

zenon driver manual
KabaDPServer

v.7.20

©2015 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 5

2. KabaDPServer .. 5

3. KABADPSERVER - Data sheet .. 6

4. Driver history .. 7

5. Requirements .. 8

5.1 PLC... 8

6. Configuration .. 8

6.1 Creating a driver .. 8

6.2 Settings in the driver dialog .. 10

6.2.1 General ... 10

6.2.2 KABA server connection ... 13

7. Creating variables .. 14

7.1 Creating variables in the Editor ... 14

7.2 Addressing ... 18

7.3 Driver objects and datatypes .. 19

7.3.1 Driver objects ... 19

7.3.2 Mapping of the data types ... 19

7.4 Creating variables by importing .. 20

7.4.1 XML import ... 21

7.4.2 DBF Import/Export ... 21

7.4.3 Online import ... 26

7.5 Driver variables ... 27

8. Driver-specific functions .. 34

9. Driver commands .. 34

10. Error analysis ... 37

10.1 TCP API error numbers .. 37

4

10.2 Analysis tool .. 43

10.3 Check list ... 44

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. KabaDPServer

The driver is for displaying the status of alarms of doors; the monitoring of these is implemented with a
Kaba system.

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

KABADPSERVER - Data sheet

6

3. KABADPSERVER - Data sheet

General:

Driver file name KABADPSERVER.exe

Driver name Kaba data point server driver

PLC types Kaba exos 9300

PLC manufacturer Kaba;

Driver supports:

Protocol Kaba Server XML-Frames;

Addressing: Address-based -

Addressing: Name-based x

Spontaneous
communication

x

Polling communication -

Online browsing x

Offline browsing -

Real-time capable -

Blockwrite -

Modem capable -

Serial logging -

RDA numerical -

RDA String -

Driver history

7

Requirements:

Hardware PC -

Software PC -

Hardware PLC -

Software PLC -

Requires v-dll -

Platforms:

Operating systems Windows 7, 8, 8.1 Server 2008R2, Server 2012, Server 2012R2;

CE platforms -;

4. Driver history

Date Build number Change

10/31/20
14

15380 Created driver documentation

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of
this version. This is the number in the 4th position of the file version,
For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build
number 4228.

Expansions or error rectifications will be incorporated into a build in the future and are then available
form the next consecutive build number.

Requirements

8

 Example

A driver extension was implemented in build 4228. The driver that you are using is build
number 8322. Because the build number of your driver is higher than the build number of
the extension, the extension is included. The version number of the driver (the first three
digits of the file version) do not have any significance in relation to this. The drivers are
version-agnostic

5. Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 PLC

The driver communicates with a Kaba data point server. The access data (IP address, port, user and
password) are issued by the server administrator.

6. Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables
(main.chm::/15247.htm) of the online manual.

6.1 Creating a driver

In order to create a new driver:

1. Right-click on Driver in the Project Manage and select Driver new in the context menu.

main.chm::/15247.htm

Configuration

9

2. In the following dialog the control system offers a list of all available drivers.

3. Select the desired driver and give it a name:

 The driver name has to be unique, i.e. if one and the same driver is to be used several times
in one project, a new name has to be given each time.

 The driver name is part of the file name. Therefore it may only contain characters which are
supported by the operating system. Invalid characters are replaced by an underscore (_).

 This name cannot be changed later on.

Configuration

10

4. Confirm the dialog with OK. In the following dialog the single configurations of the drivers are
defined.

Only the respective required drivers need to be loaded for a project. Later loading of an additional driver
is possible without problems.

 Information

For new projects and for existing projects which are converted to version 6.21 or higher,
the following drivers are created automatically:

 Internal

 MathDr32

 SysDrv.



6.2 Settings in the driver dialog

You can change the following settings of the driver:

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later
for editing, double click on the driver in the list or click on the Configuration property.

Configuration

11

Parameters Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:

A connection to the control is established.

 Simulation static

No communication between to the control is
established, the values are simulated by the driver.
In this modus the values remain constant or the
variables keep the values which were set by zenon
Logic. Each variable has its own memory area. E.g.
two variables of the type marker with offset 79 can
have different values in the Runtime and do not
influence each other. Exception: The simulator
driver.

 Simulation - counting

No communication between to the control is
established, the values are simulated by the driver.
In this modus the driver increments the values
within a value range automatically.

 Simulation - programmed

N communication is established to the PLC. The
values are calculated by a freely programmable
simulation project. The simulation project is created
with the help of the zenon Logic Workbench and
runs in a zenon Logic Runtime which is integrated in
the driver. For details see chapter Driver simulation
(main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested from the
control even if they are currently not needed.
This has the advantage that e.g. multiple screen switches after
the screen was opened for the first time are executed faster
because the variables need not be requested again. The
disadvantage is a higher load for the communication to the
control.

Output can be written Active: Outputs can be written.

Inactive: Writing of outputs is prevented.

: Not available for every driver.

Variable image remanent This option saves and restores the current value, time stamp and
the states of a data point.

Fundamental requirement: The variable must have a valid value
and time stamp.

main.chm::/25206.htm

Configuration

12

The variable image is saved in mode hardware if:

 one of the states S_MERKER_1(0) up to S_MERKER8(7),
REVISION(9), AUS(20) or ERSATZWERT(27) is active

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not programmed
simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a
criterion in order to restore the remanent variable image.

Stop on Standby Server Setting for redundancy at drivers which allow only on
communication connection. For this the driver is stopped at
the Standby Server and only started at the upgrade.

 If this option is active, the gapless archiving is
no longer guaranteed.

Active: Sets the driver at the not-process-leading Server
automatically in a stop-like state. In contrast to stopping via
driver command, the variable does not receive status
switched off (statusverarbeitung.chm::/24150.htm)
but an empty value. This prevents that at the upgrade to
the Server irrelevant values are created in the AML, CEL and
Historian.

 Not available if the CE terminal serves as a data
server. You can find further information in the zenon
Operator manual in the CE terminal as a data server
chapter.

Global Update time Active: The set Global update time in ms is used for all
variables in the project. The priority set at the variables is not
used.
Inactive: The set priorities are used for the individual
variables.

Priority The polling times for the individual priority classes are set here.
All variables with the according priority are polled in the set time.

The allocation to the variables takes place separately in the
settings of the variable properties.
The communication of the individual variables are graduated in
respect of importance or necessary topicality using the priorities.

statusverarbeitung.chm::/24150.htm

Configuration

13

Thus the communication load is distributed better.

 Priority classes are not supported by each driver For
example, drivers that communicate spontaneously do not
support it.

CLOSE DIALOG

Parameters Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR CYCLICAL DRIVERS

The following applies for cyclical drivers:

For Set value, Advising of variables and Requests, a read cycle is immediately triggered for all drivers -
regardless of the set update time. This ensures that the value is immediately available for visualization after
writing. Update times can therefore be shorter than pre-set for cyclical drivers.

6.2.2 KABA server connection

You configure the connection to the Kaba server in this tab.

Creating variables

14

Parameters Description

IP address IP address of the server.

Port Port that is used for communication.

Default: 1005

User Login name.

Password Password.

Language Language in which the texts for string variables are displayed.
Select from drop-down list:

 GER: German

 FRA: French

 ENG: English

 ITA: Italian

CLOSE DIALOG

Parameters Description

OK Applies settings and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

7. Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

15

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

2. The dialog for configuring variables is opened

3. configure the variable

Creating variables

16

4. The settings that are possible depends on the type of variables

Creating variables

17

Property Description

Name Distinct name of the variable. If a variable with the same name already
exists in the project, no additional variable can be created with this name.

Maximum length: 128 Zeichen

 The characters # and @ are not permitted in variable names. If
non-permitted characters are used, creation of variables cannot be
completed and the Finish button remains inactive.
Note: For some drivers, the addressing is possible over the property
Symbolic address, as well.

Driver Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for internal
variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is
automatically loaded.

Driver object type
(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

Data type Select the desired data type. Click on the ... button to open the selection
dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays
chapter.

Addressing options Expanded settings for arrays and structure variables. You can find details
in the respective section.

Automatic element

activation
Expanded settings for arrays and structure variables. You can find details
in the respective section.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

 If a change is made to a data type that does not support the set signal range, the signal

range is amended automatically. For example, for a change from INT to SINT, the signal range is changed to

127. The amendment is also carried out if the signal range was not inherited from the data type. In this case, the
measuring range must be adapted manually.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm

Creating variables

18

7.2 Addressing

Group/Property Description

General

Name Freely definable name.

 For every zenon project the name must be unambiguous.

Identification Freely assignable identification, e.g. for a description or comment.

Addressing Properties for the address of the variables.

Net address not used for this driver

Data block not used for this driver

Offset not used for this driver

Alignment not used for this driver

Bit number not used for this driver

Symbolic address The real address of the variables for the driver consists of:

 Prefix of the Kaba address

 Attribute in square brackets

Example: I01000201[AlarmID]

Possible attributes:

 State: Status of the door

 AlarmID: Alarm-ID

 AlarmText: Alarm-Text

 Import the variables from the Server into the editor, in order to avoid typing errors.

String length Length of the alarm text.

Default: 256 characters

Driver connection Properties for driver connection.

Driver object type The following object types are available:

 Status of the door

 Alarm ID of the door

 Alarm text of the door

Data type There are fixed assignments of data types to object types:

 Status of the door: INTEGER

 Alarm ID of the door: WORD

 Alarm text of the door: WSTRING

Creating variables

19

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out
which driver objects are provided by the driver and which IEC data types can be assigned to the
respective driver objects.

7.3.1 Driver objects

The following object types are available in this driver:

Driver object type Channel
type

Read /
Write

Supported data
types

Description

Status of the

door
0x0040 R INT Variable to display the status of a

door.

Alarm ID of the

door
0x0041 R WORD Variable to display the alarm ID

of a door.

Alarm text of

the door
0x0042 R WSTRING Variable to display the alarm text

of a door.

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes
with the datatypes of the PLC.

Creating variables

20

PLC zenon Data type

- BOOL 8

- USINT 9

- SINT 10

Alarm ID of the door UINT 2

Status of the door INT 1

- UDINT 4

- DINT 3

- ULINT 27

- LINT 26

- REAL 5

- LREAL 6

- STRING 12

Alarm text of the door WSTRING 21

- DATE 18

- TIME 17

- DATE_AND_TIME 20

- TOD (Time of Day) 19

 The property Data type is the internal numerical name of the data type. It is also used for the
extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every driver.

 Information

You can find details on the import and export of variables in the Import-Export
(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

21

7.4.1 XML import

For the import/export of variables the following is true:

 The import/export must not be started from the global project.

 The start takes place via:

 Context menu of variables or data typ in the project tree

 or context menu of a variable or a data type

 or symbol in the symbol bar variables

 Attention

When importing/overwriting an existing data type, all variables based on the existing
data type are changed.

There is a data type XYZ derived from the type INTwith variables based on this data
type. The XML file to be imported also contains a data type with the name XYZ but

derived from type STRING. If this data type is imported, the existing data type is
overwritten and the type of all variables based on it is adjusted. I.e. the variables are now

no longer INT variables, but STRING variables.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable settings, such
as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

Creating variables

22

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in the DBF file in
order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for
name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file name length
including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

File structure of the dBase export file

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

23

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with there name to the 8.3 DOS format (8 alphanumeric characters for name, 3
characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Description Type Field size Comment

KANALNAME Char 128 Variable name.

The length can be limited using the MAX_LAENGE entry in
project.ini.

KANAL_R C 128 The original name of a variable that is to be replaced by the new
name entered under "VARIABLENNAME" (field/column must be
entered manually).

The length can be limited using the MAX_LAENGE entry in
project.ini.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has to be
created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE entry in
project.ini.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)
corresponds to the driver object type.

HWKANAL Num 3 Bus address

BAUSTEIN N 3 Datablock address (only for variables from the data area of the
PLC)

ADDRESS N 5 Offset

BITADR N 2 For bit variables: bit address
For byte variables: 0=lower, 8=higher byte
For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables
ATTENTION: Only the first variable is fully available. All others
are only available for VBA or the Recipe Group Manager

LES_SCHR R 1 Write-Read-Authorization

Creating variables

24

0: Not allowed to set value.
1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object
comprises TREIBER-OBJEKTTYP and DATENTYP

SIGMIN Float 16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values
(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one decimal
possible)
not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s], one decimal
possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable is not
requested from the server but from the Standby Server in
redundant networks

RESOURCE C 128 Resources label.
Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry in
project.ini.

ADJWVBA R 1 Non-linear value adaption:

0: Non-linear value adaption is used

1: Non-linear value adaption is not used

Creating variables

25

ADJZENON C 128 Linked VBA macro for reading the variable value for non-linear
value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for non-linear value
adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

 Attention

When importing, the driver object type and data type must be amended to the target
driver in the DBF file in order for variables to be imported.

LIMIT DEFINITION

Limit definition for limit values 1 to 4, and status 1 bis 4:

Creating variables

26

Description Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for a dynamic
limit (see VARIABLEx)

(if VARIABLEx is 1 and here it is -1, the existing variable linkage is
not overwritten)

SCHWWERT1 F 16 Threshold value for limit

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking
the limit is defined by an absolute value (see field GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function
(if “-1” is entered here, the existing function is not overwritten
during import)

A_GRUPPE1 N 10 Alarm/event group

A_KLASSE1 N 10 Alarm/event class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

EXPRESSIONS IN THE COLUMN "COMMENT" REFER TO THE EXPRESSIONS USED IN THE
DIALOG BOXES FOR THE DEFINITION OF VARIABLES. FOR MORE INFORMATION, SEE
CHAPTER VARIABLE DEFINITION.

7.4.3 Online import

Creating variables

27

To import variables online from the server:

1. Select the Kaba driver.

2. Select Import variables from driver in the tool bar or in the context menu

3. The dialog for variable selection is opened:

4. Select the desired variables (multiple selection is possible)

5. Add selected variables via click on button Add to the list of the variables to be imported.

6. You can also deselect variables by clicking on Remove.

7. Start the import by clicking on the OK button.

The selected variables are generated automatically during import in the zenon project and are assigned
the KABA driver.

7.5 Driver variables

The driver kit implements a number of driver variables. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables defined in the driver kit are available in the import file drvvar.dbf (on
the CD in the directory: CD_Drive:/Predefined/Variables) and can be imported from there.

Creating variables

28

Variable names must be unique in zenon. If driver variables are to be imported from drvvar.dbf
again, the variables that were imported beforehand must be renamed.

Creating variables

29

 Information

Not every driver supports all driver variants.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Driver variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one
connection at a a time

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

Creating variables

30

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and no
OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver
simulation.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically
reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial
interface. Writing to this variable
immediately results in the method
SrvDrvVarApplyCom being called (which
currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the
modem. Writing this variable immediately
calls the method SrvDrvVarApplyModem.
This closes the current connection and
opens a new one according to the settings
PhoneNumberSet and ModemHwAdrSet.

Creating variables

31

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone
number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be
kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the
modem

ComPort UINT 9 Number of the serial interface.

Baud rate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial
interface

Value = 0 if the driver cannot establish any
serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be
established automatically for
reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone
number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer
occurs for this time in seconds (s)

Creating variables

32

WriteTimeout UDINT 19 Maximum write duration for a modem
connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is
accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a
connection.

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is
required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is
required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required
to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required
to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

Creating variables

33

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read
all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read
all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group
Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group
Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group
High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group
Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were
executed

ERROR MESSAGE

Name from import Type Offset Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error
occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error
occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error
occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error
occurred.

Driver-specific functions

34

RdErrHwAdresse DINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8. Driver-specific functions

The driver supports the following functions:

Display of the status and alarms of doors that are monitored by a Kaba server.

9. Driver commands

This chapter describes standard functions that are valid for most zenon drivers. Not all functions
described here are available for every driver. For example, a driver that does not, according to the data
sheet, support a modem connection also does not have any modem functions.

Driver commands are used to influence drivers using zenon; start and stop for example.
The engineering is implemented with the help of function Driver commands. To do this:

 create a new function

 select Variables -> Driver commands

Driver commands

35

 The dialog for configuration is opened

Driver commands

36

Parameters Description

Drivers Drop-down list with all drivers which are loaded in the project.

Current state Fixed entry which has no function in the current version.

Driver commands Drop-down list for the selection of the command.

 Start driver (online
mode)

Driver is reinitialized and started.

 Stop driver (offline
mode)

Driver is stopped. No new data is accepted.

 If the driver is in offline mode, all variables that were

created for this driver receive the status switched off (OFF;
Bit 20).

 Driver in simulation mode Driver is set into simulation mode.
The values of all variables of the driver are simulated by the
driver. No values from the connected hardware (e.g. PLC, bus
system, ...) are displayed.

 Driver in hardware mode Driver is set into hardware mode.
For the variables of the driver the values from the connected
hardware (e.g. PLC, bus system, ...) are displayed.

 Driver-specific command Enter driver-specific commands. Opens input field in order to
enter a command.

 Activate driver write set
value

Write set value to a driver is allowed.

 Deactivate driver write
set value

Write set value to a driver is prohibited.

 Establish connection
with modem

Establish connection (for modem drivers) Opens the input fields
for the hardware address and for the telephone number.

 Disconnect from modem Terminate connection (for modem drivers)

Show this dialog in the Runtime The dialog is shown in Runtime so that changes can be made.

DRIVER COMMANDS IN THE NETWORK

If the computer, on which the driver command function is executed, is part of the zenon network,
additional actions are carried out. A special network command is sent from the computer to the project
server, which then executes the desired action on its driver. In addition, the Server sends the same
driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby
both have a working and independent connection to the hardware.

Error analysis

37

10. Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 TCP API error numbers

ERROR CODES IN THE API

The following is a list of possible error codes returned by the WSAGetLastError call, along with their ex-tended explanations. Errors are listed in alphabetical order

by error macro. Some error codes defined in Winsock2.h are not returned from any function-these are not included in this topic.

Error analysis

38

Error (Code) Meaning Description

WSAEACCES

(10013)

Permission denied. An attempt was made to access a socket in a way forbidden by its access permissions.

An example is using a broadcast address for sendto without broadcast permission being

set using set-sockopt(SO_BROADCAST).

Another possible reason for the WSAEACCES error is that when the bind function is

called (on Windows NT 4 SP4 or later), another application, service, or kernel mode driver

is bound to the same address with exclusive access. Such exclusive access is a new

feature of Windows NT 4 SP4 and later, and is imple-mented by using the

SO_EXCLUSIVEADDRUSE option.

WSAEADDRINUSE

(10048)

Address already in use. Typically, only one usage of each socket address (protocol/IP address/port) is permitted.

This error oc-curs if an application attempts to bind a socket to an IP address/port that has

already been used for an existing socket, or a socket that was not closed properly, or one

that is still in the process of closing. For server applications that need to bind multiple

sockets to the same port number, consider using set-sockopt(SO_REUSEADDR). Client

applications usually need not call bind at all-connect chooses an unused port

automatically. When bind is called with a wildcard address (involving ADDR_ANY), a

WSAEADDRINUSE error could be delayed until the specific address is committed. This

could happen with a call to another function later, including connect, listen, WSAConnect,

or WSAJoinLeaf.

WSAEADDRNOTAVAIL

(10049)

Cannot assign

requested address.
The requested address is not valid in its context. This normally results from an attempt to

bind to an address that is not valid for the local machine. This can also result from

connect, sendto, WSAConnect, WSAJoinLeaf, or WSASendTo when the remote address

or port is not valid for a remote machine (for example, address or port 0).

WSAEAFNOSUPPORT

(10047)

Address family not

supported by protocol

family.

An address incompatible with the requested protocol was used. All sockets are created

with an associ-ated address family (that is, AF_INET for Internet Protocols) and a generic

protocol type (that is, SOCK_STREAM). This error is returned if an incorrect protocol is

explicitly requested in the socket call, or if an address of the wrong family is used for a

socket, for example, in sendto.

WSAEALREADY

(10037)

Operation already in

progress.
An operation was attempted on a nonblocking socket with an operation already in

progress-that is, calling connect a second time on a nonblocking socket that is already

connecting, or canceling an asynchronous request (WSAAsyncGetXbyY) that has already

been canceled or completed.

WSAECONNABORTED

(10053)

Software caused

connection abort.
An established connection was aborted by the software in your host machine, possibly

due to a data transmission time-out or protocol error.

WSAECONNREFUSED

(10061)

Connection refused. No connection could be made because the target machine actively refused it. This usually

results from trying to connect to a service that is inactive on the foreign host-that is, one

with no server application running.

WSAECONNRESET

(10054)

Connection reset by

peer.
An existing connection was forcibly closed by the remote host. This normally results if the

peer application on the remote host is suddenly stopped, the host is rebooted, or the

remote host uses a hard close (see setsockopt for more information on the SO_LINGER

option on the remote socket.) This error may also result if a connection was broken due to

keep-alive activity detecting a failure while one or more operations are in progress.

Operations that were in progress fail with WSAENETRESET. Subsequent operations fail

with WSAECONNRESET.

WSAEDESTADDRREQ

(10039)

Destination address

required.
A required address was omitted from an operation on a socket. For example, this error is

returned if sendto is called with the remote address of ADDR_ANY.

Error analysis

39

WSAEFAULT

(10014)

Bad address. The system detected an invalid pointer address in attempting to use a pointer argument of

a call. This error occurs if an application passes an invalid pointer value, or if the length of

the buffer is too small. For instance, if the length of an argument, which is a SOCKADDR

structure, is smaller than the sizeof(SOCKADDR).

WSAEHOSTDOWN

(10064)

Host is down. A socket operation failed because the destination host is down. A socket operation

encountered a dead host. Networking activity on the local host has not been initiated.

These conditions are more likely to be indicated by the error WSAETIMEDOUT.

WSAEHOSTUNREACH

(10065)

No route to host. A socket operation was attempted to an unreachable host. See WSAENETUNREACH.

WSAEINPROGRESS

(10036)

Operation now in

progress.
A blocking operation is currently executing. Windows Sockets only allows a single

blocking operation-per- task or thread-to be outstanding, and if any other function call is

made (whether or not it references that or any other socket) the function fails with the

WSAEINPROGRESS error.

WSAEINTR

(10004)

Interrupted function call. A blocking operation was interrupted by a call to WSACancelBlockingCall.

WSAEINVAL

(10022)

Invalid argument. Some invalid argument was supplied (for example, specifying an invalid level to the

setsockopt function). In some instances, it also refers to the current state of the socket-for

instance, calling accept on a socket that is not listening.

WSAEISCONN

(10056)

Socket is already

connected.
A connect request was made on an already-connected socket. Some implementations

also return this error if sendto is called on a connected SOCK_DGRAM socket (for

SOCK_STREAM sockets, the to pa-rameter in sendto is ignored) although other

implementations treat this as a legal occurrence.

WSAEMFILE

(10024)

Too many open files. Too many open sockets. Each implementation may have a maximum number of socket

handles avail-able, either globally, per process, or per thread.

WSAEMSGSIZE

(10040)

Message too long. A message sent on a datagram socket was larger than the internal message buffer or

some other network limit, or the buffer used to receive a datagram was smaller than the

datagram itself.

WSAENETDOWN

(10050)

Network is down. A socket operation encountered a dead network. This could indicate a serious failure of

the network sys-tem (that is, the protocol stack that the Windows Sockets DLL runs over),

the network interface, or the local network itself.

WSAENETRESET

(10052)

Network dropped

connection on reset.
The connection has been broken due to keep-alive activity detecting a failure while the

operation was in progress. It can also be returned by setsockopt if an attempt is made to

set SO_KEEPALIVE on a con-nection that has already failed.

WSAENETUNREACH

(10051)

Network is unreachable. A socket operation was attempted to an unreachable network. This usually means the

local software knows no route to reach the remote host.

WSAENOBUFS

(10055)

No buffer space

available.
An operation on a socket could not be performed because the system lacked sufficient

buffer space or because a queue was full.

WSAENOPROTOOPT

(10042)

Bad protocol option. An unknown, invalid or unsupported option or level was specified in a getsockopt or

setsockopt call.

WSAENOTCONN Socket is not

connected.
A request to send or receive data was disallowed because the socket is not connected

and (when send-ing on a datagram socket using sendto) no address was supplied. Any

Error analysis

40

(10057) other type of operation might also return this error-for example, setsockopt setting

SO_KEEPALIVE if the connection has been reset.

Error analysis

41

WSAENOTSOCK

(10038)

Socket operation on

nonsocket.
An operation was attempted on something that is not a socket. Either the socket handle

parameter did not reference a valid socket, or for select, a member of an fd_set was not

valid.

WSAEOPNOTSUPP

(10045)

Operation not

supported.
The attempted operation is not supported for the type of object referenced. Usually this

occurs when a socket descriptor to a socket that cannot support this operation is trying to

accept a connection on a datagram socket.

WSAEPFNOSUPPORT

(10046)

Protocol family not

supported.
The protocol family has not been configured into the system or no implementation for it

exists. This mes-sage has a slightly different meaning from WSAEAFNOSUPPORT.

However, it is interchangeable in most cases, and all Windows Sockets functions that

return one of these messages also specify WSAEAFNOSUPPORT.

WSAEPROCLIM

(10067)

Too many processes. A Windows Sockets implementation may have a limit on the number of applications that

can use it simul-taneously. WSAStartup may fail with this error if the limit has been

reached.

WSAEPROTONOSUPPOR

T

(10043)

Protocol not supported. The requested protocol has not been configured into the system, or no implementation for

it exists. For example, a socket call requests a SOCK_DGRAM socket, but specifies a

stream protocol.

WSAEPROTOTYPE

(10041)

Protocol wrong type for

socket.
A protocol was specified in the socket function call that does not support the semantics of

the socket type requested. For example, the ARPA Internet UDP protocol cannot be

specified with a socket type of SOCK_STREAM.

WSAESHUTDOWN

(10058)

Cannot send after

socket shutdown.
A request to send or receive data was disallowed because the socket had already been

shut down in that direction with a previous shutdown call. By calling shutdown a partial

close of a socket is requested, which is a signal that sending or receiving, or both have

been discontinued.

WSAESOCKTNOSUPPOR

T

(10044)

Socket type not

supported.
The support for the specified socket type does not exist in this address family. For

example, the optional type SOCK_RAW might be selected in a socket call, and the

implementation does not support SOCK_RAW sockets at all.

WSAETIMEDOUT

(10060)

Connection timed out. A connection attempt failed because the connected party did not properly respond after a

period of time, or the established connection failed because the connected host has failed

to respond.

WSATYPE_NOT_FOUND

(10109)

Class type not found. The specified class was not found.

WSAEWOULDBLOCK

(10035)

Resource temporarily

unavailable.
This error is returned from operations on nonblocking sockets that cannot be completed

immediately, for example recv when no data is queued to be read from the socket. It is a

nonfatal error, and the operation should be retried later. It is normal for

WSAEWOULDBLOCK to be reported as the result from calling connect on a nonblocking

SOCK_STREAM socket, since some time must elapse for the connection to be

established.

WSAHOST_NOT_FOUND

(11001)

Host not found. No such host is known. The name is not an official host name or alias, or it cannot be

found in the data-base(s) being queried. This error may also be returned for protocol and

service queries, and means that the specified name could not be found in the relevant

database.

WSA_INVALID_HANDL Specified event object An application attempts to use an event object, but the specified handle is not valid.

Error analysis

42

E

(OS dependent)

handle is invalid.

WSA_INVALID_PARAM

ETER

(OS dependent)

One or more

parameters are invalid.
An application used a Windows Sockets function which directly maps to a Win32 function.

The Win32 function is indicating a problem with one or more parameters.

WSAINVALIDPROCTAB

LE

(OS dependent)

Invalid procedure table

from service provider.
A service provider returned a bogus procedure table to Ws2_32.dll. (Usually caused by

one or more of the function pointers being null.)

WSAINVALIDPROVIDE

R

(OS dependent)

Invalid service provider

version number.
A service provider returned a version number other than 2.0.

WSA_IO_INCOMPLETE

(OS dependent)

Overlapped I/O event

object not in signaled

state.

The application has tried to determine the status of an overlapped operation which is not

yet completed. Applications that use WSAGetOverlappedResult (with the fWait flag set to

FALSE) in a polling mode to determine when an overlapped operation has completed, get

this error code until the operation is com-plete.

WSA_IO_PENDING

(OS dependent)

Overlapped operations

will complete later.
The application has initiated an overlapped operation that cannot be completed

immediately. A comple-tion indication will be given later when the operation has been

completed.

WSA_NOT_ENOUGH_ME

MORY

(OS dependent)

Insufficient memory

available.
An application used a Windows Sockets function that directly maps to a Win32 function.

The Win32 func-tion is indicating a lack of required memory resources.

WSANOTINITIALISED

(10093)

Successful WSAStartup

not yet performed.
Either the application has not called WSAStartup or WSAStartup failed. The application

may be access-ing a socket that the current active task does not own (that is, trying to

share a socket between tasks), or WSACleanup has been called too many times.

WSANO_DATA

(11004)

Valid name, no data

record of requested

type.

The requested name is valid and was found in the database, but it does not have the

correct associated data being resolved for. The usual example for this is a host

name-to-address translation attempt (using gethostbyname or

WSAAsyncGetHostByName) which uses the DNS (Domain Name Server). An MX record

is returned but no A record-indicating the host itself exists, but is not directly reachable.

WSANO_RECOVERY

(11003)

This is a

nonrecoverable error.
This indicates some sort of nonrecoverable error occurred during a database lookup. This

may be be-cause the database files (for example, BSD-compatible HOSTS, SERVICES,

or PROTOCOLS files) could not be found, or a DNS request was returned by the server

with a severe error.

WSAPROVIDERFAILED

INIT

(OS dependent)

Unable to initialize a

service provider.
Either a service provider's DLL could not be loaded (LoadLibrary failed) or the provider's

WSPStartup/NSPStartup function failed.

WSASYSCALLFAILURE

(OS dependent)

System call failure. Returned when a system call that should never fail does. For example, if a call to

WaitForMultipleObjects fails or one of the registry functions fails trying to manipulate the

protocol/name space catalogs.

Error analysis

43

WSASYSNOTREADY

(10091)

Network subsystem is

unavailable.
This error is returned by WSAStartup if the Windows Sockets implementation cannot

function at this time because the underlying system it uses to provide network services is

currently unavailable. Users should check:

That the appropriate Windows Sockets DLL file is in the current path.

That they are not trying to use more than one Windows Sockets implementation

simultaneously. If there is more than one Winsock DLL on your system, be sure the first

one in the path is appropriate for the network subsystem currently loaded.

The Windows Sockets implementation documentation to be sure all necessary

components are currently installed and configured correctly.

WSATRY_AGAIN

(11002)

Nonauthoritative host

not found.
This is usually a temporary error during host name resolution and means that the local

server did not receive a response from an authoritative server. A retry at some time later

may be successful.

WSAVERNOTSUPPORTE

D

(10092)

Winsock.dll version out

of range.
The current Windows Sockets implementation does not support the Windows Sockets

specification ver-sion requested by the application. Check that no old Windows Sockets

DLL files are being accessed.

WSAEDISCON

(10101)

Graceful shutdown in

progress.
Returned by WSARecv and WSARecvFrom to indicate that the remote party has initiated

a graceful shut-down sequence.

WSA_OPERATION_ABO

RTED

(OS dependent)

Overlapped operation

aborted.
An overlapped operation was canceled due to the closure of the socket, or the execution

of the SIO_FLUSH command in WSAIoctl.

10.2 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display
them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also
installed with zenon. You can find it under Start/All programs/zenon/Tools 7.20 -> Diagviewer.

zenon driver log all errors in the log files. The default folder for the log files is subfolder LOG in directory
ProgramData, example:

C:\ProgramData\COPA-DATA\LOG. Log files are text files with a special structure.

 With the default settings, a driver only logs error information. With the Diagnosis Viewer
you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the
driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 follow currently created entries live

main.chm::/12464.htm

Error analysis

44

 customize the logging settings

 change the folder in which the log files are saved

1. In Windows CE even errors are not logged per default due to performance reasons.

2. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

3. The Diagnosis Viewer does not display all columns of a log file per default. To display more
columns activate property Add all columns with entry in the context menu of the column
header.

4. If you only use Error logging, the problem description is in column Error text. For other
diagnosis level the description is in column General text.

5. For communication problems many drivers also log error numbers which the PLC assigns to
them. They are displayed in Error text and/or Error code and/or Driver error parameter(1
and 2). Hints on the meaning of error codes can be found in the driver documentation and the
protocol/PLC description.

6. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and Deep
Debug there are a great deal of data for logging which are saved to the hard drive and which can
influence your system performance. They are still logged even after you close the Diagnosis
Viewer.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer
(main.chm::/12464.htm) chapter.

10.3 Check list

Questions and hints for fault isolation:

GENERAL TROUBLESHOOTING

 Analysis with the help of the Diagnosis Viewer (on page 43) (the important errors are
logged).

 Can the Kaba server be reached using the Ping command?

Ping: Open command line -> ping < IP address> (e.g. ping 192.168.0.100) -> press Enter.

Do you receive an answer with a time or a time-out?

 Can the Kaba server be reached on the corresponding port via Telnet?

Telnet: Command line Enter open, telent <IP address port number> (for example for Modbus: telnet

192.168.0.100 502) -> Press Return key.

If the monitor display turns black, a connection could be established.

 Does the access data correspond? (e.g. user and password)

main.chm::/12464.htm

Error analysis

45

has the symbolic address of the variable been provided correctly?

SOME VARIABLES REPORT INVALID.

 Can the KABA server be contacted?

VALUES ARE NOT DISPLAYED, NUMERIC VALUES REMAIN EMPTY

Driver is not working. Check the:

 Installation of zenon

 the driver installation

 Incorrect symbolic address of the "empty" variable

VARIABLES ARE DISPLAYED WITH A BLUE DOT

The communication in the network is faulty:

 With a network project:
Is the network project also running on the server?

 With a stand-alone project or a network project which is also running on the server:
Deactivate the property Only read from Standby Server in node Driver connection/Addressing.

VALUES ARE DISPLAYED INCORRECTLY

Check the information for the calculation in node Value calculation of the variable properties.

DRIVER FAILS OCCASIONALLY

Analysis with the Diagnosis Viewer (on page 43):
-> Which messages are displayed?

	1. Welcome to COPA-DATA help
	2. KabaDPServer
	3. KABADPSERVER - Data sheet
	4. Driver history
	5. Requirements
	5.1 PLC

	6. Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 KABA server connection

	7. Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export
	7.4.3 Online import

	7.5 Driver variables

	8. Driver-specific functions
	9. Driver commands
	10. Error analysis
	10.1 TCP API error numbers
	10.2 Analysis tool
	10.3 Check list

