SNMP trap service.
Note: The Windows service is not started by default.

 UDP port 161 open for sending and receiving (for other variables). This also applies for the
control unit and all devices in the network through which data flows.

 UDP port 162 open for receiving (for traps). This also applies to all devices in the network
through which data flows. The port for sending must be open on the control unit.

5.2 PLC

HARDWARE

 SNMP-compatible network participant.

Configuration

10

SOFTWARE

 running SNMP service and according SNMP agent

 TCP/IP protocol

 UDP port 161 open for sending and receiving.

 UDP port 162 open for sending (for traps).

6. Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables
(main.chm::/15247.htm) of the online manual.

6.1 Creating a driver

In order to create a new driver:

1. Right-click on Driver in the Project Manage and select Driver new in the context menu.

main.chm::/15247.htm

Configuration

11

2. In the following dialog the control system offers a list of all available drivers.

3. Select the desired driver and give it a name:

 The driver name has to be unique, i.e. if one and the same driver is to be used several times
in one project, a new name has to be given each time.

 The driver name is part of the file name. Therefore it may only contain characters which are
supported by the operating system. Invalid characters are replaced by an underscore (_).

 This name cannot be changed later on.

Configuration

12

4. Confirm the dialog with OK. In the following dialog the single configurations of the drivers are
defined.

Only the respective required drivers need to be loaded for a project. Later loading of an additional driver
is possible without problems.

 Information

For new projects and for existing projects which are converted to version 6.21 or higher,
the following drivers are created automatically:

 Internal

 MathDr32

 SysDrv.



6.2 Settings in the driver dialog

You can change the following settings of the driver:

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later
for editing, double click on the driver in the list or click on the Configuration property.

Configuration

13

Parameters Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:

A connection to the control is established.

 Simulation static

No communication between to the control is
established, the values are simulated by the driver.
In this modus the values remain constant or the
variables keep the values which were set by zenon
Logic. Each variable has its own memory area. E.g.
two variables of the type marker with offset 79 can
have different values in the Runtime and do not
influence each other. Exception: The simulator
driver.

 Simulation - counting

No communication between to the control is
established, the values are simulated by the driver.
In this modus the driver increments the values
within a value range automatically.

 Simulation - programmed

N communication is established to the PLC. The
values are calculated by a freely programmable
simulation project. The simulation project is created
with the help of the zenon Logic Workbench and
runs in a zenon Logic Runtime which is integrated in
the driver. For details see chapter Driver simulation
(main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested from the
control even if they are currently not needed.
This has the advantage that e.g. multiple screen switches after
the screen was opened for the first time are executed faster
because the variables need not be requested again. The
disadvantage is a higher load for the communication to the
control.

Output can be written Active: Outputs can be written.

Inactive: Writing of outputs is prevented.

: Not available for every driver.

Variable image remanent This option saves and restores the current value, time stamp and
the states of a data point.

Fundamental requirement: The variable must have a valid value
and time stamp.

main.chm::/25206.htm

Configuration

14

The variable image is saved in mode hardware if:

 one of the states S_MERKER_1(0) up to S_MERKER8(7),
REVISION(9), AUS(20) or ERSATZWERT(27) is active

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not programmed
simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a
criterion in order to restore the remanent variable image.

Stop on Standby Server Setting for redundancy at drivers which allow only on
communication connection. For this the driver is stopped at
the Standby Server and only started at the upgrade.

 If this option is active, the gapless archiving is
no longer guaranteed.

Active: Sets the driver at the not-process-leading Server
automatically in a stop-like state. In contrast to stopping via
driver command, the variable does not receive status
switched off (statusverarbeitung.chm::/24150.htm)
but an empty value. This prevents that at the upgrade to
the Server irrelevant values are created in the AML, CEL and
Historian.

 Not available if the CE terminal serves as a data
server. You can find further information in the zenon
Operator manual in the CE terminal as a data server
chapter.

Global Update time Active: The set Global update time in ms is used for all
variables in the project. The priority set at the variables is not
used.
Inactive: The set priorities are used for the individual
variables.

Priority The polling times for the individual priority classes are set here.
All variables with the according priority are polled in the set time.

The allocation to the variables takes place separately in the
settings of the variable properties.
The communication of the individual variables are graduated in
respect of importance or necessary topicality using the priorities.

statusverarbeitung.chm::/24150.htm

Configuration

15

Thus the communication load is distributed better.

 Priority classes are not supported by each driver For
example, drivers that communicate spontaneously do not
support it.

CLOSE DIALOG

Parameters Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR CYCLICAL DRIVERS

The following applies for cyclical drivers:

For Set value, Advising of variables and Requests, a read cycle is immediately triggered for all drivers -
regardless of the set update time. This ensures that the value is immediately available for visualization after
writing. Update times can therefore be shorter than pre-set for cyclical drivers.

Configuration

16

6.2.2 Configuration

Configuration

17

Parameters Description

SNMP configuration file File in which the settings are saved. It is in the zenon
project directory.

Error response time (ms) The time in milliseconds, for which the driver waits,
before it outputs an error message.

I.e.: If the SNMP agents cannot be accessed, due to a
short-term network overload for example, the driver
waits this period of time before it marks the variables as
invalid. If the driver reaches the agents within that time,
the short-term fault is ignored without a message.

 Does not apply to traps if no initial value is read
during agent configuration. These variables then remain
empty without status, even if there is no connection to
the agent.

Addressing using variable name or

identification
Active: Addressing is carried out using the names of
the variables or using identification. The browse agent
and receive online traps properties are then not
available.

Inactive: Addressing is carried out by means of offset
in assignment file.

 The type of addressing is important for
variable import (on page 40). Subsequent
amendments of addressing from variable name
oridentification to offset can lead to communication
problems.

Using identification for addressing Identification is used.

Is not available if "Addressing using variable name or

identification" was activated.

Use SNMP v2c for polling Active: For all SNMP queries (GET, GETNEXT, SET) of
this driver instance, SNMP v2c is used:

 For browsing the agents in the Offline Mib list

 In the Runtime

Inactive: SNMP v1 is used.

 The driver instance can always receive v1 and v2c
TRAPs regardless of this setting.

 A single driver instance can be created for v2c and
v1. However if you give each SNMP agent its own driver
instance (v1 or v2c), the waiting for the timeout of a
non-functional agent does not have an effect on the
communication with the other agents.

OK Applies all changes in all tabs and closes the dialog.

Configuration

18

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

6.2.3 SNMP Agents

Configuration

19

Parameters Description

Agent file The file where the configurations of the single SNMP agents are
saved. This file complies with the SNMP configuration file and thus
cannot be changed in this dialog.

Net address The zenon internal Net address of the agents. Complies with the net
address in the variable definition. You can use this net address e.g.
for logical grouping of your variables.

Agent name The freely definable name of a single SNMP agent.

IP address / host name The IP address of the single network participants/agents. Here either
the IP address or the computer name (requiring a properly working
name resolution) can be used. If traps are used, no agents with the
same IP address can be configured.

IP port Port address

Default:

 SNMP: 161

 Traps: 162

Agent community default (public) The access identification of the agent. Is always "public" (read only)
by default.

A community name serves as a password that is defined for one or
more SNMP hosts.

Accepted community names are only used for the authentication of
incoming messages. This can be configured in the SNMP service
settings of the agent.

Trap variables Settings for traps.

 Do not read any initial values from

the agent
No initial value is read for traps.

The value and status of the variable remain empty until a trap is
received.

 Select this option if the agent sends traps
that cannot be read using GET and are thus not included in the MIB
list.

 Read initial values from the agent Start values for traps are read by the agent.

Start value for the trap variables is read by the agent using "GET".
You receive the last valid value from the last trap or the initial value
hen Runtime starts. If the start value was read successfully, the trap
variable is no longer read cyclically, but only spontaneously.

 Select this option if traps from the agent are
read using GET, in order to then expect spontaneous messages

Configuration

20

(traps).

 Reset trap variables after each trap No initial value is read for traps.

The value and status of the variable remain empty until a trap is
received.

If a trap is received, the value is sent to Runtime and then
immediately overwritten with an empty string or the value 0. The
trap value can be recognized by the reaction matrix and written in
the AML and CEL

If, when the option is active, the value of the trap variables in

Runtime is 0 or an empty string with the status Spontaneous, a
trap was already received.

 Select this option to react to traps in Runtime
that always have the same value to create a CEL entry or alarm.

Translating OID variables Settings for OID variables. Allows separate configuration of the
translation for each agent.

Note: Only available from version 6.50. All other versions are
automatically handled with the standard Only display OID.

Requirements:

The following properties define how the OID translation is applied to
ingoing values for variables from the SNMP driver. To do this, two
conditions must be met:

 The variable must be of the driver object type SNMP variable
or SNMP trap.

 The incoming value must be of the SNMP data type OID.

Incoming values that do not meet these conditions are forwarded
without treatment.

Display OID and translation Active: OID and translation are transferred as a value.

The OID is translated in a written text and the value is forwarded to
Runtime in the following format. [OID] ([Text])

Example: .1.3.6.1.6.3.1.1.5.3 (IF-MIB::linkDown).

If the translation is not successful, only the OID is transferred to
Runtime as a value.

Only display OID Active: Only OID is transferred as a value.

Note: Standard for all versions prior to zenon 6.50.

Only display translation Active: Only the translation is transferred as a value.

The OID is translated in a described text and only the translated text
is forwarded to Runtime. If the translation is not successful, the OID
is transferred to Runtime as a value.

Configuration

21

New Defining new agents

Delete Delete agent.

Edit Edit agent.

Save Saves the agent settings that have been set.

Discard Discards the agent settings that have been set.

Ping Tests a configured agent IP address.

Result of a successful ping attempt with name resolution:

If you get no positive response to a ping, it may be, that the name could not be resolved correctly. In this
case, try pinging the IP address. If this fails again, this means the network participant / agent is not
accessible.

 Information

Maximum number of connections: 256 (0-255).

Configuration

22

6.2.4 Offline MIB list

Configuration

23

Parameters Description

Offline MIB list Contains all properties (=SNMP objects) of an SNMP agent that should
be available/selectable in the variable definition. SNMP objects that are
not transferred to this list cannot subsequently be defined as variables.

Delete Deletes selected OID from the list.

Properties Displays the properties of a selected entry.

New Allows manual creation of a new entry (on page 25).

Browse Agent Active: Agent is searched through according to OIDs.

The selected agent is searched through using GETNEXT for OIDS until
either the defined maximum number of OIDs is received or the agent
responds to GET with endofMIBview as an identifier that there are no
further OIDs.

 For some SNMP agents, it is possible to configure how many
SNMP packets per seconds are answered. A number that is too low can
have an effect on the reading of the OIDs using the browse agent.

Receive online traps Active: The SNMP trap messages from different agents are received
and displayed using the SNMP Trap service in Windows. To do this, the
agent does not necesarily need to be configured; traps from
non-configured agents are also listed. If the trap message comes from
an agent that is already configured, the name of the agent is displayed
in the "Agent" column.

The following must be the case for the computer to receive traps:

 The firewall must allow UDP Traffic to port 161 and 162

 The firewall must allow the snmptrap.exe process

 The configuration computer must be defined as the target for
SNMP traps

 If you receive an error mssage in relation to 0x2a or 0x64, it is
possible that the SNMP Trap Windows service does not run.

Agent Selecetion of the agent that is to be searched for supported information
from the drop-down list with the command "GETNEXT" and the MIB
objects of which should be displayed. This list contains all agents that
were created in the SNMP Agents (on page 18) tab.

Browse Agent Searches through selected agent.

Root OID The definition ".iso.org" or ".1.3" is to be used here.

Max. OID number The number of OIDs that should be read by the browser.

Read OID number The status display of the OIDs read until this point in time.

Add area Adds selected OIDs to the offline MIB list. From here, OIDs of different
agents can be created using driver online import.

Configuration

24

 Attention

The SNMP driver first looks for the agent and then the variable that belongs to the OID
on the basis of the network address. That means:

 Only one variable can be defined for an OID per agent. If there are already several
variables with the same OID for an agent, the variable that is updated when a trap
arrives is not defined.

 Several variables with the same OID but different agents are permitted.

A similar restriction applies for the agents. For trap variables, the agent is assigned via
the sender of the IP address. Several agents with the same IP address, or several drivers
with agents with the same IP address are not supported. The agent or driver that
receives the trap value is not defined.

DIFFERENCES BETWEEN MIB EDITOR AND ONLINE VARIABLE IMPORT

If variables are created offline using the the MIB editor (on page 22) or using online variable import (on page 40),
there are some differences:

VARIABLES AND AGENT

 If traps are received for the offline MIB list, traps of all IP addresses are displayed. When
adding received traps to the offline MIB list, information to the agent is not saved.

 If variables are imported by the driver, ensure that the correct variables are created for the
correct agent as a trap.

CONFIGURED AND UNCONFIGURED AGENTS IN ONLINE IMPORT

If traps are received via the import dialog, SMNP traps of all other IP addresses are displayed.

 If a trap comes from an agent that is laready configured, the agent is amended accordingly when
the trap is added: The Net address is set correctly.

 If the trap comes from an unconfigured agent (source IP address is displayed in the list of traps
received) and the variale is added, the net address 0 is used. However, this net addres could also
be in use by another agent, which would lead to problems.

ADDRESSING

When browsing an agent or when receiving traps in the driver online import, variables are not added to
the Open MIB list and do not receive an offset.

Configuration

25

If the type of addressing in the driver configuration (on page 16)is changed from variable name or
Identification to offset, these variables will no longer communicate with each other. You should therefore
select the type of communiction before you create variables.

Creating the OID manually

If there was no connection to the desired network participant at the time of configuration, the OID can
also be created without a browser.

Parameters Description

Name Here a freely definable name can be used.

OID The accurate identification of the OID. Please make sure that the complete and correct
identification is entered here; otherwise, the zenon SNMP driver will not be able to read
the data.

Datatype Integer or String, depending on the accessed SNMP datatype.

Translating OID variables

OID translation is available for variables of the driver object types:

 SNMP trap

 SNMP variable

The function of OID translation is only available for drivers for zenon 6.50 and later versions. The list of
all contents of a trap is supported in each driver version

Configuration

26

 Information

Notes on copyright

The function of OID translation was taken from the Net SNMP Open Source Library,
version 5.6.1.1.

Copyright 1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996,
1998-2000.

Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved.

CONFIGURATION

Overview of necessary configurations and the results of this:

1. Driver configuration:

a) An SNMP driver is created in the Editor.

b) The required agents are configured (on page 18) on the driver.

c) The desired OID translation is set for the agents.

d) In the Offline MIB list (on page 22), the agents are browsed and the desired OIDs are added
to the offline MIB list.

e) After this, Receive online traps is switched, to insert the list of all contents of the traps into
the offline MIB list. After traps have been received by the agents, the necessary OIDs from
the traps are added to the list. The driver configuration is thus concluded.

2. Configuration in the Editor:

a) The variables from the driver are imported in the Editor, whereby the required variables
from the offline MIB list are added for each agent.

b) The variables are linked to screens with elements so that they can be looked at when the
program is running.

c) The Runtime files are created and Runtime is started.

3. Behavior in Runtime:

a) Runtime starts the SNMP driver.

b) The SNMP driver instance initializes the OID translation.

c) The first values are read after the variables are registered on the driver:
For all all variables of the driver-object type Ping status, SNMP Counter, SNMP Variable
and SNMP Traps if Read initial values for traps is active.

Configuration

27

d) For variables of the driver object types SNMP Variable and SNMP Trap, received values of
SNMP data type OID are handled in accordance with the configured OID translation for the
respective agents.

e) For each further polling and each trap received, the OID translation for values of SNMP data
type OID are used in accordance with the respective agent configuration. Furthermore, for
traps, the list of all content is created.

String variable with all trap contents

The list of all content of a trap is displayed in the dialog of the offline MIB list if this is set to receive
traps.

A click on Receive online traps creates an example entry for each configured agent, which is displayed in
the list of received traps. For each trap received, a list of all content like this is created and inserted as
the last received entry for this trap.

Received variables of SNMP data type OID are always displayed as OID and translation. The descriptive
text translated from the OID is displayed as a name.

Configuration

28

The object can be inserted in the Offline MIB list in the list for Receive online trap. When importing
driver variables from the Offline MIB list, a string variable with all trap contents can be stored for
each agent. This must be created for the SNMP driver with the following parameters:

 Driver object type: SNMP trap

 Net address: Index of the agent that it concerns

 Identification: TrapVariableList

 Offset

 Add the example entry of the agent into the offline MIB list and then import the variable from
the driver.

FORMAT OF THE STRING VARIABLES

The string is in the same format as an INI file format:

The first node [DEFAULT] contains an entry COUNT, which provides the number of variable bindings in
a trap. After this, there is an ENTRY_[Nr] node for each variable binding with the contents OID,
OID_TRANSLATED, TYPE and VALUE.

SCHEMA

Parameters Description

[DEFAULT]

COUNT=x Number of entries.

[ENTRY_x] Index

OID=x OID in numerical format.

OID_TRANSLATED=x Descriptive text for the OID, stating if the OID translation
is available.

[TYPE]=x zenon data type of the value

[VALUE]=x Received value. Received OID values are entered here
according to the availability and configuration of the OID
translation.

EXAMPLE

[DEFAULT]

COUNT=7

[ENTRY_000]

OID=.1.3.6.1.2.1.1.3.0

Configuration

29

OID_TRANSLATED=DISMAN-EVENT-MIB::sysUpTimeInstance

TYPE=u32

VALUE=59769454

[ENTRY_001]

OID=.1.3.6.10.60.30.10.10.40.10.0

OID_TRANSLATED=SNMPv2-MIB::snmpTrapOID.0

TYPE=string

VALUE=.1.3.6.1.6.3.1.1.5.3 (IF-MIB::linkDown)

[ENTRY_002]

OID=.1.3.6.1.2.1.2.2.10.1.6

OID_TRANSLATED=IF-MIB::ifIndex.6

TYPE=i32

VALUE=6

[ENTRY_003]

OID=.1.3.6.1.2.1.2.2.10.7.6

OID_TRANSLATED=IF-MIB::ifAdminStatus.6

TYPE=i32

VALUE=1

[ENTRY_004]

OID=.1.3.6.1.2.1.2.2.1.8.6

OID_TRANSLATED=IF-MIB::ifOperStatus.6

TYPE=i32

VALUE=2

[ENTRY_005]

OID=.1.3.6.1.3.1057.1

OID_TRANSLATED=SNMPv2-SMI::experimental.1057.1

TYPE=string

VALUE=192.168.0.120

[ENTRY_006]

OID=.1.3.6.10.60.30.10.10.40.30.0

Configuration

30

OID_TRANSLATED=SNMPv2-MIB::snmpTrapEnterprise.0

TYPE=string

VALUE=.1.3.6.1.6.3.1.1.5 (SNMPv2-MIB::snmpTraps)

6.2.5 Example configuration

To receive and display translated OID variables and lists of content of traps from an agent:

1. Configure the SNMP agent

2. Create an SNMP driver

3. Configure the SNMP agents in the driver

4. Add the required OIDs to the offline MIB list

5. Import variables from the driver

6. Display the variables in a screen

CONFIGURING THE SNMP AGENT

The agent must grant the public standard SNMP community reading rights at least.

The IP address of the subsequent computer must be entered as the destination fro traps. If the
engineering station and Runtime computer are different computers, the IP address of the engineering
station can also be entered here. If the agent supports this, you can also receive traps from agents at the
time of design. If the agent does not support multiple trap destinations, the IP address of the
engineering station can be entered as an individual trap destination. However this entry must be
replaced with the IP address of the Runtime computer before Runtime is started, so that it receives the
traps.

CREATING AN SNMP DRIVER

In order to create a new driver:

1. Open the dialog to create a new driver using the New driver command:

 in the context menu in the Driver project node
or

 Context menu in the driver list
or

 Toolbar in the driver view

2. Select the SNMP driver in the dialog

Configuration

31

CONFIGURING THE SNMP AGENTS IN THE DRIVER

In the driver configuration, you configure the settings for the agents in the SNMP Agents (on page 18)
tab. In doing so, note:

 Change the port accordingly: The port for SNMP requests is 161 and 162 for traps.

 The standard community public must be permitted.

 The IP address of the SNMP agent must be entered as the IP address.

 You control the reading of initial values for trap variables and whether these are treated as
wipers using the options in the Trap variables configuration area.

 You control the OID translation using the options in the OID variables configuration area. Here,
one of the variants to be translated is selected (everything except "Only display OID").

ADD REQUIRED OIDS TO OFFLINE MIB LIST

Because only traps are of interest in this article, activate the Receive online traps: option in the Offline
MIB list (on page 22) tab

 The TrapVariableList automatically created for the agent is added to the offline MIB list.

 The required OIDs are added to the list after the trap has been received.

Close the driver configuration dialog.

IMPORT VARIABLES FROM THE DRIVER

Open the context menu of the SNMP driver in the driver list and select the Import variables from
driver entry.

In the dialog (on page 40) that opens:

 Select the entries in the offline MIB list

 Set the agents to be used

 Import the variables by clicking on OK in the variable list

DISPLAYING VARIABLES IN A SCREEN

You display the selected variables in a dynamic numerical value or in a dynamic text, regardless of their
data type. A large element should be configured for the list of all contents of a trap, because these can
become very long.

A ping status variable for the agent can be created as an option and linked via a switch, in order to
display the availability of the agent.

Creating variables

32

BEHAVIOR IN RUNTIME

Runtime starts the SNMP driver after it has been started. The following steps are carried out by Runtime
once the driver instance has been created:

1. The driver runs through its initialization.
In doing so, the OID translation is also initialized and the index for the MIBs is created.

2. Runtime registers the required variables on the driver.
Based on the network address, the driver decides which variables are assigned to which agents
and reads the configuration of the agent from the driver configuration file.

3. For polling variables, the first values are read and the polling cycle is started.
Received OID SNMP data values are translated according to the agent configuration.

4. Recording traps.
With traps that are received, the individual variable bindings are processed first - translate OIDs,
send values to Runtime - and recorded in a list. Based on this list, the string for the variable with
the list of all content of a trap is generated and sent to Runtime.

5. When Runtime is ended, the driver is sent a command to end.

6. The driver runs through its deinitialization and deletes the index that was created in the process.

7. Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

33

1. Select the New variable command in the Variables node in the context menu

2. The dialog for configuring variables is opened

3. configure the variable

Creating variables

34

4. The settings that are possible depends on the type of variables

Creating variables

35

Property Description

Name Distinct name of the variable. If a variable with the same name already
exists in the project, no additional variable can be created with this name.

Maximum length: 128 Zeichen

 The characters # and @ are not permitted in variable names. If
non-permitted characters are used, creation of variables cannot be
completed and the Finish button remains inactive.
Note: For some drivers, the addressing is possible over the property
Symbolic address, as well.

Driver Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for internal
variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is
automatically loaded.

Driver object type
(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

Data type Select the desired data type. Click on the ... button to open the selection
dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays
chapter.

Addressing options Expanded settings for arrays and structure variables. You can find details
in the respective section.

Automatic element

activation
Expanded settings for arrays and structure variables. You can find details
in the respective section.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

 If a change is made to a data type that does not support the set signal range, the signal

range is amended automatically. For example, for a change from INT to SINT, the signal range is changed to

127. The amendment is also carried out if the signal range was not inherited from the data type. In this case, the
measuring range must be adapted manually.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm

Creating variables

36

7.2 Addressing

Property Description

Name Freely definable name.

 the name must be unique within each control system project.

If the variable name is used for addressing, you must enter the OID here.

Identification Any text can be entered here, e.g. for resource labels, comments ...

If the variable identification is used for addressing, you must enter the OID here.

Net address Bus address or net address of the variable.

This address refers to the bus address in the connection configuration of the driver.
This defines the PLC, on which the variable resides.

Data block not used for this driver

Offset Offset of the variable; the memory address of the variable in the PLC. Configurable
[0.. 4294967295]

Alignment not used for this driver

Bit number Number of the bit within the configured offset.

Valid input [0.. 65535].

String length Only available for String variables: Maximum number of characters that the variable
can take.

Driver object type Depending on the employed driver, an object type is selected during the creation of
the variable; the type can be changed here later.

Data type Data type of the variable, which is selected during the creation of the variable; the
type can be changed here later.

 If you change the data type later, all other properties of the variable
must be checked and adjusted, if necessary.

When importing driver variables from the Offline MIB list, a string variable with all trap contents can
be stored for each agent. This must be created for the SNMP driver. For details, see the String variable
with all trap contents (on page 27).

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out
which driver objects are provided by the driver and which IEC data types can be assigned to the
respective driver objects.

Creating variables

37

7.3.1 Driver objects

The following object types are available in this driver:

OBJECTS FOR PROCESS VARIABLES IN ZENON

Driver object type Channel
type

Read /
Write

Supported
data types

Comment

Ping status 64 R / W BOOL

SNMP traps 67 R / W DINT, UDINT,
STRING

V1 and V2 traps are supported.

SNMP variables 65 R / W DINT, UDINT,
STRING

SNMP counter 66 R / W DINT, UDINT

Driver variable 35 R / W BOOL, SINT,
USINT, INT,
UINT, DINT,
UDINT, REAL,
STRING

Variables for the statistical analysis
of communication.

Find out more in the chapter about
the Driver variables (on page 51)

Object Read Write Comment

Configuration Opens the driver configuration menu

Ping status Y Bit.

+i/u32Bit Y

String Y

 Attention

The driver resets the value for TrapVariableList non-automatically. The values of other
variables are reset automatically.

HOW THE SNMP COUNTER WORKS

A counter calculates the average of the value change over time (in seconds) between two read cycles
and sends this to Runtime. The value from the OID is not sent to Runtime however. If the new value
from the OID is les than the previous value (overflow), this value is ignored and no new value for the
counter is sent to Runtime until a new value can be calculated.

Creating variables

38

Network traffic can be measured using this counter: To do this, the agent must continuously count up
the number of bytes, for example. With a read cycle of 1000 ms, you receive the number of bytes per
second.

EXAMPLE

 Driver update cycle: 30 s

 Value 1: 2500

 Value 2: 7500

 Result for counter variable: 166

Because: 5000 value difference over 30 seconds = 166

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes
with the datatypes of the PLC.

Creating variables

39

Control zenon Data type

 BOOL 8

 USINT 9

 SINT 10

 UINT 2

 INT 1

 UDINT 4

 DINT 3

 ULINT 27

 LINT 26

 REAL 5

 LREAL 6

 STRING 12

 WSTRING 21

 DATE 18

 TIME 17

 DATE_AND_TIME 20

 TOD (Time of Day) 19

 The property Data type is the internal numerical name of the data type. It is also used for the
extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every driver.

 Information

You can find details on the import and export of variables in the Import-Export
(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

40

7.4.1 XML import

For the import/export of variables the following is true:

 The import/export must not be started from the global project.

 The start takes place via:

 Context menu of variables or data typ in the project tree

 or context menu of a variable or a data type

 or symbol in the symbol bar variables

 Attention

When importing/overwriting an existing data type, all variables based on the existing
data type are changed.

There is a data type XYZ derived from the type INTwith variables based on this data
type. The XML file to be imported also contains a data type with the name XYZ but

derived from type STRING. If this data type is imported, the existing data type is
overwritten and the type of all variables based on it is adjusted. I.e. the variables are now

no longer INT variables, but STRING variables.

7.4.2 Import variables from the driver

To import variables from the driver:

1. Select Import variables from driver command from the driver context menu

2. The configuration dialog is opened

The dialog options depend on the settings in the configuration (on page 16)

a) Addressing via offset

b) Addressing using variable name or identification

Creating variables

41

 Attention

The SNMP driver first looks for the agent and then the variable that belongs to the OID
on the basis of the network address. That means:

 Only one variable can be defined for an OID per agent. If there are already several
variables with the same OID for an agent, the variable that is updated when a trap
arrives is not defined.

 Several variables with the same OID but different agents are permitted.

A similar restriction applies for the agents. For trap variables, the agent is assigned via
the sender of the IP address. Several agents with the same IP address, or several drivers
with agents with the same IP address are not supported. The agent or driver that
receives the trap value is not defined.

ADDRESSING VIA OFFSET

Creating variables

42

Parameters Description

Addressing using variable

offset <--> Offline MIB list

index

Note the addressing defined under configuration (on page 16).

zenon Variable for creation List of the variables to be created in zenon.

Delete Removes entries from the list.

Browse Agent Cannot be used when addressing via offset.

Receive online traps Cannot be used when addressing via offset.

Offline MIB list Active: Variables are imported from the offline MIB list (on page 22). List
entries are displayed in the list field below.

Include agent name in the variable

name.

Active: The name of the agent is placed in front of the variable
name; both entries are separated by an underscore:

Agent_Variable Name.

Agent Drop-down list of the agents.

List List of variables that are contained in the offline MIB list.

Add as: Selection using buttons, of how variables to be imported are to be
added to the "zenon variables to create" list:

 Variable Add as variable.

 Counters Add as counter.

 Trap Add as trap.

OK Accepts all settings and closes the dialog. The variables in the "zenon
variables to create" list are added.

Cancel All settings are discarded and the dialog is closed.

Help Opens online help.

ADDRESSING USING VARIABLE NAME OR IDENTIFICATION

Creating variables

43

Creating variables

44

TAGs Description

Addressing using variable

offset <--> Offline MIB list

index

Note the addressing defined under configuration (on page 16).

zenon Variable for creation List of the variables to be created in zenon.

Delete Removes entries from the list.

Browse Agent Active: Agent is searched through according to OIDs.

The selected agent is searched through using GETNEXT for OIDS until
either the defined maximum number of OIDs is received or the agent
responds to GET with endofMIBview as an identifier that there are no
further OIDs.

 For some SNMP agents, it is possible to configure how many
SNMP packets per seconds are answered. A number that is too low can
have an effect on the reading of the OIDs using the browse agent.

Receive online traps Active: The SNMP trap messages from different agents are received
and displayed using the SNMP Trap service in Windows. To do this, the
agent does not necesarily need to be configured; traps from
non-configured agents are also listed. If the trap message comes from
an agent that is already configured, the name of the agent is displayed
in the "Agent" column.

The following must be the case for the computer to receive traps:

 The firewall must allow UDP Traffic to port 161 and 162

 The firewall must allow the snmptrap.exe process

 The configuration computer must be defined as the target for
SNMP traps

 If you receive an error mssage in relation to 0x2a or 0x64, it is
possible that the SNMP Trap Windows service does not run.

Agent Selecetion of the agent that is to be searched for supported information
from the drop-down list with the command "GETNEXT" and the MIB
objects of which should be displayed. This list contains all agents that
were created in the SNMP Agents (on page 18) tab.

Browse Agent Searches through selected agent.

Root OID The definition ".iso.org" or ".1.3" is to be used here.

Max. OID number The number of OIDs that should be read by the browser.

Read OID number The status display of the OIDs read until this point in time.

List List of variables that are contained in the offline MIB list.

Add as: Selection using buttons, of how variables to be imported are to be
added to the "zenon variables to create" list:

 Variable Add as variable.

 Counters Add as counter.

Creating variables

45

 Trap Add as trap.

OK Accepts all settings and closes the dialog. The variables in the "zenon
variables to create" list are added.

Cancel All settings are discarded and the dialog is closed.

Help Opens online help.

DIFFERENCES BETWEEN MIB EDITOR AND ONLINE VARIABLE IMPORT

If variables are created offline using the the MIB editor (on page 22) or using online variable import (on page 40),
there are some differences:

VARIABLES AND AGENT

 If traps are received for the offline MIB list, traps of all IP addresses are displayed. When
adding received traps to the offline MIB list, information to the agent is not saved.

 If variables are imported by the driver, ensure that the correct variables are created for the
correct agent as a trap.

CONFIGURED AND UNCONFIGURED AGENTS IN ONLINE IMPORT

If traps are received via the import dialog, SMNP traps of all other IP addresses are displayed.

 If a trap comes from an agent that is laready configured, the agent is amended accordingly when
the trap is added: The Net address is set correctly.

 If the trap comes from an unconfigured agent (source IP address is displayed in the list of traps
received) and the variale is added, the net address 0 is used. However, this net addres could also
be in use by another agent, which would lead to problems.

ADDRESSING

When browsing an agent or when receiving traps in the driver online import, variables are not added to
the Open MIB list and do not receive an offset.

If the type of addressing in the driver configuration (on page 16)is changed from variable name or
Identification to offset, these variables will no longer communicate with each other. You should therefore
select the type of communiction before you create variables.

Creating variables

46

7.4.3 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable settings, such
as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in the DBF file in
order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

Creating variables

47

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for
name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file name length
including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

File structure of the dBase export file

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

48

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with there name to the 8.3 DOS format (8 alphanumeric characters for name, 3
characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Description Type Field size Comment

KANALNAME Char 128 Variable name.

The length can be limited using the MAX_LAENGE entry in
project.ini.

KANAL_R C 128 The original name of a variable that is to be replaced by the new
name entered under "VARIABLENNAME" (field/column must be
entered manually).

The length can be limited using the MAX_LAENGE entry in
project.ini.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has to be
created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE entry in
project.ini.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)
corresponds to the driver object type.

HWKANAL Num 3 Bus address

BAUSTEIN N 3 Datablock address (only for variables from the data area of the
PLC)

ADDRESS N 5 Offset

BITADR N 2 For bit variables: bit address
For byte variables: 0=lower, 8=higher byte
For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables
ATTENTION: Only the first variable is fully available. All others
are only available for VBA or the Recipe Group Manager

LES_SCHR R 1 Write-Read-Authorization

Creating variables

49

0: Not allowed to set value.
1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object
comprises TREIBER-OBJEKTTYP and DATENTYP

SIGMIN Float 16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values
(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one decimal
possible)
not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s], one decimal
possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable is not
requested from the server but from the Standby Server in
redundant networks

RESOURCE C 128 Resources label.
Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry in
project.ini.

ADJWVBA R 1 Non-linear value adaption:

0: Non-linear value adaption is used

1: Non-linear value adaption is not used

Creating variables

50

ADJZENON C 128 Linked VBA macro for reading the variable value for non-linear
value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for non-linear value
adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

 Attention

When importing, the driver object type and data type must be amended to the target
driver in the DBF file in order for variables to be imported.

LIMIT DEFINITION

Limit definition for limit values 1 to 4, and status 1 bis 4:

Creating variables

51

Description Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for a dynamic
limit (see VARIABLEx)

(if VARIABLEx is 1 and here it is -1, the existing variable linkage is
not overwritten)

SCHWWERT1 F 16 Threshold value for limit

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking
the limit is defined by an absolute value (see field GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function
(if “-1” is entered here, the existing function is not overwritten
during import)

A_GRUPPE1 N 10 Alarm/event group

A_KLASSE1 N 10 Alarm/event class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

EXPRESSIONS IN THE COLUMN "COMMENT" REFER TO THE EXPRESSIONS USED IN THE
DIALOG BOXES FOR THE DEFINITION OF VARIABLES. FOR MORE INFORMATION, SEE
CHAPTER VARIABLE DEFINITION.

7.5 Driver variables

Creating variables

52

The driver kit implements a number of driver variables. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables defined in the driver kit are available in the import file drvvar.dbf (on
the CD in the directory: CD_Drive:/Predefined/Variables) and can be imported from there.

Variable names must be unique in zenon. If driver variables are to be imported from drvvar.dbf
again, the variables that were imported beforehand must be renamed.

Creating variables

53

 Information

Not every driver supports all driver variants.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Driver variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one
connection at a a time

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

Creating variables

54

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and no
OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver
simulation.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically
reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial
interface. Writing to this variable
immediately results in the method
SrvDrvVarApplyCom being called (which
currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the
modem. Writing this variable immediately
calls the method SrvDrvVarApplyModem.
This closes the current connection and
opens a new one according to the settings
PhoneNumberSet and ModemHwAdrSet.

Creating variables

55

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone
number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be
kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the
modem

ComPort UINT 9 Number of the serial interface.

Baud rate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial
interface

Value = 0 if the driver cannot establish any
serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be
established automatically for
reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone
number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer
occurs for this time in seconds (s)

Creating variables

56

WriteTimeout UDINT 19 Maximum write duration for a modem
connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is
accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a
connection.

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is
required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is
required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required
to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required
to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

Creating variables

57

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read
all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read
all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group
Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group
Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group
High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group
Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were
executed

ERROR MESSAGE

Name from import Type Offset Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error
occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error
occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error
occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error
occurred.

Driver-specific functions

58

RdErrHwAdresse DINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8. Driver-specific functions

The driver supports the following functions:

GET, SET, GETNEXT

With the functions GET, SET and GETNEXT data are read from a device supporting SNMP.

PING STATUS

Via the ping status you define whether the end device can be reached via ICMP protocol.

For this status bit INVALID (main.chm::/24148.htm) is requested via the combined element of via
reaction matrices.

Value 1: Device can be reached.

Value with status INVALID: Communication is disturbed.

main.chm::/24148.htm

Driver commands

59

SNMP TRAP

The driver supports the receipt of SNMP traps with an SNMPV1 and SNMPv2c header.

INFORMS (traps with confirmation of receipt) are not supported.

9. Driver commands

This chapter describes standard functions that are valid for most zenon drivers. Not all functions
described here are available for every driver. For example, a driver that does not, according to the data
sheet, support a modem connection also does not have any modem functions.

Driver commands are used to influence drivers using zenon; start and stop for example.
The engineering is implemented with the help of function Driver commands. To do this:

 create a new function

 select Variables -> Driver commands

 The dialog for configuration is opened

Driver commands

60

Parameters Description

Drivers Drop-down list with all drivers which are loaded in the project.

Current state Fixed entry which has no function in the current version.

Driver commands Drop-down list for the selection of the command.

 Start driver (online
mode)

Driver is reinitialized and started.

 Stop driver (offline
mode)

Driver is stopped. No new data is accepted.

 If the driver is in offline mode, all variables that were

created for this driver receive the status switched off (OFF;
Bit 20).

 Driver in simulation mode Driver is set into simulation mode.
The values of all variables of the driver are simulated by the
driver. No values from the connected hardware (e.g. PLC, bus
system, ...) are displayed.

 Driver in hardware mode Driver is set into hardware mode.
For the variables of the driver the values from the connected
hardware (e.g. PLC, bus system, ...) are displayed.

 Driver-specific command Enter driver-specific commands. Opens input field in order to
enter a command.

 Activate driver write set
value

Write set value to a driver is allowed.

 Deactivate driver write
set value

Write set value to a driver is prohibited.

 Establish connection
with modem

Establish connection (for modem drivers) Opens the input fields
for the hardware address and for the telephone number.

 Disconnect from modem Terminate connection (for modem drivers)

Show this dialog in the Runtime The dialog is shown in Runtime so that changes can be made.

DRIVER COMMANDS IN THE NETWORK

If the computer, on which the driver command function is executed, is part of the zenon network,
additional actions are carried out. A special network command is sent from the computer to the project
server, which then executes the desired action on its driver. In addition, the Server sends the same
driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby
both have a working and independent connection to the hardware.

Error analysis

61

10. Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display
them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also
installed with zenon. You can find it under Start/All programs/zenon/Tools 7.20 -> Diagviewer.

zenon driver log all errors in the log files. The default folder for the log files is subfolder LOG in directory
ProgramData, example:

C:\ProgramData\COPA-DATA\LOG. Log files are text files with a special structure.

 With the default settings, a driver only logs error information. With the Diagnosis Viewer
you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the
driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 follow currently created entries live

 customize the logging settings

 change the folder in which the log files are saved

1. In Windows CE even errors are not logged per default due to performance reasons.

2. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

3. The Diagnosis Viewer does not display all columns of a log file per default. To display more
columns activate property Add all columns with entry in the context menu of the column
header.

4. If you only use Error logging, the problem description is in column Error text. For other
diagnosis level the description is in column General text.

5. For communication problems many drivers also log error numbers which the PLC assigns to
them. They are displayed in Error text and/or Error code and/or Driver error parameter(1
and 2). Hints on the meaning of error codes can be found in the driver documentation and the
protocol/PLC description.

6. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and Deep
Debug there are a great deal of data for logging which are saved to the hard drive and which can
influence your system performance. They are still logged even after you close the Diagnosis
Viewer.

main.chm::/12464.htm

Error analysis

62

You can find further information on the Diagnosis Viewer in the Diagnose Viewer
(main.chm::/12464.htm) chapter.

main.chm::/12464.htm

Error analysis

63

10.2 Troubleshooting

ERROR MESSAGES

Error text Description

Error on SnmpMgrRequest GET

oid=33.1.3.1.0, specified.

Busadress=0 Error=0x28 Error=0x

Error code as hexadecimal number à 0x28 = 40 Dec

GET Error: errorStatus=2,

errorIndex=1

oid=.1.3.6.1.4.1.171.20.1.2.1.1.1.7

.0, specified. Busadress=0 Error=0x0

Variable name or identification in zenon is not valid. (there
is no OID in the MIB on the agent)

Other possible causes: Initial values for traps should be read
off by the agent, but the agent does not make any OIDs
available on the GET, but only sends these OIDs
spontaneously as traps.

errorStatus=2: = no such item

error Trap Start 0x64! Error message in the Editor. Windows trap service was not
started.

 occurs after Receive online traps was activated in
the driver configuraiton (on page 22) or in the import
assistant.

Init TRAP Error 0x64 Message from the diagnosis server. No traps are received.

Cause: the "SNMP Trap" Windows service was not started.

 The "SNMP Trap" service (snmptrap.exe) requires

the UDP ports 161 and 162. Theses must be enabled in
the firewall. If the service has been started, but another

application is occupyin port 162, then:

 The driver cannot receive any traps

 No error message is displayed.

ENTRIES IN LOG FILE

Unexpected Error during OID

Translation INIT. Translation of OIDs

will not be available.

An error occured when initializing the OID translation. The
OID translaton is deactivated for this driver instance.

Unexpected Error during translation

of OID [numerical OID]
An unexpected error occured when translating the given
OID.

Could not translate OID [numerical

OID]
The given OID could not be translated. It is possible that it
cannot be found in the standard MIB tree.

OID Translation successfully

initialized.
The OID translation was initiazed successfully.

Translation of OID [numerical OID] The given OID was translated successully.

Error analysis

64

successful

ERROR NUMBERS

Error numbers for SnmpMgrRequest:

Error analysis

65

ID Description Description

0 SNMPAPI_FAILURE /* Generic error code */

1 SNMPAPI_SUCCESS /* Generic success code */

2 SNMPAPI_ALLOC_ERROR /* Error allocating memory */

3 SNMPAPI_CONTEXT_INVALID /* Invalid context parameter */

4 SNMPAPI_CONTEXT_UNKNOWN /* Unknown context parameter */

5 SNMPAPI_ENTITY_INVALID /* Invalid entity parameter */

6 SNMPAPI_ENTITY_UNKNOWN /* Unknown entity parameter */

7 SNMPAPI_INDEX_INVALID /* Invalid VBL index parameter */

8 SNMPAPI_NOOP /* No operation performed */

9 SNMPAPI_OID_INVALID /* Invalid OID parameter */

10 SNMPAPI_OPERATION_INVALID /* Invalid/unsupported operation */

11 SNMPAPI_OUTPUT_TRUNCATED /* Insufficient output buf len */

12 SNMPAPI_PDU_INVALID /* Invalid PDU parameter */

13 SNMPAPI_SESSION_INVALID /* Invalid session parameter */

14 SNMPAPI_SYNTAX_INVALID /* Invalid syntax in smiVALUE */

15 SNMPAPI_VBL_INVALID /* Invalid VBL parameter */

16 SNMPAPI_MODE_INVALID /* Invalid mode parameter */

17 SNMPAPI_SIZE_INVALID /* Invalid size/length parameter */

18 SNMPAPI_NOT_INITIALIZED /* SnmpStartup failed/not called */

19 SNMPAPI_MESSAGE_INVALID /* Invalid SNMP message format */

20 SNMPAPI_HWND_INVALID /* Invalid Window handle */

40 SNMP_MGMTAPI_TIMEOUT

41 SNMP_MGMTAPI_SELECT_FDERRORS

42 SNMP_MGMTAPI_TRAP_ERRORS

43 SNMP_MGMTAPI_TRAP_DUPINIT

44 SNMP_MGMTAPI_NOTRAPS

45 SNMP_MGMTAPI_AGAIN

46 SNMP_MGMTAPI_INVALID_CTL

47 SNMP_MGMTAPI_INVALID_SESSION

48 SNMP_MGMTAPI_INVALID_BUFFER

99 SNMPAPI_OTHER_ERROR /* For internal/undefined errors */

100 SNMPAPI_TL_NOT_INITIALIZED /* TL not initialized */

Error analysis

66

101 SNMPAPI_TL_NOT_SUPPORTED /* TL does not support protocol */

102 SNMPAPI_TL_NOT_AVAILABLE /* Network subsystem has failed */

103 SNMPAPI_TL_RESOURCE_ERROR /* TL resource error */

104 SNMPAPI_TL_UNDELIVERABLE /* Destination unreachable */

105 SNMPAPI_TL_SRC_INVALID /* Source endpoint invalid */

106 SNMPAPI_TL_INVALID_PARAM /* Input parameter invalid */

107 SNMPAPI_TL_IN_USE /* Source endpoint in use */

108 SNMPAPI_TL_TIMEOUT /* No response before timeout */

109 SNMPAPI_TL_PDU_TOO_BIG /* PDU too big for send/receive */

199 SNMPAPI_TL_OTHER /* Undefined TL error */

10.3 Check list

 Is the SNMP driver correctly installed? (It has to be installed on all devices that should be read –
except for the ping status request)

 Is the correct key installed and selected? (default=public)?

 Is the TCP/IP protocol installed?

Error analysis

67

TRAPS AND OIB TRANSLATION

For diagnosis, the network traffic can be recorded and analyzed with a tool such as Wireshark. Wireshark
translates OIDs for the same standard MIBs as the SNMP driver. For this reason, the OID translation can be
checked by analyzing the Wireshark captures.

Problem Diagnostics Possible cause

The agent is not
sending any
traps.

Events that cause traps are
triggered. However Wireshark
does not show any incoming
traps.

Trap dispatch is not configured correctly. The target
address set at the agent must be the IP address of the
computer with the SNMP driver.

Traps are not
displayed in
Runtime.

Wireshark displays incoming
traps, but registered variables
are not updated.

 The Windows SNMP trap service is not running.
This service must run in order for traps to be able
to be received.

 The SNMP trap service does run, but has no
access to the network. The Windows firewall (or
other firewall that is used) must allow the service
to receive UDP packets from port 162.

 The agent is not configured correctly. The IP
address of the agent in the SNMP driver
configuraiton must correspond to the actual IP
address of the SNMP agent. The incoming trap is
assigned to a configured agent in the driver on
the basis of the IP address.

 The variables have false OIDs. Within an agent,
the variable bindings contained in the trap are
assinged the trap variables currently registered
for the agent on the basis of their respective
OIDs. A trap variable is only updated if a trap with
a variable binding with the saem OID arrives.

 The traps are set as wipers. If, for an agent, the
option Reset trap variables after each trap is

active, the variables of the values 0 and/or

empty string are reset for all variables
updated by a trap straight after the values have
been sent. In a text element or numerical
element, this can look as though the variables
have never been updated.
Solutions:
- Limits to value changes of the variables affected
- Log the variables affected in archives
- Deactivation of the reset

The OID
translation does
not work.

Although the OID translation is
activated adn variable values
arrive with translatable OIDs
(see Wireshark), no translations
are displayed in Runtime.

The MIB files are not there. The OID translation only
works if, in the zenon installation directory, there is an
SNMP-MIBS folder with the MIB files as content. No
OIDs can be used if this is not the case. The only
translation that is carried out is replacement of the
first figure (always 1) by "iso", the root element of all

Error analysis

68

OIDs.

	1. Welcome to COPA-DATA help
	2. SNMP32
	3. SNMP32 - Data sheet
	4. Driver history
	5. Requirements
	5.1 PC
	5.2 PLC

	6. Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Configuration
	6.2.3 SNMP Agents
	6.2.4 Offline MIB list
	Creating the OID manually
	Translating OID variables
	String variable with all trap contents

	6.2.5 Example configuration

	7. Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 Import variables from the driver
	7.4.3 DBF Import/Export

	7.5 Driver variables

	8. Driver-specific functions
	9. Driver commands
	10. Error analysis
	10.1 Analysis tool
	10.2 Troubleshooting
	10.3 Check list

