zenon manual

COPADATA

©2015 Ing. Punzenberger COPA-DATA GmbH
All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

Contents

1. Welcome to COPA-DATA help ... 5
7R o 11 N 5
R €= 4 T - | 6
3.1 ACCESS ZENON APttt s s eaes 6

3.2 MBS .ttt bt bt e bt bRt e h e e bt e bt et e et s aee st sheenbeebeenreens 8
3.2, CanUSEVAriables.....coeiiueiiiiiieieeeeee ettt st bbbttt et r e b re s 8

3.2.2 Y DAY T T o] L= TP 9

3.23 VarTADIETYPES ettt ettt ettt st st st e st sttt e bt e s be e e nee s beeenee et 9

3.24 ZENONEXIT 1ottt e 10

3.25 P21 oo 0] =5 (1 4 =T [PSSP 10

3.2.6 P21 0T] o1 [oV S PP P OO PPPPPN 10

3.2.7 ZENONINTEED. ..ottt nee e 10

L Y o 1) G 10
4.1 DeEVElOP ACLIVEX BIEMENTES oo e e e e et e e e e e e sab b e e e e e e e e sanbbaaeeaeeessnraanaeeens 11
4.1.1 IMBENODS ...ttt e e s e st esan e b e eanee s 11

4.2 Example LAatCh@ASWITCN (CHH) woeiiiiii ettt ettt e e ette e e et e e e st b e e e ette e e sabaaeesatbeeeensaeeennnaeas 14
4.2.1 INTEITACE e s et 14

B.2.2 CONEIOLaniiiiiiiieteee et sttt et et ettt e s s saeesaeen e neene 15

4.2.3 IMBENODS ...t s e et e e s esan e sr e eanee s 18

4.2.4 (0] o1 -1 =I= T Vo Ie [o - 1Y U SSN 20

4.2.5 ZENON INTEITACE ...ttt s e e 22

4.3 EXAMPIE CD_SIA@ICIIT (CH4) urieeiiiiie et ettt eeete ettt e e et e e e ette e e e ateeeeeabaeeeeabeeesessaaaessbeseenssaesennneeas 23
43.1 [(=T o = Lol TP PP POPR PP PRI 23

B.3.2 CONEIOl ittt ettt st et e r ettt e r et e n e e e nreenn e et eneene 23

433 T3 g o Te PSPPSR PSP 26

43.4 (0] X< =1 (=YY e Ie [o =1V SR SPPRN 29

4.3.5 ZENON INTEITACE. ettt et e s s s b e e re e s b e ree e 30

4.4 Example :NET control @s ACHIVEX (CH) ..uueiiiiueeeeiiiieeeies e stee st e e e eetee e e sntae e s e e e e sentaeeesnteeesennneeesnnneeas 30
4.4.1 Creat Windows FOrm CONTIOL.......cooiiiieiiiiiieieniese ettt s 31

4.4.2 Change .NET User Control to dual coNtroloeeeiiiiiiiiiie et e e 33

5.

4.4.3 Work via VBA with ActiveX in the Editor.......ccooiiiiiiiiiie e 37
4.4.4 Connect zenon variables with the .NET USer controlc.ccecveviirienienieeiecnenc e 38
NET USEI CONTIOIS. ... 42
5.1 Different use .NET Control in Control Container or ACHIVEXcceeuieiiieniiieiieeniie et 42
5.2 Example .NET CONTrol CONTAINET ..c...iiiiiieiieit ettt sttt 43
LT 0 R 1T =T - | PP PP PR UP USSPt 43
5.2.2 Create NET USEI CONEIO ..ciiiiiiieiiieeeee ettt ettt st sttt s e b e sbeeeneeeane 45
5.2.3 add a CD_DotNetControlContainer and a .NET User Controlcccceecverrviieeeeniieeeeecieeesveeenns 53
5.2.4 Accessing the user control via VSTA Or VBAoo ittt tree et e s eaae e e avee e 58
5.3 Example :NET cONrol @s ACHIVEX (CH) ..eceiuiieeeiiiieeciiee ettt ettt e eette e e st e e e rate e e s ebae e e s bvaeeeataeesensaaeesanreaaans 61
53.1 Creat Windows FOImM CONTIOl......ccuii ittt sttt st s s 61
5.3.2 Change .NET User Control to dual CoONrolc.coeveiiiiiiiiiiiiieeeeee e 64
5.3.3 Work via VBA with ActiveX in the Editorc.cccieeiieniiiiiiieereeeee e 68
5.3.4 Connect zenon variables with the .NET USer CONtrolcceceeeenieneniennenenie e 69
L =T =T 0 T= 4 73
6.1 2T 1 ok PP PRR PPN 73
6.1.1 WPF in process ViSURlIZAtioNncceiiiiiiiiiiiee ettt e e e e s e nta e e e e e s e e sanraaneaee s 74
6.1.2 Transfer of values from zenon t0 WPFoooiiiiiiiiiieeeeeeeee e s 75
6.1.3 2] (=] g T Tol=Te o] o] =1 £ URUOUPUUPRUROt 76
6.1.4 Allocation of zenon 0bject 10 WPF CONTENT.......cc.ueiiiiiieeeieee ettt et 77
6.1.5 WOIKFIOWS ..coneiiiieiiiit ettt et st st sneen e e ene 78
6.2 GUIEINES fOr UESIGNEIS......uvieieiiiee ettt ettt e e et e e e et e e e e e taeeesbbeeeesataeeseabaeeesbsaeeaasbaeeeesaeeesasseaaans 79
6.2.1 Workflow with Microsoft EXpression BIENGccocuiiiieiiiiiiciiiee ettt e 79
6.2.2 Workflow with AdObe HTUSErator........coieiiiieiieiieieeeeeeeeeee et 83
6.3 ENGINEEIING IN ZENON . .eiiiiiiiii ittt e e e e s et e e e e e s e s et et e eeessesssabaeeeeeesessnbaeeeeaesssnnsssnneeeens 91
6.3.1 CDWPF files (COIRCEIVE TIlRS) wuvrrriiiiieiiiiieiie ettt et e e et e e e e e s esnabaeeeeeeeeenns 91
6.3.2 Create WPF @IEMENToiiiiiiiiecie et st s s e 92
6.3.3 Configuration of the INKING.......ccuvei i e e s naeeeens 93
6.3.4 Validity Of XAML FIlES ..eeeieeieeeciiee e ctiee ettt e te e s et e e st e e e st e e e e nee e e sanaeeeesntaeesnnnaneesnneeaans 105
6.3.5 Pre-bUIlt @lEMENTS .. .coiiiieee e e 107
6.3.6 Examples: Integration of WPF iN ZENONuiiiiiiiiiiiieee ettt e e e e annees 123
6.3.7 Error treatmentooeeiiiiiiiiiiii 143

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. Controls

In zenon you can integrate own controls. For this following is available:

» .NET user controls (on page 42) (For implementing in zenon see also .NET controls in manual
Screens.)

» ActiveX (on page 10) (For implementing in zenon see also ActiveX in manual Screens.)

» WPF (onpage73)

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

¥ Information

You can find information about how to use the zenon programming interfaces (PCE, VBA,
VSTA) in manual Programming Interfaces.

3 License information

Part of the standard license of the Editor and Runtime.

& Attention

Note that errors in applications such as ActiveX, PCE, VBA, VSTA, WPF and external
applications that access zenon via the API can also influence the stability of Runtime.

3. General

Controls for zenon can be implemented via ActiveX, .NET and WPF. Via VBA/VSTA you can access the
zenon API.

3.1 Access zenon API
Under zenon you can enhance an ActiveX control with special functions in order to access the zenon API.

ACCESS THE ZENON API

» In Project References, select Add References... the zenon RT object library

» add the enhanced functions to the class code of the control

ENHANCED ZENON ACTIVEX FUNCTIONS

// Is called during the initializing of the control in the zenon Runtime.
public bool zenon>Init (zenon.Element dispElement)..

// Is called during the destruction of the control in the zenon Runtime.

public bool zenonExit ()

// Supports the control variable linking
public short CanUseVariables()..

// Com control supports data types.
public short VariableTypes()..

// Maximum number of variables which can be linked to the control.

public short MaxVariables()...

EXAMPLE

The COM object of a zenon variable is temporarily saved in a Member in order to access it later in the
Paint Event of the control.

zenon.Variable m cVal = null;
public bool zenon>Init (zenon.Element dispElement)
{
if (dispElement.CountVariable > 0) {
try {
m cVal = dispElement.ItemVariable (0);
if (m_cval != null) {
object obRead = m cVal.get Value((object)-1);
UserText = obRead.ToString();
}
}catch { }
}
return true;
}
public bool zenonExit ()
{
try f
if (m cval != null) {
System.Runtime.InteropServices.Marshal.FinalReleaseComObject (m_cVal) ;

m cVal = null;
}

catch { }

return true;

public short CanUseVariables ()

return 1; // the variables are supported

public short VariableTypes ()

{
return short.MaxValue; // all data types are supported

public short MaxVariables ()

{

return 1; // as maximum one variable should be linked to the control

private void SamplesControl Paint (object sender, PaintEventArgs e)

{

// zenon Variables has changed

try {
if (m_cval != null) {
object obRead = m cVal.get Value((object)-1);

UserText = obRead.ToString();

}
}catch { }

3.2 Methods

ActiveX and .NET controls which use zenon variables need certain methods.

3.2.1 CanUseVariables

Prototype: short CanUseVariables() ;

This method either returns 1 or 0

General

Zzenon

1: The control can use zenon variables.

For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method VvariableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

3.2.2 MaxVariables

Prototype: short MaxVariables() ;
Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

3.2.3 VariableTypes

Prototype: short VariableTypes() ;

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an aND relation from the following values (defined in zenon32/dy type.h):

EEEI =

WORD 0x0001 Position 0
BYTE 0x0002 Position 1
BIT 0x0004 Position 2
DWORD 0x0008 Position 3
FLOAT 0x0010 Position 4
DFLOAT 0x0020 Position 5
STRING 0x0040 Position 6
IN_OUTPUT 0x8000 Position 15

3.24 zenonExit

Prototype: boolean zenonExit() ;
This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

3.2.5 zenonExitEd

Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.
Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

3.2.6 zenonlnit

Prototype: boolean zenonInit (IDispatch*dispElement) ;

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or up.

The Element Input dialogappears after double-clicking the ActiveX element or after selecting property
ActiveX settings in the element properties in node Representation.

3.2.7 zenonlnitEd

Equals zenonlnit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4. ActiveX

With ActiveX the functionality of the zenon Runtime and Editor can be enhanced autonomously.

10

In this manual you can find:
» Develop ActiveX elements (on page 11)
» Example LatchedSwitch (C++) (on page 14)
» Example CD_SliderCtrl (C++) (on page 23)
» Example :NET control as ActiveX (C#) (on page 30)

You can find information about the dynamic element ActiveX in manual Screens in chapter ActiveX.

ACTIVEX FOR WINDOWS CE

If an ActiveX Control should run under Windows CE, the apartment model must be set to Threading. If
it is set to Free, the control will not run in zenon Runtime.

4.1 Develop ActiveX elements

The dynamic element ActiveX in zenon can forward variables to the ActiveX control without using VBA
to operate the control.

The control now defines by itself, how many zenon variables it can use and of what type they may be.
Additionally the properties of the control can also be defined by the dynamic element.

For this the interface (dispatch interface) of the control must support a number of certain methods (on
page 11) .

4.1.1 Methods

Each ActiveX control which can use zenon variables must contain the following methods:
» CanUseVariables (on page 8)
» MaxVariables (on page 9)
» VariableTypes (on page 9)
» zenonExit (on page 10)
» zenonExitEd (on page 10)
» zenonlnit (on page 10)

» zenonlnitEd (on page 10)

It does not matter, which dispatch ID the methods have in the interface. On calling the methods zenon
receives the correct ID from the interface.

11

CanUseVariables

Prototype: short CanUseVariables() ;
This method either returns 1 or 0

Valu Description

e

1: The control can use zenon variables.
For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method VariableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

MaxVariables

Prototype: short MaxVariables() ;
Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

VariableTypes

Prototype: short VariableTypes() ;

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anD relation from the following values (defined in zenon32/dy type.h):

12

Value 1 Value 2 Equivalent

WORD 0x0001 Position 0
BYTE 0x0002 Position 1
BIT 0x0004 Position 2
DWORD 0x0008 Position 3
FLOAT 0x0010 Position 4
DFLOAT 0x0020 Position 5
STRING 0x0040 Position 6
IN_OUTPUT 0x8000 Position 15
zenonExit

Prototype: boolean zenonExit() ;
This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

zenonExitEd

Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.
Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

zenonlnit

Prototype: boolean zenonInit (IDispatch*dispElement) ;

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or up.

The Element Input dialogappears after double-clicking the ActiveX element or after selecting property
ActiveX settings in the element properties in node Representation.

13

zenonlnitEd

Equals zenonlnit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4.2 Example LatchedSwitch (C++)

The following example describes an ActiveX control, that realises a latched switch with two bit variables.
The first variable represents the switch, the second variable the lock. The value of the switching variable
of the ActiveX control can only be changed, if the locking variable has the value 0.

The status of the element is displayed with four bitmaps which can be selected in the properties dialog
of the control in the zenon Editor.

4.2.1 Interface

The control LatchedSwitch has the following dispatch interface:

[wuid(EB207159-D7C9-11D3-B019-080009FBEAA2) ,
helpstring (Dispatch interface for LatchedSwitch Control), hidden]
dispinterface DLatchedSwitch

{
properties:
// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFX_ODL PROP (CLatchedSwitchCtrl)
[1id (1)] boolean SollwertDirekt;
] IPictureDisp* SwitchOn; // container for the bitmaps
] IPictureDisp* SwitchOff;
] IPictureDisp* LatchedOn;
)] IPictureDisp* LatchedOff;
//}}AFX_ODL PROP

[id (2
[id(3
[id (4
[1d (5

methods:

// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFXiODLiMETHOD(CLatchedSwitCthrl)

//}}AFX ODL METHOD

[id(6)] short CanUseVariables () ;

[1d(7)] short VariableTypes();

[1d(8)] short MaxVariables () ;

14

[1id(9)] boolean zenonInit (IDispatch* dispElement) ;
[1id(10)] boolean zenonExit ();
[id(DISPID_ABOUTBOX)] void AboutBox () ;

}i
The properties SwitchOn to LatchedOff contain the bitmaps for displaying the four different states of the

control. The bitmaps themselves are stored in objects of the class CScreenHolder. The property
SollwertDirekt defines if the input of set values is done via a dialog or directly by clicking the control.

4.2.2 Control

Implementing the control is done with the class cLatchedswitchCtrl. As members this class has the
CScreenHolder Objects for the storage of the bitmaps. Additionally three dispatch drivers for the
dynamic element and the variables are generated:

class CLatchedSwitchCtrl : public COleControl
{

DECLARE DYNCREATE (CLatchedSwitchCtrl)

// Constructor

public:
CLatchedSwitchCtrl () ;
// Overrides

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CLatchedSwitCthrl)

public:

virtual void OnDraw (CDC* pdc, const CRecté& rcBounds, const CRect& rcInvalid);
virtual void DoPropExchange (CPropExchange* pPX);

virtual void OnResetState () ;

virtual DWORD GetControlFlags();

//}}AFX VIRTUAL

// Implementation

protected:

~CLatchedSwitchCtrl () ;

15

DECLARE
DECLARE
DECLARE

DECLARE
// Mess
//{{AFX
afx msg
//}}AFX
DECLARE

// Disp

//{{AFX

~ OLECREATE EX (CLatchedSwitchCtrl) // Class factory and guid
_OLETYPELIB (CLatchedSwitchCtrl) // GetTypelnfo
_PROPPAGEIDS (CLatchedSwitchCtrl) // Property page IDs
_OLECTLTYPE (CLatchedSwitchCtrl) // Type name and misc status
age maps
~MSG (CLatchedSwitchCtrl)

void OnLButtonDown (UINT nFlags, CPoint point);
MSG
MESSAGE_MAP ()

atch maps

_ DISPATCH (CLatchedSwitchCtrl)

BOOL m sollwertDirekt;

afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
//}}AFX
CScreen
CScreen
CScreen

CScreen

DECLARE

void OnSollwertDirektChanged() ;
LPPICTUREDISP GetSwitchOn() ;
void SetSwitchOn (LPPICTUREDISP newValue) ;
LPPICTUREDISP GetSwitchOff () ;
void SetSwitchOff (LPPICTUREDISP newValue) ;
LPPICTUREDISP GetLatchedOn () ;
void SetLatchedOn (LPPICTUREDISP newValue) ;
LPPICTUREDISP GetLatchedOff (),
void SetLatchedOff (LPPICTUREDISP newValue) ;
short CanUseVariables () :;
short VariableTypes();
short MaxVariables();
BOOL zenonInit (LPDISPATCH dispElement) ;
BOOL zenonExit () ;

_DISPATCH

Holder m_ SwitchOn;

Holder m_SwitchOff;

Holder m LatchedOn;

Holder m LatchedOff;

DISPATCH MAP ()

16

afx msg void AboutBox();

// Event maps

//{{AFX_EVENT (CLatchedSwitchCtrl)

//}}AFX_EVENT

DECLARE EVENT MAP ()

double VariantToDouble (const VARIANT FAR *v);

void VariantToCString (CString *c,const VARIANT FAR

BOOL IsVariantString(const VARIANT FAR *v);

BOOL IsVariantValue (const VARIANT FAR *v);

// Dispatch and event IDs

public:

CString szVariable[2];
IElement m dElement;

IVariable m dLatchVar, m dSwitchVar;

enum {
//{{AFX_DISP ID(CLatchedSwitchCtrl)
dispidSollwertDirekt = 1L,

dispidSwitchOn = 2L,

dispidSwitchOff 3L,

dispidLatchedOn

41,
dispidLatchedOff = 5L,
dispidCanUseVariables = 6L,
dispidvVariableTypes = 7L,
dispidMaxVariables = 8L,
dispidZenOnInit = 9L,
dispidZenOnExit = 10L,
//}}AFX DISP ID

}i

}i

17

4.2.3 Methods

The following methods are used:
» CanUseVariables (on page 18)
» VariableTypes (on page 18)
» MaxVariables (on page 18)
» zenonlnit (on page 19)

» zenonExit (on page 19)

CanUseVariables

This method returns 1, so zenon variables can be used.
short CLatchedSwitchCtrl::CanUseVariables ()
{

return 1;

}

VariableTypes

The control only can work with bit variables, so 0x0004 is returned.
short CLatchedSwitchCtrl::VariableTypes ()
{

return 0x0004; // Only bit variables
}

MaxVariables

Two variables can be used. Therfore 2 is returned.
short CLatchedSwitchCtrl::MaxVariables ()
{

return 2; // 2 variables

}

zenonlnit

This method gets the dispatch drivers of the variables via the dispatch pointer of the dynamic element.
With this pointer the variable values are read and written when clicking and drawing the control.

BOOL CLatchedSwitchCtrl: :zenonInit (LPDISPATCH dispElement)

{

m_dElement = IElement (dispElement) ;

if (m_dElement.GetCountVariable() >= 2)

{

short iIndex = O0;
m_dSwitchVar = IVariable (m_dElement.ItemVariable (COleVariant(iIndex)))
m_dLatchVar = IVariable (m_dElement.ItemVariable (COleVariant (++ilIndex))) ;

}

return TRUE;

}

zenonExit

This method releases the dispatch driver.
BOOL CLatchedSwitchCtrl::zenonExit ()
{

m _dElement.ReleaseDispatch();
m_dSwitchVar.ReleaseDispatch();
m_dLatchVar.ReleaseDispatch() ;
return TRUE;

}

19

4.2.4 Operate and display

Setting values

A value can be set by clicking the control with the left mouse button.

If m_iSollwertDirekt is 0, a dialog for the selection of the set value is opened, otherwise the current
value of the switching variable is inverted.

If the locking variable has the value 1, only a MessageBeep is executed. No value can be set via the
control.
void CLatchedSwitchCtrl::OnLButtonDown (UINT nFlags, CPoint point)

{

CRect rcBounds;

GetWindowRect (&rcBounds) ;

COleVariant coleValue ((BYTE) TRUE) ;

BOOL bLatch = (BOOL)VariantToDouble ((LPVARIANT) &m dLatchVar.GetValue());
BOOL bSwitch = (BOOL)VariantToDouble ((LPVARIANT) &m dSwitchVar.GetValue());
if (bLatch) // Locked!!!

MessageBeep (MB ICONEXCLAMATION) ;
else

{

if (m_sollwertDirekt)
{

bSwitch = !bSwitch;
}

else

CSollwertDlg dlg;

dlg.m iSollwert = bSwitch 2 1 : 0;
if (dlg.DoModal () == IDOK)

{

20

if (dlg.m iSollwert == 2) // Toggle

bSwitch = !bSwitch;

else

bSwitch = (BOOL)dlg.m iSollwert;
}

}

coleValue = (double)bSwitch;

m_dSwitchVar.SetValue (coleValue);

}
COleControl::OnLButtonDown (nFlags, point);
}

Drawing

On drawing the control the values of the variables are read via their dispatch drivers, and accordingly
one of the four defined graphics is displayed. When the value of a variable changes, the control is
updated by the onDraw routine.

void CLatchedSwitchCtrl: :OnDraw (CDC* pdc, const CRect& rcBounds, const CRecté& rcInvalid)

{

CRect rcBitmap = rcBounds;

rcBitmap.NormalizeRect () ;

if (!m dElement)

{

m_SwitchOn.Render (pdc, &rcBounds, &rcBounds);
return;

}
BOOL bvall = 0, bval2 = 0;
VARIANT vRes;

if (m_dSwitchvar) // Variable exists?

{

vRes = m _dSwitchVar.GetValue();

21

bvall = (BOOL)VariantToDouble (&vRes) ;

}

if (m_dLatchvVar) // Variable exists?
{

vRes = m dLatchVar.GetValue();
bvall = (BOOL)VariantToDouble (&vRes) ;
}

if (bvall && bVal2)

m SwitchOn.Render (pdc, rcBitmap, rcBitmap);
else 1f (!bVvall && bVal2)

m SwitchOff.Render (pdc, rcBitmap, rcBitmap):
else 1if (bvall && !bval2)

m_LatchedOn.Render (pdc, rcBitmap, rcBitmap);

else

m_LatchedOff.Render (pdc, rcBitmap, rcBitmap);
}

4.2.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the
Class Wizard of the development environment (button add Class, select From a type library, select

zenrt32.tlb).

For our control theses are the classes IElement and Ivariable. They are defined in zenrt32.h and

zenrt32.cpp.

22

4.3 Example CD_SliderCtrl (C++)

The following example describes an ActiveX control which equals the Windows s1iderctrl. This
component can be linked with a zenon variable. The user can change the value of a variable with this

slider. If the value of the variable is changed with some other dynamic element, the slider is updated.

4.3.1 Interface

The control cp_sliderctrl has the following dispatch interface:
[uuid (5CD1B01D-015E-11D4-A1DF-080009FD837F),
helpstring(Dispatch interface for CD SliderCtrl Control), hidden
]
dispinterface DCD SliderCtrl
{

properties: //*** Properties of the controls

[id(1)] short TickRaster;
[1d(2)] boolean ShowVertical;

[1d(3)] short LineSize;
methods: //*** method of the control (for zenon ActiveX)

[id(4)] boolean zenonInit (IDispatch* pElementInterface);
[1d(5)] boolean zenonExit ();

[id(6)] short VariableTypes();

[1d(7)] short CanUseVariables () :;

[1d(8)] short MaxVariables();

[1d(DISPID ABOUTBOX)] void AboutBox();

}i

4.3.2 Control

Implementing the control is done with the class CD_SliderCtrICtrl. This class has a standard Windows
csliderctrl as a member, with which the control is subclassed. The interfaces Ivaribale and
IElement contain zenon interfaces which had to be integrated. These are deduced from
COleDispatchDriver.

23

class CCD_SliderCtrlCtrl : public COleControl
{

DECLARE DYNCREATE (CCD_SliderCtrlCtrl)

private: //*** member variables

BOOL m bInitialized;

BOOL m_bShowVertical;
BOOL m bTicksBoth;

long m nRangeStart;

long m nRangeEnd;

long m nTickOrientation;

IVariable m interfaceVariable;
IElement m_interfaceElement;

CSliderCtrl m wndSliderCtrl;

public:

CCD_SliderCtrlCtrl();

//{{AFX_VIRTUAL(CCD_SliderCtrlCtrl)

public:

virtual void OnDraw (CDC* pdc, const CRecté& rcBounds, const CRect& rcInvalid);
virtual BOOL PreCreateWindow (CREATESTRUCT& cs);

virtual void DoPropExchange (CPropExchange* pPX) ;

virtual void OnResetState () ;

//}}AFX_VIRTUAL

protected:

~CCD_SliderCtrlCtrl();

//*** methods for the conversion from variant

double VariantToDouble (const VARIANT FAR *vValue);

DECLARE_OLECREATE EX (CCD_SliderCtrlCtrl) // Class factory and guid
DECLARE OLETYPELIB (CCD_SliderCtrlCtrl) // GetTypelInfo
DECLARE PROPPAGEIDS (CCD SliderCtrlCtrl) // Property page IDs

DECLARE OLECTLTYPE (CCD_SliderCtrlCtrl) // Type name and misc status

24

//*** methods for the functionality of the SliderCtrl

BOOL IsSubclassedControl ()

LRESULT OnOcmCommand (WPARAM wParam, LPARAM lParam);

//{{AFX_MSG(CCD_SliderCtrlCtrl)

afx msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
afx msg void HScroll (UINT nSBCode, UINT nPos);

afx msg void HScroll (UINT nSBCode, UINT nPos);

afx msg void OnLButtonDown (UINT nFlags, CPoint point);
afx msg void OnLButtonUp (UINT nFlags, CPoint point);
//}}AFX_MSG

DECLARE MESSAGE MAP ()

//{{AFX_DISPATCH(CCD_SliderCtrlCtrl)

afx msg BOOL GetTickOnBothSides();

afx msg void SetTickOnBothSides (short nNewValue);
afx msg BOOL GetShowVertical();

afx msg void SetShowVertical (BOOL bNewValue) ;

afx msg short GetTickOrientation();

afx msg void SetTickOrientation (short nNewValue);
afx msg BOOL zenonInit (LPDISPATCH pElementInterface);
afx msg BOOL zenonExit();

afx msg short VariableTypes();

afx msg short CanUseVariables();

afx msg short MaxVariables();

//}}AFX_DISPATCH

DECLARE DISPATCH MAP ()

afx msg void AboutBox();
//{{AFX_EVENT (CCD_SliderCtrlCtrl)
//}}AFX_EVENT

DECLARE EVENT MAP ()

public:

25

enum {

//{{AFX_DISP ID(CCD SliderCtrlCtrl)
dispidShowVertical = 1L,
dispidTicksOnBothSides = 2L,
dispidTickOrientation = 3L,
dispidZenOnInit = 4L,
dispidZenOnExit = 5L,
dispidvariableTypes = 6L,
dispidCanUseVariables = 7L,
dispidMaxVariables = 8L,
//}}AFX DISP ID

}i

}i

4.3.3 Methods

The following methods are used:
» CanUseVariables (on page 26)
» VariableTypes (on page 27)
» MaxVariables (on page 27)
» zenonlnit (on page 27)

» zenonExit (on page 28)

CanUseVariables

This method returns 1 so zenon variables can be used.
short CCD_SliderCtrlCtrl::CanUseVariables ()
{

return 1;

}

26

VariableTypes

The control can work with word, byte, doubleword and float variables. You will find a list of the possible
data types in the general description (on page 9) of this method.

short CCD _SliderCtrlCtrl::VariableTypes ()
{

return 0x0001 | // Word

0x0002 | // Byte
0x0008 | // D-Word
0x0010 | // Float
0x0020; // D-Float
}

MaxVariables

Only one variable can be linked to this control.
short CCD_SliderCtrlCtrl::MaxVariables()
{

return 1; // 1 variables

}

zenonlnit

The parameter dispElement contains the interface for the dynamic element. With this element the
linked zenon variable determined. If it is valid, the area of the s1idectrl is set. Additionally the settings
for the display (number of ticks, ...) are set. If no variable is linked, the display range is set to 0 to 0. Thus
the SliderCtrl cannot be changed. The variable m_blnitialized defines that values can be set from now
on.

BOOL CCD_SliderCtrlCtrl::zenonInit (LPDISPATCH dispElement)
{

//*** Determine the variable using the zenon element

m_interfaceElement = IElement (pElementInterface);

if (m_interfaceElement.GetCountVariable() > 0) {

short nIndex = 0;

27

m _interfaceVariable = IVariable
(m_interfaceElement.ItemVariable (COleVariant (nIndex)));

}

//*** Initialize the area of the Slider-Ctrl

if (m interfaceVariable) {

//*** Define range

m nRangeStart = (long) VariantToDouble (&m interfaceVariable.GetRangeMin()) ;
m nRangeEnd = (long) VariantToDouble (&m interfaceVariable.GetRangeMax());
m_wndSliderCtrl.SetRange(m_nRangeStart,m_nRangeEnd,TRUE);

//*** Define sub ticks

m wndSliderCtrl.SetTicFreq(m nTickCount);

m wndSliderCtrl.SetPageSize (m nTickCount);

m wndSliderCtrl.SetLineSize (m nLineSize);

} else {

m wndSliderCtrl.SetRange (0,0, TRUE) ;
return FALSE;
}

m bInitialized = TRUE;
return TRUE;

}

zenonExit

In this method the zenon interfaces are released again.
BOOL CCD_SliderCtrlCtrl::zenonExit ()
{

m interfaceElement.ReleaseDispatch();
m interfaceVariable.ReleaseDispatch();
return TRUE;

}

4.3.4 Operate and display

Drawing

With DoSuperclassPaint the SliderCtrl is drawn (as is is a subclassed control). If at the moment of
drawing the slider is moved, the variable m bInitialized gets the value FALSE. This makes sure that
the value can be changed. Normally the value of the variable is read and displayed with the method
SetPos of the SliderCtrl.

void CCD_SliderCtrlCtrl::0OnDraw(CDC* pdc, const CRect& rcBounds, const CRecté& rcInvalid)

{

//*** update view
DoSuperclassPaint (pdc, rcBounds);

if (m_interfaceVariable && m bInitialized) {

COleVariant cValue (m_interfaceVariable.GetValue());
int nValue = (int) VariantToDouble (&cValue.Detach()) ;
m wndSliderCtrl.SetPos (nValue);

}

}

Setting values

In the method LButtonDown the variable m binitialized is setto FALSE, and in the event LbuttonUp it
is set to TRUE again. This makes sure that the value can be changed. Otherwise the routine onbraw
would be executed and the old value would be displayed.

void CCD_SliderCtrlCtrl::OnLButtonDown (UINT nFlags, CPoint point)
{

m_bInitialized = FALSE;

COleControl::OnLButtonDown (nFlags, point);

void CCD _SliderCtrlCtrl::0OnLButtonUp (UINT nFlags, CPoint point)
{

m_bInitialized = TRUE;

COleControl: :OnLButtonUp (nFlags, point);

29

A value is sent to the hardware, when the slider is moved. In the methods Hscroll or Vscroll the value
is sent to the hardware (depending if it is a horizontal or a vertical slider).

void CCD_SliderCtrlCtrl::HScroll (UINT nSBCode, UINT nPos)

{
switch (nSBCode) {

case TB LINEUP:
case TB PAGEUP:
case TB LINEDOWN:
case TB PAGEDOWN:
case TB THUMBTRACK:

case TB THUMBPOSITION: {

//*** Set value without dialog ?

int nValue = m wndSliderCtrl.GetPos();
COlevVariant cValue ((short) nValue,VT I2);

m interfaceVariable.SetValue (cValue);

}

}

}

4.3.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the

Class Wizard of the development environment (button Add class, select From a type library, select
zenrt32.tlb).

For our control theses are the classes IElement and Ivariable. They are defined in zenrt32.h and
zenrt32.cpp.

4.4 Example :NET control as ActiveX (CH)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1. Creat Windows Form Control (on page 31)

30

ActiveX

2. Change .NET user control to dual control (on page 33)
3. Work via VBA with ActiveX in the Editor (on page 37)

4. Connect zenon variables with the .NET user control (on page 38)

4.4.1 Creat Windows Form Control

To create a Windows Form Control:

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

New Project

Broject types: Templates: NETFramework 3.5 | [| (]
. T P
& w;:x Irkeligence Projects (A& %IWPF 5 Appcation ~
& Visusl C# 7% Console Application
Windows [Empty Project
Web Awindows Service
Smart Device &% WPF Custom Control Lbrary
& Office ¥ WPF User Control Libr
Reporting
5515 _ScriphComponent My Templates
5515 _ScripkTask o B v

:Ammmmwmhmmwm@mrﬁms@ |

Hame: | zenOnDothistCortrol
Solution: | Create new Solution v] [create directory For solution

zenOnDotNetContr [CJdd to Soyrce Control
=) Co

v| (goe..]

2. Rename the default control to the desired control name.
In our example: sampesControl.cs.

@ zenOnDotMetControl - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Test Window Help
I RNERA=A N AR NN R TR = = A L -
{208 8118 S ¢ | a aTan | @ :¢|:|
Liic larer >0 X
e 5,

;-@ zenOnDotNetControl
+- [Zd] Properties

[#- =9l References
=BT || rplesCort ol

@Soluti... @Class |\§Macro... |Resou... |

Fropetties -+ 1 X

|x0q|00 1 ‘}ﬂ

SamplesControl.cs File Properties -

|E Output| |.E Error List| 5 Find Results 1
Ready

3.

Open the Control Designer and add the desired control; in our case a text box:

2% zenOnDotNetControl - Microsoft Visual Studio

Fle Edt WView Project Buld Debug Data Tools Test Window Help

3 G0 — b b Debug z Any CPU L.] &

A ” 3 Rl Hs 83 & <4 di=le 2 {0) s =

- 4 - a3 & &
SamplesControl.cs [Design]* v X | Solution Explorer >3 x

BAREEA

(2 zenOnDotNetControl

® 34 Properties

o @ =4 References
Q 2 ® (8 SemplesControl.cs

zen0n Net Control

SOkt [FgCiass ... | B Meco

Properties
textBox1 System.Windows.Forms. TextBox -
Bl =
Text ~
TextAbgn Left
Use'WakCursor False
B Behavior
. e G o AcceptsRetun False
17 Treevy Version 2.0.0.0 from Micr Corporation AcceptsTab False
73 wepa] NET Component ept 2
- UseWaitCursor
QO oo e o ety s, sty o
R Ponts the control and &s chid controls is sek to WakCursor.

% Floud auce#Oanal b

Normally controls have properties. Open the Code Designer via view Code and ass the desired
properties which should be available externally.
In our example: Externally visible property , UserText" with get and set access which contains
the text of the text box:

#% zenOnDotNetControl - Microsoft Visual Studio EHEH')__(,
File Edk ‘iew Project Buld Debug Data Took Test Window Help
E R A= I R N N I = A LT = Any CPU 1)
_{ ol _,':1 53— aT al) | (# =) b L\‘. A
% SamplesControl.cs® samplesControl, cs [Design]* v X
= = | 3 E BB
2 | | Hgzenonbothietcontrol SamplesControl || S UserText ~| k| G 7] EL R &
i £ using System; = ? :z:er:JnDnI;Neltmhd
using System.Collections.Generic; & : Rr:rl:;nzs
using System.ComponencModel; 'ﬂ [
using System.Drawing: ' |_T Cpen
using System.Data; Open With. ..
using System.Ling:
using System,Text; ﬂ Refresh
“using System.Windows.Forms: view Cade
[namespace zenOnDotNetControl =] | View Cesrer
{ & View Class Disgram
E ?“’-"L:.r: partial class SamplesControl : UserControl ey Solut... | Class Exclude From Project
=} public SamplesControli) Properties &£ Cut
{ o SamplesControl.cs B3 Ccopy
InitializeComponenti);
L y ¥ Delete
T T B Advanced Rename
=] /4:61: string UserText H‘“‘x\ Build Action & | Proger
S N Copy bo Output Dirg < FTOPEriEs
get { return textBoxl.Text; } :l Custom Tool
set { textBoxl.Text = walue; } Custom Tool Namespac
~ / B Misc
Loy "n_H__ o Filz Name: SamplesiControl.cs =2
Ly — - | sicue b
Advanced
v
a3 L2
(3 Cutput| | g Error List| 5 Find Resuls 1
Ready

32

5. Compile the project.
The Windows Forms Control can now be used in other Windows Forms projects.

Important: The control must be inserted manually in the control tool box via Choose Items.

@2 zenOnDotNetControl - Microsoft Visual

File Edit View Project Build Debug D:

EnRACE R = NP WE= N Y

| = & o] | TR o ul |2 g
5 Toolbox trol.cs |
_)" (2b] Button ~
o o | TS—
=}
= Chec\Bo. |
= Chec & | Cut

Comb 53 Copy

Date] [paste

et >(Delete

LinkL

Rename Iterm

ListE:

Listi Loy

Mas Show All
[Maontl Choose Items...
] ;
ﬂ Matif Sart Ikems Alphabetically
[13] mMume

Reset Toolbox

|8 Pictu
@ Prog Add Tab
() Radid Move Up
ﬂ% RichT] Move Down
a TextBoR
K ToolTip
T Treeview

__‘j WebBrowser
= Containers
k Painter

4.4.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

33

1. Open the project and activate property Register for COM interop in the Build settings:

#% zenOnDotMetControl - Microsoft Visual Studia

Fle Edt Vew FProjct Buld Debug Data Took Test Window el
PR Ry~ 1 I)) R L] = Any U - | [# AErssetasoditisiaton - | &
Lt dLLE 2 s T s | - .
_\I‘ 4 [Dersign]
I o] coepotetconteol
Corfiguration: | Actrve (Debug) ¥ Plsform: | Active (Ay CPU) o ® U F] efresh
d® #
o [5| oud
Buid Everts Rusbud
Ceendtional complation symbols:
ovng Cean
[] Define DEBUG constart =
Resources [] Defire TRACE constant J—
Services Platform target: Ay CPY ¥ Add Sevice Reference...
[o uneafe code. P r—
Optenize code
R Paths -
erence Ervises and warmings B8 addProject to Sowce C
Sigring Warming kevel: 4+ - 4 O
SUEER OS5 WATINGS: _ﬂs..
Trest warmings a5 enmors e e
@ Hors 2en0e [§ | Open Folder in Windows
© Spectic warnings: ;‘%L
Cwa Project Fils enOnDothietContr
Cutgut
- i
’Q_Lﬁ‘l_mm.m\‘_"_‘j_k
Q‘__Bnmﬂuconmio/
Gersraks serokastion assebly: |42 4
Misc
3 cutput| | g Error List| T Fin
Ready

2. Open the file AssemblyInfo.cs and
e set attribute ComVisible to true
e add attribute ClasslInterface

[assembly: ComVisible(true)]

ActiveX
zenon

[assembly: ClassInterface(ClassinterfaceType.AutoDual)]

% zen0nDotNetControl - Microsoft Visual 5tudio

Bl Edt ¥ew Project Puld Debug Data Tk

Tegt Wndew Help

) 5 G B [0 O b e - Awy
Ll bl 2 3 AT | e oL e bkl by e
> | Assemblylnfo.cs SwrplesControlcs | SamplesControl.cs [Design] s
gl ¥l V) B ELE A
A - —i (zeninotretcontrol |
X Elusing Syscem.Reflection; B} ——
| using System.Runtime.CompilerServices: =1 C @ -
“using Syscem.Runtime. InteropServices: & ;m

/{ General Information about an assembly iz controlled through the following
/{ set of attributes. Change these attribute values to modify the informatio

// associated h an assembly.
[as=embly: le ("zenodnbotNetControl™)]
[as=embly: siptien{"™)]

[as=embly: guration{™)]

[aszembly:
[aszembly:
[azsenbly

i B
£ ("zenonbotNetControl™)]
("Copyright & 2005"))

[aaserbly
[aasembly:
g5 [Tl [e R
// Setting ComVisible to false makes the types in this assembly not visible - . 7
Properties x
// to COM components—H JUW TEwdto-sccess a type in this assembly from =
/[-o0W, zet the ComWisible attribute to true on CREE-Lype. AssemblyInfo.cs Fie Properties -
[as=embly: Wisible (erue)] Ezl =

assenbly: ClassIr =. hurobual
(¥ . B Advanced

-‘“‘“ﬂ-________—_ﬂ__ﬂ__f” Buld Action Conple
‘Cogry b Outpt Do not copy
Custom Tocl
Custom Tool b
B Misc
FleName Assemblylrfo.cs

iterface (ClassInterfaceT

4/ The following GUID is for the ID of the typelib if this project 13 exposes
[assenbly: Guid{"41bE85k7-coL5-47ce-bh17-541bIa65740e™)]

/f Version information for an assembly consists of the following four values

’n
" Major Version
i Minor Version
2 Build Number
H Revision
A Advanced
// You can specify all the values or you can default the Build and Revision Iy
£ 3

& cutput| [4 Ervor List| 5] Find Resuits 1
Ttamis) Saved

Open the code designer via view Code and add the necessary ActiveX attributes and using
entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

“ zenOnDotMetControl - Microsoft Visual Studio
mmmmmmm1mwmh
AMET=1 T IR e

= Any CRU = [Af:mEnsureManagedinkislieation -

{200 2L L2E o a aT aty | (8 Gl 3k B ' O 5 13 4 5 L] =
b= Asseniblyinfo.cs SamplesContrakes samplescontrol.cs [Design] - X
& [[#=orootescor [V_E@Euaa
. — zenlnDotNetControl
Clusing Syatem; B/ & 5 Properies
using System.Collections.Generic; .
#- = References
using System.ComponentHodel; & B

using Syscem.Drawing;
using System.Daca;
using Syscem.Ling: Open With...

using System. Textc: Refresh
using System.Windows.Forms:

using Syatem.Runtime,InteropServices; [E] Ve Code

using System.Reflection: T VewDesgrer

jusing Microsoft.Windi;
L

3 open

& Wiew Class isgram

[l namespace zenOnlotNetControl Ezeclude From Project
! - b ot
[Progld("zentnbotNetConcrol. SamplesControl™)] N
[[dlll i (MCFFO0ED1-A3IDC-4a57-BOBA-A0B022CADETA™)] 1 " 153 | Copy
[com hle(true), Cla rfaceType.Autobual)] Propertied K Delkte
4y public partial class = Cantrol
. Renams
= public SamplesControl() [Properties
t
InitializeC . Chooae the deshed [amat below. then seect Copy o [[™ 2o ced
' pitializeComponent () copy the rasits to the clpbosrd (the tesulls can then be tion Compile
pasted ika your sowce code]. Choose “Ext” when l Hew GUID ' Outpe Do ok copy
(5] public string UserTexc GUID Fomat 12'\

i
get { return textBox1.Text: } @)1 IMPLEMENT_OLECREATEL..)

set { textBoxl.Text = value: } (2 DEFINE_GUIDL,..)
-)2 static const st GUID = (...)
) 4 Regsty Format [ie. boosoocnn won)]

he SerplesCortrolcs

Resl

A CFFS0BD1 AIDC 4297 BOBAANBIZZCADETA)

IMPLEMENT_DLECREATE[«cclasty, <<endmnal_ namass,
Cdal7. OsbD.

< O Ova, Dwal, 0D, 0422, vca, (o8,
e7al:

=] output| | Emor List S Find R

For the control to be selectable as Active X user interface control, you must add the functions to
the following control classes:

e RegisterClass

e UnregisterClass

% zenOnbatietContral - Micrasaft Visual Studio
B¢ E ww Project Buld Debuy Dgfa Took Tet Aiedow Help

Al G A A b Cebg = Ay U » |0 AbmEnameHsragedintisaicn = |) 5 19 3% O
L =) " t E F J ol
b Assemblyinfo.cs Sanglesi - %
|| 43 sen0rDotiet Conteal SavphsContral || v gister Class(string ey vl B E E1E &
= " — i enOnDotMetComtral
:mn.svace zenfnbothetControl Bl = e
4l Refererces
[Frogld("zentnlotiecContral. Samples a E
[|CFFA0ED1-AI T BOBA- ADBD.
[Comiisible(true], ¢lassinterface(Type. Autobual}]
public parcial class SemplesConts
i
public SamplesControl ()
Inttializecamponent |}
public string UserTexc
get | recues cewtBoxl.Tewc:)
met ¢ textBoxl,Text = value: }
ar Funet
= n
static void RegisterClass|scring keyl 2 E
Properties -0 x

SamplesControlos Fle Progert =
nSubKey |=b. ToSteing|), true):

sl
a
v inprocServerdZ = k.OpenSubKey|"InprocServerdZ®™, true); Buld Ation Compde
2.5etValus [*CodeBase", Lssenhly.GecE: it inghaseshly|) . CodeBase) ¢ Coogry b Oukge, Do not copy

2.Closni): Custom Teol
Custom Teal .
=]
Flabiame SamplesControlcs
Furst ioai))
woid Unregisterelass(string key)

SeeingButld Bew It < eyl :
#b, Replace LASSES_ROOT oy
Registrs ClassesRoot. OpenSubley =k, ToStringl), trus);
x.Delete: falze) s
sylateyiey inpeo 2 = k.OpandubFey |"TnprocServerdz®, ceus):
. DeleteSubKey ("CodeBase”, falme):
x.Clasel)s
. Misc
Sandragion) @
« »
] outt| [Ervow Lt S, P R 1
Rebudd A scceeded

After that you can register the control in the registry.
Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenonDotNetControl. t1b was created in the output directory.

To use the control on another computer:
a) copy the DLL file and the TLB file to the target computer
b) register the files via the command line:

$windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll
/tlb:zenOnDotNetControl. tlb

36

ActiveX
Zenon

7. Add the extended Windows Form Control as ActiveX control to the zenon Editor:
¥ Qotes Pesbaten Bider Dynamische Elemerte Yetor-Elemerte Kortrolslemente Optionen fenster Hife -&x
FBP LD SN Qmeq S LW SP k(23 S | = SRR
Q‘ ’. % 2, % '*'-&”f“‘-'_i’éi' 3 DA AR SAr "REL

§ - n —1
Bl T\Dohumer & [P=1e]
Tyt VLRI | o o
. :\;::m [Statut Norme [. o
s W e W
°§m‘: o 2o 20n0n Not Contol 2;‘
& PoekSytct e — ks
» O Funktonen N Rare 3
ﬂ;m“"‘""" SYSTEM 3 Stare @
PR TS] || R S B
@gg:w L2k
s z PECEN1313) ae
§ %o ag
$ Veriegehngen pemt Ay
} g %=
&) Repot Generalor Actwve Elemente P w
‘g""“ Controls aso -
ol v (€ wreq Conkrol {E6E61BAC-5... =
< > |egeamjed XSEdRer Control {S0CIIHG49... w1
g Control {BEE2A1F-252, ..
E e Rl e a 2 oo mvor i o
[St O[] —_
<) Schtbakentirken actvex e} Controlort sner Cores _IEASSRERA-Sa~ o
2 Alganen
1) Postion v
< > Varablerzuordnung
Tomn @ e % | R
4 [
VBA: Schreibberechtigung fur
Projekt: ‘ACTIVEX1' einftgen
Projekt: 'ACTIVEX1' laden
; [voriste... | [machunten | [Nachoten |
ot T ST A AT
4.4.3 Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

1. Inthe zenon Editor in node Programming interfaces/VBA macros Create a new Init macro

with the name Init ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX element.
@ Fabpaetien o Hx =% ¢
9 Projeld-Symbobib s & @ s =
B4 Makro Module -
=1- &3] Furktionen o 8
£ Skripte ._:n;‘: lement
Sprachdat - n H
'ﬁ echsenar [-
= LRI
i g?:;ﬁw =) LehCickDown
< Pogarmencrbisel 2 LeftDOuck
90 Process Control € 2 RightClickLp
o VBAMakDs | =) RightCickDown
e veTa =) Right DCick
‘ m L i1 SC‘FOCIH i
Ik i Iog
e = Mg L S =] e Ml =
) Darstellung
1) Rahmen/Schatten '“me Mm) — =)
&) Sichtbarkeit/Blinken Init: Init_Init_ActiveX [SetFocus: [
{3 Allgemein Draw: [KillFocus: =
i) Position
) GroBe und Drehen dynamisch | | # Microseft Visual Basic - C\ProgramData\COPA-DATA\SQL2008R2\0838419d-251 e-4505-b306-0bed 2367997\ FILES zen... | = | =1 [[ee)
o c;rim' 4 Datei Bearbeiten Ansicht Einfigen Format Debuggen Ausfohren Extras Add-Ins Fenster I -8 x
= -
) Sollwert absetzen Z2 =-E B o »onom bl MW @) | zas1
Projeh-Z.CD_DOTNFI'COIEI (Algemein) » Init_Init_ActiveX -
D _Cl| =) [Public Sub Init_ActiveX (cbElem As Element) f
El-55 Module - obElem.AktiveX.Usertext = "Den String auf das Control setzen"
+&% ModuleElem: - End Sub

« [un v
Eigenschaften - ModuleEle x|
ModuleElen Modul -
Alphabetisch | Nach Kab
ModuleBemen

EXAMPLE INIT MACRO

Public Sub Init ActiveX(obElem As Element)

obElem.AktiveX.Usertext "Set the string to the control"

End Sub

4.4.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS

» public bool zenOnlnit (on page 40) (Is called up during control initializing in the zenon Runtime.)

» public bool zenOnlInitED (on page 40) (Is used in the Editor.)

» public bool zenOnExit() (on page 41) (Is called up during control destruction in the zenon
Runtime.)

» public bool zenOnExitED() (on page 41) (Is used in the Editor.)

38

» public short CanUseVariables() (on page 41) (Supports linking variables.)

» public short VariableTypes() (on page 41) (Supported data types by the control)

» public MaxVariables() (on page 42)(Maximum number of variables which can be linked to the

control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under Add References the zenon Runtime object library in
order to be able to access the zenon APl in the control.

+ R

e g ey

a _E zenon_CD_DotNetControlContainer
=d| Properties
g] References
a ﬂzen0n_CD_DotNetCUHtrDICDHtainer.cs
) zenon_CD_DotMetControlContainer.Designer.cs
"-g zenon_CD_DotMetControlContainer.resx

D:\Eigene Dokumente _

4 | i

00 Add Reference I PR
| MET | com |Projects | Browse | Recent|

Component Name Typelib Version Path o
WSHControllerLibrary 1.0 CA\Windows\SysWOV
wiv2dvrms 1.0 Type Library 1.0 CA\Windows\eHome\
WUAPI 2.0 Type Library 20 CA\Windows\SysWOV I
H5Editor ActiveX Control module 1.0 C\Program Files (x86
X5Monitoring ActiveX Control module 1.0 C\Program Files (x86.
XGo OLE Control module 20 C\Program Files (x86
XPS_SHL_DLL 1.0 Type Library 1.0 CA\Windows\system3
zenDBSrv 2.0 Type Library 20 C\Program Files (x86.
ZenMsgSrv 1.0 Type Library 1.0 C\Program Files (86
zenMetSrv 2.0 Type Library 20 C\Program Files (x86.
zenon programming interface library 1.0 C\Program Files (x86
zenOnDotMetControl 1.0 D:\Eigene Dokumente—
zenonDotNetDATAGRIDControl 1.0

\ =

N

2. Add the enhanced functions in the class code of the control in order to access the whole zenon

API.

39

In our example the COM object of a zenon variable is temporarily saved in a Member in order to
access it later in the paint event of the control.

R84 B T2 O

SamplesControlcs Samplestontrol.cs [Design]

¥ | §¥SamglesControl_Panticbiect sender, PartEvertiegs o

dispklement)

Properties 3 x

public bool zenOnlnit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

» you double click the ActiveX element or
» select Properties in the context menu or

» select the ActiveX settings property in the Representation node of the property window

public bool zenOnlInitED(zenOn.Element dispElement)

Equals public bool zenOnlnit (on page 40) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

40

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 41) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button variable) you can only state zenon variables with the
type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anp relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN_OUTPUT 0x8000 corresponds to position 15

41

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5. .NET user controls

With .NET control the functionality of the zenon Runtime and Editor can be enhanced autonomously.

In this manual you can find:
» Difference between control container and ActiveX (on page 42)
» Example .NET control container (on page 43)

» Example :NET control as ActiveX (C#) (on page 30)

You can find information about .NET controls in ActiveX in manual Screens in chapter .NET controls.

5.1 Different use .NET Control in Control Container or ActiveX

A .NET user control can:
» be integrated directly in the zenon ActiveX element via the CD_DotNetControlContainer control

» be used as ActiveX control and be integrated directly in the zenon ActiveX element

Above all the differences between container control and ActiveX control are:

CD_DotNetControlContainer control ActiveX control
» Does not have to be registered at the » Must be registered as Active X at the computer
computer. (regsrv32).
» For changes at the controller only the DLL » For changes at the controller the TLB must be
must be changed. registered again.
» Access via VBA and VSTA only possible via » Easy access via VBA and VSTA.

the CD_DotNetControlContainer method.

42

5.2 Example .NET control container

In this tutorial you get to know how to create a simple .NET user control in Visual Studio 2010
(programming language c#) and how to integrate it with the help of the zenon
CD_DotNetControlContainer control as ActiveX in a zenon ActiveX element.

5.2.1 General

The CD_DotNetControlContainer therefore acts as a wrapper between the user control and the zenon
ActiveX element. All methods used in the following example and all public methods and properties are
passed on via the CD_DotNetControlContainer from the user control to the ActiveX and can be used by
zenon; also in VBA and VSTA.

If there is a reference to the zenon programming interface in the user control, you can directly access
>CD_PRODUCTNAME< objects.

1 1
O zenen Programming
.NET User Control interface
A
] v

CD_DotNetControl
Container

F 3

]l v]

zenon Active X
Element

zenon Objects

F 3

In the following example we will:
» create .NET user control (on page 45)
» adda CD_DotNetControlContainer and a .NET User Control (on page 53)

» enable the access to the user control via VSTA (VBA) (on page 58)

PATH FOR DLL IN EDITOR AND RUNTIME

The path to .Net DLL that is selected in the Editor is also used in Runtime. It is set as absolute and
cannot be changed.

Ensure that the same path is used on all computers in the zenon network for Editor and Runtime.

Hint: Select an absolute path, for example: C: \Controls. Enter the path as fixed in Remote
Transport and in the .NET Control Container. Use Remote Transport to harmonize this path with all
computers.

43

public bool zenOnlinit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

» you double click the ActiveX element or

» select Properties in the context menu or

» select the ActiveX settings property in the Representation node of the property window

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button variable) you can only state zenon variables with the
type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can

be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anp relation from the following values (defined in zenon32/dy_type.h):

44

.NET user controls

Zzenon

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN_OUTPUT 0x8000 corresponds to position 15

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5.2.2 Create .NET user control

The user control is a simple control which can set a new value via an input field (text box). After clicking
the button, the value is written to the desired zenon variable.

An additional function should automatically detect the change of value of the variable in zenon and
display the new value automatically in the control.

'CD DotNetControlContainer

WORK STEPS

1. First you create a new project in VS and use project type , Windows Forms Control Library”

Important: Set framework to 3.5!

@) WOF User Cormel Libemy Visusl C

2] Wndows Forms Conte ey ViuniCo |

tame sensn_CD_DostetConmalCentamer
| Lecason: &engene dobumentewmusi b 330 Prcjects - | Wowe.
Sehasee Create sow schon
Sehtoon mame sevsn_CD_DoatietCormelCentaines Crente goectey fos sebetion

After that rename the CS file from "UserControl" to "zenon_CD_DotNetControlContainer.cs".
The files Designer.cs and the . resx are renamed automatically.

In the next step you create the user control. For this use two text boxes one each for the input
and the output and a button for writing new values to the zenon variable.
Name:

e the first text box "txtGetZenonvariable"
e the second text box "txtSetzZenonvariable"

e the button "btnSetZenonvariable"

CD DotNetControlContainer

In order to access zenon objects you need a reference to the <CD_PRODUCNAME> Programming
Interface. To do this:

e click on node "References" in the Solution Explorer
e open the context menu
e select Add References...

e switch to tab com

46

select zenon programming interface library

B DU PR ——
» Ll Properties
+ il References
2 [f zenon CO_BothietControlC cntaimer.cs
) zenon_CD_ DosNetControlContainer Designes cs
8] senon_CD_DoeNetControlContainer.reix
o o Reterence =)
[NET | COM [Puojects | Browse | Recent|
Component Mame Typelib Version Path =
WSHCantroberdibrary 10 CAWindows\SyWOV
whiddhrms 1.0 Type Library 1 CAWindows\eHome!
WUIAS1 20 Type Libraey) CAWindews\SyWOV
XSEditer ActrveX Control modube 1 C\Progren Files (86
¥SMonitaring ActiveX Control madule 10 CAProgram Files (86
NG OLE Contred module H) CAProgram Files (86
HP5.5HL DAL 10 Type Libraey i) ChAWindows\syitemd
senDBSey 210 Type Library H CProgram Files (86
ZenMsgSev 10 Type Library 1 CProgram Files (86
senbietSes 20 Type Library 7 CProgram Files (86
sencn programening interface library 10 Ci\Program Files (86
senCelotNetControl 10 O Eigene Dakumenty |
zenoniotNesDATAGRID ontrol 1 D\ Eigene Dokuments .
. i J '
_— Cancel

.NET user controls ﬂ

Zzenon

After that the "zenon" reference should be visible in the reference list.

o Fiupsiucy
4 | References

<3 stdole

<3 System

<3 System.Core

+3 System.Data

+3 System.Data.DataSetExtensions

«3 System.Drawing

<3 System.Windows.Forms

<3 System.Xml

<3 System.Xml.Ling

<3 zenOn

5. Inthe next step create a global variable of type zenon.variable in the code of the

zenon_CD_DotNetControlContainer.cs:

using Systes;
using Systes.Collections.Generic;
using Systes.Componenttodel;
using System.Orawing;
using Systes.Oata;
using System.Ling;
using Systes.Text;
using System.windows.Forms;
using zen0n;

“inasespace zenon_CD_DotNetControlContainer

public partial class zenon_C
{

//This
zen0n. v

£11 be needed to get the zenon Varisble Container
able m_cval = null;

public zenon_CD_DotNetControlContainer()

InitializeComponent();

6.

7.

8.

This variable is initialized via public method zenoOnInit:

public bool zenOnInit(zendn. dispElesent)
{

if (dispElement.CountVarisble > @)

esVariable(d);

txtGetZenonvariable.Text = m_cval.get_Value(®).Tostring();
}
cateh { }

public bool zendnExit()
{

tey
{
if (m_cval 1= null)

{

ropServices, .FinalReleaseConObject (m_cval);

In the following methods we define whether <CD_PRODUTCNAME> variables and data types are
used and how many variables may be handed over:

't VorisbleTypes()

short. Maxvalue;

In the next step define in the click-Event of button btnSetzenonvariable that when you click
the button the value of text box txtSetzZenonvariable is written to the zenon variable and then
the content of the text box is deleted.

private void btnSetZenonVariable Click(object sender, tArgs e)
{
e zenon Variable
m_cVal.set_Value(@,txtSetZenonVariable.Text.ToString());
this.txtSetZenonVariasble.Text = string.Empty;

Sit Value from TextBox €0 th
}

To react to a value change of the variable, you need the Paint Event of the control. The paint
Event is also triggered if the value of the initialized zenon variable changes and it can therefore
be used to update values. As variables which are referenced in the zenon ActiveX element are

48

automatically advised, you can generally refrain from using the zenon.onlinevariable
container in the control.

ate void zenon_CD_DothetControlContainer_Paint(object sender, ¢ e)

this. txtGetZenonvarisble.Text = =_cval,get_Value(®).Tostring();

this.txtGetZenonVarisble.Text = “Varisble Value®;
return;

THE CODE AT A GLANCE

Here is the whole code as review:
using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using zenOn;

namespace zenon_CD_DotNetControlContainer

{

public partial class zenon_CD_DotNetControlContainer : UserControl

{

//This will be needed to get the zenon Variable Container
zenOn.Variable m_cVal = null;
public zenon_CD_DotNetControlContainer()

{

InitializeComponent();

49

/17
/17
/17
/17
/17
/17

<summary>

This public Method will be called by the initialization of the control during

the zenon Runtime.
</summary>
<param name="dispElement"></param>

<returns></returns>

public bool zenOnlnit(zenOn.Element dispElement)

{

//Check if zenon Variables are added to the

//Control

/17
/17
/17
/17
/17

if (dispElement.CountVariable > 0)

{

try

{

//Take the first zenon Variable and added

//to the global Variable

m_cVal = dispElement.ltemVariable(0);

}
catch{}
!
return true;
}
<summary>

This public Method will be calles by the release of the control during
the zenon Runtime.
</summary>

<returns></returns>

public bool zenOnExit()

{

try

50

if (m_cVal = nul1)

{
//Release the zenon Variable (Com-Object)
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(m_cVal);
m_cVal = nuli;
}
}
catch{}

return true;

}

/// <summary>

/// This public Method is needed to link zenon Variables
/// to the control.

/// </summary>

/// <returns></returns>
public short CanUseVariables()

{

return 1; // Only tis Variable is supported
/// <summary>
/// This public Method returns the Type of
/// supported zenon Variables
/// </summary>

/// <returns></returns>

public short VariableTypes()

{

return short.MaxValue; // all Data Types supported

}

/// <summary>

51

changed.

/// This public Method returns the number of
/// supported zenon Variables
/// </summary>

/// <returns></returns>

public short MaxVariables()

{

returnl; // Only 1 Variable should linked to the Control

}

/// <summary>

/// This will be triggert by clicking the Button. The new Value will
/// be set to the zenon Variable

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void btnSetZenonVariable_Click(object sender, EventArgs e)

{

//Set Value from TextBox to the zenon Variable
m_cVal.set_Value(0,txtSetZenonVariable.Text.ToString());

this.txtSetZenonVariable.Text = string.Empty;

}

/// <summary>

/// This will be triggert by painting the User Control or the Value of the Variable

/// After the value of the Variable changed the Control will be new painted and

the new Value

/// will be set to the Textbox.
/// </summary>

/// <param name="sender"></param>
IS p

/// <param name="e"></param>

private void zenon_CD_DotNetControlContainer_Paint(object sender, PaintEventArgs e)

{

if (m_cVal l=null)

52

this.txtGetZenonVariable.Text = m_cVal.get_Value(0).ToString();

return,

}

else

{
this.txtGetZenonVariable.Text = "Variable Value";
return,

}

CREATE RELEASE

AT last create a Release in order to integrate the completed DLL in zenon or in the
CD_DotNetControlContainer.

5s¢wn Cplorer
F] 3 soeon 7w

2 8 Add Sohuson to Source Cetrol

3 5 Open Folder in Windows Explerer ‘

) Properties At Erter

For this it is necessary that you switch from Debug to Release in the settings.

am Data Tools Test Analyze Window Help
L P Release ~| | Any CPU ~
e e

. zenon_CD_DotNetControlContainer.cs X

ontrolContainer.zenon_CD_DotNetControlContainer
T

5.2.3 add a CD_DotNetControlContainer and a .NET User Control

To prepare the zenon project and to add the cD_DotNetControlContainer and the .NET User Control,
carry out the following steps:

53

.NET user controls

Create an internal variable of type String and set the string length to 30.

e picDecme - [30 L int LB M B e Tl Sty
LY SMIRR Status | Name " Trober | Ken
EEL e ¥ v v

ALUMINIUM_DATAG....

®
ETCONTROLCONTAL

Variable_CD_DotNetControlContainer

Intern - Treiber fir interne Variablen

Zzenon

In the zenon project node Project/Files/Others add the DLL of the created .NET user

& Open

GC.! Ji « zenon_CD_DotNetControXContamer » bin » Relesse
-

v [49 || Search

Reiease »

Organize

New folder

“ Documents library

Release
Name
E| @) zenon CO_DotNetControlContainer

4 zenon_CD_DotNetControlContainer.di
& Interop 2enOn.dll

Amange by Folder =

Date modified

& Computer
& Local Disk (C)
< Data (0)
G PROG_G (\CDSBG012) (G) .«

File name:

controls.

The DLL is located in the Visual Studio Project folder under
bin\Release\zenon CD DotNetControlContainer.dll.

i

[I. ?I.';":rﬂ-t. o CEES0
i

i

DEC 611213
4 Foclty Schaduber

:

M
{

a
]
i

_r
|

‘zenon_CD_DotherConteodContsner il

In the project select the ActiveX element and drag it in a zenon screen.

e The dialog configuration is opened

° Select the CD_DotNetControlContainer.Container control.

Canfiguration &3
| [Actvex =
| (.3
Canwos aso A | .
CaltegeEdnCri Class (o] [e |
©_Butten Convs {E8TE652. L
©@_Combagox (08708 652,
. Cotarer { :
©_Edt Convol (EOSER4S2 ~
« = '
[propertes... |
Varisbie ssugrment
[vwwbe.. || ooem | w |
T [T)|
| S——

To embed the .NET user control in the CD_DotNetControlContainer control:
e Click on button Properties
e Anew dialog is opened

;__"';__ e Al
| Conig Windows Form Contral

HK
IET) | SelectliseeCermel
P
' Lead Prguration =
1 _— - be Edic
o] | Preview ——
p o
' 3] AchveX elements
b | Conols aso Sovel
e NoCee D _Teves Contrel (EDaELBa5L.. e
in Crldentity Chent (00020000-000... .
e ComerorDisiog Class (300101870,
o Coniigiewer Cass (HBACHFEE...
M Contact Selector {S1E40031-993...
0y Confentiost Contral {oseacas-®., -
et [Properses.
]
g Variable assignment
yariatie D Do

i
L=
o
e
ey
e
A
bacd o Concel Variatie., Domn up
=

|
=4
e e o e e T

e Click on button Load in order to select the path of the project folder, for example:
C:\ProgramData\COPA-DATA\SQL\9888419d-251e-4595-b396-90e423679
97c\FILES\zenon\custom\additional\zenon CD DotNetControlContai
ner.dll

By adding the DLL to folder additional, the control is automatically transferred when
copying or loading the Runtime files to another computer. With this the link is lost.

Carfi Wirsboms Form Cortrel
]
1 Sesctisarcons

(]

20m0m,CO_DethirControX ontamer 41

Now the .NET user control should be displayed.

55

Confirm the dialog by clicking on ox.

.NET user controls

Zzenon

Preview. C:\ProgramData/COPA-DATAISQLI98884194-251e-4595-5396- 36e42357997¢ FILESzenon\customiadditionalizencn_CD_Df |
|
=
B Accessibility b |
AccessibleDescription [
AccessibleNama
AccessibleRole Defaut E
D DetNetControiContainer © Appearance
BackColoe] Control
Backgroundimage E fpone)
Backgroundimagelayo
Varabie Vahe BorderSyle Nors '
Cursor Defack
Set Zenon Vaniable & Font Mcrosolt Sans Se: 8.2% n
ForeColor Wl CortroiText
RightToLeft No
UselaitCursor Faise
B Behavior
AllowDrep Faise hdl
| Accessibility \
|
[Comen] '

] |

=

‘t i

<m0)
OmaxIas

roranoo.
e -

b

The variable selected first is automatically linked with our globally defined variable (.NET
UserControl) via public method zenonInit. The linking with the control is carried out after the

Runtime start.

@ Variable selection] e — ™
!
(5 B Wiokspace C \Users \Pubc Do ® 0
& Guos.TesT S MA “ A | erthcaton Meanr | Netaddress | |
THALES _ITALY_SMIRR {
TESTS_GENEREL v W| et Vhie ¥| fewe ¥
%, NEUMANN_ALUMINIUM_D = - —
& ALYZER Variable_CD_DotNetControlContain... 0
&, FACTORYLINK
2 CD_DOTNETCONTROL(
Pl —) v
LI P y—| '+ | 1total /1 filtered / 1 selected | 0 tags used / unlimited tags available |
Name dentfication Address Project
Variable_CD_DothetContr.... S (0) 0000.00 CD_DOTNETCONTROLCONTAINER
[a4 || Remove | [Moseecson | ook) [lucancd] [amee.]

.NET user controls

Zzenon

Then link the internal variable with a text element.

After the Runtime start the control is initially empty.

CD DotNetCortrolContainer

If you enter a value in the second text box and then confirm it with button set zenon variable,
the value is written to the zenon variable. (The btnSetZenonvariable Click event is carried
out.)

.NET user controls

Zzenon

If the value is directly changed in the zenon text element,

CD DotNetCortrolContainer

5.2.4 Accessing the user control via VSTA or VBA

This examples shows the access via VSTA. The procedure is the same as with VBA.

1. Enhance the control with a label (1abel) and name it IblzenoniInfo. In this label the value of
another zenon variable should be displayed. The new value should be set via a VSTA macro.

2. Enhance the code by a property (Information) and add the properties get and set to the
property. They allow you to read and write the text of the label.

13 B public partisl class zencn_CD_DotMetControlContainer : UserControl
14

15 F£fThis will be needed to get the zenon Variable Container
16 zenOn.Variable m_cval = null;

17

18 &= public zencn_CD_DotMetControlContainer()

19 {

bl InitialireComponent();

a | }

22

23 5 public string Information

24 {

25 set{thiz lblZenonInfo.Text = value;}

26 get { return this.lblZenonInfo.Text; }

FE ¥
28

Create a new release for our user control and copy it to folder additional of the zenon
project.

Do not forget: Close the zenon Editor before you do this!

Delete the old DLL and restart the zenon Editor. If the DLL is still in the folder, just delete it a
second time. Now you can import the changed DLL. The cD_DotNetContainerControl and the
ActiveX are updated automatically.

In the zenon Editor click on the ActiveX and open the property window.

Configuration ==
[Actrve | |
| e |
| ActveX elements

Controls asm & l Cancel]

Calendar Adapter Class M?E]-A‘M.. l el]

Calendar Syrk Class. {ABATDADO-G4...

CallrgefdinCtr Class. {4CTR9260-3A...

€0 _Button Control {FEDETE14652...

CD_ComboBox {3EDETE0S-652...

CD_DothetControiContaner.Container {FOF2572-D01...

Wariable assgrment

Varisble CD_DothetControkContiner j

Now you can see the new property Information in the selection window of the control and you
can also set a value.

[*zenon.CD_DotNetControiContainer' Config Windows Form Control - il
SelectUserCentrol
[W_CO,D«WM EWM = [Load

Preview: C:\ProgramData\COPA-DATAISQLIS882419d-2516-4535-b396-3be42367997c FILES:zencn'\customiadditionalizenon_CO_Dd

EDa
Anchor Top. Lekt -
i AutoScroll False
@ AutoScroliMargin 0.0
I B AutoScrcliMinSize 0.0
D Abssasuote Gy
_~ut zel
i Dock Nons
Location 0:0
Yadublo Yolue 8 Margin 3333
oo & MaximumSize 0.0
| SetZencn Variable B MinimumSize 0.0
& Padding 0:0.0:0
@ Size 318; 158 E
B Misc
U -
Informabon
oK] [Coce

This value is also set in the control ("mylnformation")

CD DotNetCortrolContainer
mylnformation

Variable Value

Set Zenon Variable

59

5. Inorder to able to work with the cD_DotNetControlContainer in VSTA or VBA, you first need
the reference to the control. After VSTA has been opened for the project (Projectaddin), you
must add the reference of the cD_DotNetControlContainer.

) Add Reterence
(NET | COM | Progects | Browse | Recent

Component Name
POCube 20 Type Libeary
Microscft OLAP Designer Server Deiver 80
| || MSOLEP 30 Type Library
| Micreseft OLE DB provider for OLAP Servi.
msoksB0 10 Type Libeary
Microseft OLE DB Service Componert 1.0 .

o omae

Typelib Vession Path

10 C:\Program Files (86]\Common Files\SYSTEM\OLE DEMSA
1 C:\Program Files 686\ Common Files\SYSTEM\OLE DBYMSA
1) C:\Program Files (6] Common Files\System cle db\msclay
10 C\Program Files (86\Common Files\SYSTEMOLE DBUMSC
10 C\Program Files (86]\Common Files\Systerm cle db\msclu
19 des (:86)\Common Files\Systens\ Ole D9\ cleds

OLE DB Errors Type Library 10 486]\Common Files\System Ole DF\cledb
(DotietControiContames 10 \COPA-DATA\zencn 6.50 SPO\CD, Dot
K5Clouds ActiveX Control module 10 COPA-DATA\zencn 6.50 SPKSClous
StratOnCem 1 CAProgram Files (461\COPA-DATA\zencn 6.50 SPOWKSCOM
$PC_Hat ActiveX Control 10 C\Program Fies (486]\COP
COC Tomad Actamm¥ £ antrad 10 £ Ounmrnem Edar HOENFAOANATA) samnn & 40 COMLOC Too —
|
oK Cancel

In addition you must also add the Assembly System.Windows . Forms.

m

o 2| BETINGS.LUESIGNEr.CS
| References

«3 CD_DotMetControlContainer

<3 Microsoft.VisualStudic. Tools.Applications.Runtimev9.0
<3 System

<3 System.AddIn

+3 System.Data

<3 System.Windows.Forms

<3 System.Xml

6. With the following code you can set the value of our property Information anew.

public void Macro_Test()

va
1ve;

zAktiveX.SetExt

else

t

<3 zenonVSTAProxyG510

UserControlProperty(*

zAktiveX.SetExternalUserControlProperty(“Information®, "mylnformaticn®);

System.Diagnostics.De

7. Finally:

7.Print ("ERROR : * + ex.Message + " " + ex.Scurce);

° create a new zenon function Execute VSTA macro

e link the function to a button

60

5.3

.NET user controls g

In the Runtime the label is changed from myInformation to New Information by clicking on the
button.

CD DotNetControlContainer
New Information

s

And back when you click the button again.

CD DotNetControlContainer
mylInformation

Ls

Example :NET control as ActiveX (CH)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1
2
3.
4

53.1

Creat Windows Form Control (on page 31)
Change .NET user control to dual control (on page 33)
Work via VBA with ActiveX in the Editor (on page 37)

Connect zenon variables with the .NET user control (on page 38)

Creat Windows Form Control

To create a Windows Form Control:

.NET user controls ﬂ

Zzenon

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

New Project

Broject types: Templates: ET Framework 35 |v | |§|

i
& B lm“ Inkeligence Profects & | = WPF Browser Appication A
& Visusl C# 7% Console Application

Windows (3] Empty Project

Web Awindows Service

Smart Device §# WPF Custom Control Library
& Office ¥ WPF User Control Library

Database :

Reporting

5515 _ScriptComponant My Templates

| 5515 _SoriptTask o - L 2|

| & project for creating controls to use in Windows Forms apphcations {NET Framework 3.5) |

ame:

Solution: | Create new Solution | [Create directory for solution

2. Rename the default control to the desired control name.
In our example: sampesControl.cs.

zenOnDotNetControl - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Test Window Help
- i 5 e | ¥ B9 -~ B -5 b Debug -

{208 8112 2 %] a aT an

=d| Properties
[s3] References

@Soluti... @Class |\-§Macro... |Resou...|

Fropetties -+ 1 X

SamplesControl.cs File Properties -

B Misc =

Misc

| = Output|

Ready —I

|L‘3 Errar List| % Find Results 1

3.

Open the Control Designer and add the desired control; in our case a text box:

2% zenOnDotNetControl - Microsoft Visual Studio

Fle Edt WView Project Buld Debug Data Tools Test Window Help

3 G0 — b b Debug z Any CPU L.] &

A ” 3 Rl Hs 83 & <4 di=le 2 {0) s =

- 4 - a3 & &
SamplesControl.cs [Design]* v X | Solution Explorer >3 x

BAREEA

(2 zenOnDotNetControl

® 34 Properties

o @ =4 References
Q 2 ® (8 SemplesControl.cs

zen0n Net Control

SOkt [FgCiass ... | B Meco

Properties
textBox1 System.Windows.Forms. TextBox -
Bl =
Text ~
TextAbgn Left
Use'WakCursor False
B Behavior
. e G o AcceptsRetun False
17 Treevy Version 2.0.0.0 from Micr Corporation AcceptsTab False
73 wepa] NET Component ept 2
- UseWaitCursor
QO oo e o ety s, sty o
R Ponts the control and &s chid controls is sek to WakCursor.

% Floud auce#Oanal b

Normally controls have properties. Open the Code Designer via view Code and ass the desired
properties which should be available externally.
In our example: Externally visible property , UserText" with get and set access which contains
the text of the text box:

#% zenOnDotNetControl - Microsoft Visual Studio EHEH')__(,
File Edk ‘iew Project Buld Debug Data Took Test Window Help
E R A= I R N N I = A LT = Any CPU 1)
_{ ol _,':1 53— aT al) | (# =) b L\‘. A
% SamplesControl.cs® samplesControl, cs [Design]* v X
= = | 3 E BB
2 | | Hgzenonbothietcontrol SamplesControl || S UserText ~| k| G 7] EL R &
i £ using System; = ? :z:er:JnDnI;Neltmhd
using System.Collections.Generic; & : Rr:rl:;nzs
using System.ComponencModel; 'ﬂ [
using System.Drawing: ' |_T Cpen
using System.Data; Open With. ..
using System.Ling:
using System,Text; ﬂ Refresh
“using System.Windows.Forms: view Cade
[namespace zenOnDotNetControl =] | View Cesrer
{ & View Class Disgram
E ?“’-"L:.r: partial class SamplesControl : UserControl ey Solut... | Class Exclude From Project
=} public SamplesControli) Properties &£ Cut
{ o SamplesControl.cs B3 Ccopy
InitializeComponenti);
L y ¥ Delete
T T B Advanced Rename
=] /4:61: string UserText H‘“‘x\ Build Action & | Proger
S N Copy bo Output Dirg < FTOPEriEs
get { return textBoxl.Text; } :l Custom Tool
set { textBoxl.Text = walue; } Custom Tool Namespac
~ / B Misc
Loy "n_H__ o Filz Name: SamplesiControl.cs =2
Ly — - | sicue b
Advanced
v
a3 L2
(3 Cutput| | g Error List| 5 Find Resuls 1
Ready

63

5. Compile the project.
The Windows Forms Control can now be used in other Windows Forms projects.

Important: The control must be inserted manually in the control tool box via Choose Items.

@2 zenOnDotNetControl - Microsoft Visual

File Edit View Project Build Debug D:

EnRACE R = NP WE= N Y

| = & o] | TR o ul |2 g
5 Toolbox trol.cs |
_)" (2b] Button ~
o o | TS—
=}
= Chec\Bo. |
= Chec & | Cut

Comb 53 Copy

Date] [paste

et >(Delete

LinkL

Rename Iterm

ListE:

Listi Loy

Mas Show All
[Maontl Choose Items...
] ;
ﬂ Matif Sart Ikems Alphabetically
[13] mMume

Reset Toolbox

|8 Pictu
@ Prog Add Tab
() Radid Move Up
ﬂ% RichT] Move Down
a TextBoR
K ToolTip
T Treeview

__‘j WebBrowser
= Containers
k Painter

5.3.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

64

1. Open the project and activate property Register for COM interop in the Build settings:

#% zenOnDotMetControl - Microsoft Visual Studia

Fle Edt Vew FProjct Buld Debug Data Took Test Window el
PR Ry~ 1 I)) R L] = Any U - | [# AErssetasoditisiaton - | &
Lt dLLE 2 s T s | - .
_\I‘ 4 [Dersign]
I o] coepotetconteol
Corfiguration: | Actrve (Debug) ¥ Plsform: | Active (Ay CPU) o ® U F] efresh
d® #
o [5| oud
Buid Everts Rusbud
Ceendtional complation symbols:
ovng Cean
[] Define DEBUG constart =
Resources [] Defire TRACE constant J—
Services Platform target: Ay CPY ¥ Add Sevice Reference...
[o uneafe code. P r—
Optenize code
R Paths -
erence Ervises and warmings B8 addProject to Sowce C
Sigring Warming kevel: 4+ - 4 O
SUEER OS5 WATINGS: _ﬂs..
Trest warmings a5 enmors e e
@ Hors 2en0e [§ | Open Folder in Windows
© Spectic warnings: ;‘%L
Cwa Project Fils enOnDothietContr
Cutgut
- i
’Q_Lﬁ‘l_mm.m\‘_"_‘j_k
Q‘__Bnmﬂuconmio/
Gersraks serokastion assebly: |42 4
Misc
3 cutput| | g Error List| T Fin
Ready

2. Open the file AssemblyInfo.cs and
e set attribute ComVisible to true
e add attribute ClasslInterface

[assembly: ComVisible(true)]

.NET user controls

Zzenon

[assembly: ClassInterface(ClassinterfaceType.AutoDual)]

= zenOnDotNetControl - Micresoft Visual Sludio
Bl Edt Wew Project Puld Debug Data Took Text Window Help

9 . o L[] b Debug - Ay CRU

== e = -]
> Assemblylnfo.cs SwrplesControles | SamplesCortrol.cs [Design]

gl o)

4 Elusing Sysctem.Refleccion;

using Syscem.Runtime,Compilerervices:
“using Syscem.Runtime.InteropServices:

/{ General Information about an assembly is controlled through the following
/{ set of attributes. Change these attribute values to modify the informatio
// associated h an assembly.

[as=embly: le ("zenodnbotNetControl™)]

[as=embly: ciption{™)]

[as=embly: guration{™)]

[aszembly: Sl B

[aszembly: duct (YzendnborNetControl™)]

[azsenbly "Copyright & 2003%))

[aaserbly
[aasembly:

/f Setting ComVisible to false makes the types in this assembly not visible

N’;uﬂclo;n/gmpmem.—n—yum—macﬂu type in this assembly from
L 7 set the ComVisible attribute to true on ChEt-Lype.

[assembly: ComVisible (true)] 21 =
[assembly: ClassInterface{ClassInterfaceType.kucobual)) B Ad g

. Advance:

T " Buld Action Compie
// The following GUID is for the ID of the typelib if this project is exposes mc""‘ t“?ﬂ‘”‘mm‘m
[assenbly: Guid{"41b655HT-ca5=47cr-bb17-54 bIn657408")] o

Custom Tool b
B risc

/f Version information for an assembly consists of the following four values

17 FleName Assemblylrfo.cs
" Major Version e
i Minor Version
i Build Number
I Revision
" Advanced
/7 You can specify all the values or you can defsult the Build and Revision I
£ 3

& cutput| [4 Ervor List| 5] Find Resuits 1
Ttamis) Saved

Open the code designer via view Code and add the necessary ActiveX attributes and using
entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

“ zenOnDotMetControl - Microsoft Visual Studio

mmmmmmm1mwmh

- [# AbmEnsureManagedinkislzstion -

fo 0. 2l L2 o a_aT ai) gl i x P 3 O bt a3 o) 3) o =
b= Assamblylnfo.cs ~ SamplesControlcs samplesControl.cs [Design] St .
E|«i—; tNetartrol Samples][5o VB aREEA
1 . zenDnDotNetControl

Clusing Syatem: [F
using System.Collections.Gensric: -l : : :’f::.;s

using System.ComponentHodel; & B

using Syscem.Drawing: E

using System.Daca; g | oen

using System.Ling: Open Wih...

using System. Textc: Refresh

using System.Windows.Forms:

using Syatem.Runtime,InteropServices; [E] Ve Code

using System.Reflection: T VewDesgrer

jusing Microsoft.Windi;
L

& Wiew Class isgram

[l namespace zenOnlotNetControl Ezeclude From Project
i B oo
[Progld("zentnbotNetConcrol. SamplesControl™)] N
[[Gum["crrgnn1—nbc—qug'.'—aom—nnanzzcma'u*)] ! 42 copy
[ComVisible (true), Cla rfaceType.Autobual)] Propertied K Delkte
4y public partial class = Control
t - Renams
=] public SamplesControl() L& Properties
t
Initializel . Chaose the desited foemat below, then select “Copy o Cow ced
) pitializeComponent () copy the rasits to the clpbosrd (the tesulls can then be tion Compile
ipasted inho your sowce code]. Choase “Ext” when _u,.,gum Tc:p Do nok copy
o] public string UserTextc GUID Format ~edn

i
get { return textBox1.Text: } @)1 IMPLEMENT_OLECREATEL..)

set { textBoxl.Text = value: } (2 DEFINE_GUIDL,..) [
IF 03 stafic-const st GUID = 1.)
) 4 Regsty Format [ie. boosoocnn won)]

SemplesCantrol.cs

Resl

A CFFS0BD1 AIDC 4297 BOBAANBIZZCADETA)

IMPLEMENT_DLECREATE[«cclasty, <<endmnal_ namass,
Cdal7. OsbD.

< O Ova, Dwal, 0D, 0422, vca, (o8,
e7al:

=] output| | Emor List S Find R

For the control to be selectable as Active X user interface control, you must add the functions to
the following control classes:

e RegisterClass

e UnregisterClass

% zenOnbatietContral - Micrasaft Visual Studio
B¢ E ww Project Buld Debuy Dgfa Took Tet Aiedow Help

Al G A A b Cebg = Ay U » |0 AbmEnameHsragedintisaicn = |) 5 19 3% O
L =) " t E F J ol
b Assemblyinfo.cs Sanglesi - %
|| 43 sen0rDotiet Conteal SavphsContral || v gister Class(string ey vl B E E1E &
= " — i enOnDotMetComtral
:mn.svace zenfnbothetControl Bl = e
4l Refererces
[Frogld("zentnlotiecContral. Samples a E
[|CFFA0ED1-AI T BOBA- ADBD.
[Comiisible(true], ¢lassinterface(Type. Autobual}]
public parcial class SemplesConts
i
public SamplesControl ()
Inttializecamponent |}
public string UserTexc
get | recues cewtBoxl.Tewc:)
met ¢ textBoxl,Text = value: }
ar Funet
= n
static void RegisterClass|scring keyl 2 E
Properties -0 x

SamplesControlos Fle Progert =
nSubKey |=b. ToSteing|), true):

sl
a
v inprocServerdZ = k.OpenSubKey|"InprocServerdZ®™, true); Buld Ation Compde
2.5etValus [*CodeBase", Lssenhly.GecE: it inghaseshly|) . CodeBase) ¢ Coogry b Oukge, Do not copy

2.Closni): Custom Teol
Custom Teal .
=]
Flabiame SamplesControlcs
Furst ioai))
woid Unregisterelass(string key)

SeeingButld Bew It < eyl :
#b, Replace LASSES_ROOT oy
Registrs ClassesRoot. OpenSubley =k, ToStringl), trus);
x.Delete: falze) s
sylateyiey inpeo 2 = k.OpandubFey |"TnprocServerdz®, ceus):
. DeleteSubKey ("CodeBase”, falme):
x.Clasel)s
. Misc
Sandragion) @
« »
] outt| [Ervow Lt S, P R 1
Rebudd A scceeded

After that you can register the control in the registry.
Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenonDotNetControl. t1b was created in the output directory.

To use the control on another computer:
a) copy the DLL file and the TLB file to the target computer
b) register the files via the command line:

$windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll
/tlb:zenOnDotNetControl. tlb

67

533

.NET user controls

Add the extended Windows Form Control as ActiveX control to the zenon Editor:

¥ (ot fewbeten Bider Dynamesche Elemerte YetorEloments Kortrolsmente Optonen fenster Hife - & x
FPLHAHNLY Q] SV SPh|>»s B I W
Q| B &Y %% N R iSSP s i AN
s 2.2 R s .
= M) Abetibersch T \Dokumer & [
= B ACTIVEX! (Stoapo. | | > BB X B S .
* © Varablen [Statut Nore Bidy)
=8 pn W o W
},m SvsTEM 2 s i z0n0n Net Control
© Fatodsnon SYSTEM_t e :
B Proek Syabel MENU_DETAIL Qe
o R START Rare
@ {Sove ey Stare
ﬂ”“‘. v SYSTEM_3 Stare
R LT |l || S S ———"
& Zetsieunung
* « Shipirg
2 PEC 61313 ¢ ae
e at
@ Vemegelngen P— oy
Meszage Cortiol Actvex K-\ o
s | e=
&) Report Genenator Actrve Semente PR
3 : g:': Controls aso
PRI v € weq {E6ES1BAC-58.... -
< > |eomamjeg XS dter Contrel {SBCHI N9, []
g Control {BEE2AI9-252.,.
*
E n S élﬁ e . z Rﬂmmd (4(26]2-’7“.
3 [Derstebng] CCSS: [
E () Rebanen um Blement Disstyhng - m) -~
| O sotbaserssinien Advexy] | | TO-SelCosioloctenm Soma
3 gmren
1) Postion v
< > Varusblensuordmng
onn E% =
i —
VBA: Schreibberechtigung fur
Projekt: ‘ACTIVEX1' einftgen
Projext: 'ACTIVEX1' laden
; [vorstle... | [machunten | [Nechoben |
oot T A L LT

Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

1.

In this macro you can access all external properties via obElem.ActiveX.

Zzenon

In the zenon Editor in node Programming interfaces/VBA macros Create a new Init macro
with the name Init ActiveX.

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX element.
@ Fabpaetien o Hx =% ¢
9 Projeld-Symbobib s & @ s =
B4 Makro Module -
=1- &3] Furktionen o 8
£ Skripte ._:n;‘: lement
Sprachdat - n H
'ﬁ echsenar [-
= LRI
i g?:;ﬁw =) LehCickDown
< Pogarmencrbisel 2 LeftDOuck
90 Process Control € 2 RightClickLp
o VBAMakDs | =) RightCickDown
e veTa =) Right DCick
‘ m L i1 SC‘FOCIH i
Ik i Iog
e = Mg L S =] e Ml =
) Darstellung
1) Rahmen/Schatten '“me Mm) — =)
&) Sichtbarkeit/Blinken Init: Init_Init_ActiveX [SetFocus: [
{3 Allgemein Draw: [KillFocus: =
i) Position
) GroBe und Drehen dynamisch | | # Microseft Visual Basic - C\ProgramData\COPA-DATA\SQL2008R2\0838419d-251 e-4505-b306-0bed 2367997\ FILES zen... | = | =1 [[ee)
o c;rim' 4 Datei Bearbeiten Ansicht Einfigen Format Debuggen Ausfohren Extras Add-Ins Fenster I -8 x
= -
) Sollwert absetzen Z2 =-E B o »onom bl MW @) | zas1
Projeh-Z.CD_DOTNFI'COIEI (Algemein) » Init_Init_ActiveX -
D _Cl| =) [Public Sub Init_ActiveX (cbElem As Element) f
El-55 Module - obElem.AktiveX.Usertext = "Den String auf das Control setzen"
+&% ModuleElem: - End Sub

« [un v
Eigenschaften - ModuleEle x|
ModuleElen Modul -
Alphabetisch | Nach Kab
ModuleBemen

EXAMPLE INIT MACRO

Public Sub Init ActiveX(obElem As Element)

obElem.AktiveX.Usertext "Set the string to the control"

End Sub

5.3.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS

» public bool zenOnlnit (on page 40) (Is called up during control initializing in the zenon Runtime.)

» public bool zenOnlInitED (on page 40) (Is used in the Editor.)

» public bool zenOnExit() (on page 41) (Is called up during control destruction in the zenon
Runtime.)

» public bool zenOnExitED() (on page 41) (Is used in the Editor.)

69

» public short CanUseVariables() (on page 41) (Supports linking variables.)

» public short VariableTypes() (on page 41) (Supported data types by the control)

» public MaxVariables() (on page 42)(Maximum number of variables which can be linked to the

control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under Add References the zenon Runtime object library in
order to be able to access the zenon APl in the control.

+ R

e g ey

a _E zenon_CD_DotNetControlContainer
=d| Properties
g] References
a ﬂzen0n_CD_DotNetCUHtrDICDHtainer.cs
) zenon_CD_DotMetControlContainer.Designer.cs
"-g zenon_CD_DotMetControlContainer.resx

D:\Eigene Dokumente _

4 | i

00 Add Reference I PR
| MET | com |Projects | Browse | Recent|

Component Name Typelib Version Path o
WSHControllerLibrary 1.0 CA\Windows\SysWOV
wiv2dvrms 1.0 Type Library 1.0 CA\Windows\eHome\
WUAPI 2.0 Type Library 20 CA\Windows\SysWOV I
H5Editor ActiveX Control module 1.0 C\Program Files (x86
X5Monitoring ActiveX Control module 1.0 C\Program Files (x86.
XGo OLE Control module 20 C\Program Files (x86
XPS_SHL_DLL 1.0 Type Library 1.0 CA\Windows\system3
zenDBSrv 2.0 Type Library 20 C\Program Files (x86.
ZenMsgSrv 1.0 Type Library 1.0 C\Program Files (86
zenMetSrv 2.0 Type Library 20 C\Program Files (x86.
zenon programming interface library 1.0 C\Program Files (x86
zenOnDotMetControl 1.0 D:\Eigene Dokumente—
zenonDotNetDATAGRIDControl 1.0

\ =

N

2. Add the enhanced functions in the class code of the control in order to access the whole zenon

API.

70

In our example the COM object of a zenon variable is temporarily saved in a Member in order to
access it later in the paint event of the control.

R84 B T2 O

SamplesControlcs Samplestontrol.cs [Design]

¥ | §¥SamglesControl_Panticbiect sender, PartEvertiegs o

dispklement)

Properties 3 x

public bool zenOnlnit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

» you double click the ActiveX element or
» select Properties in the context menu or

» select the ActiveX settings property in the Representation node of the property window

public bool zenOnlInitED(zenOn.Element dispElement)

Equals public bool zenOnlnit (on page 40) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

71

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 41) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button variable) you can only state zenon variables with the
type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an anp relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN_OUTPUT 0x8000 corresponds to position 15

72

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

6. WPF element

With the WPF dynamic element, valid WPF/XAML files in zenon can be integrated and displayed.

¥ Information

All brand and product names in this documentation are trademarks or registered trade
marks of the respective title holder.

6.1 Basics

XAML

XAML stands for Extensible Application Markup Language. The description language developed by
Microsoft and based on XML defines the syntax in Silverlight applications and WPF user interfaces.
XAML makes it possible to separate design and programming. The designer prepares the graphical user
interface and creates basic animations that are then used by the developers/project planners. The
project planner can control these .xaml files in a purposeful manner and animate them accordingly.

WPF
WPF stands for Windows Presentation Foundation and describes a graphics framework that is part of
the Windows .NET framework:

» WPF displays the programming environment.

» XAML describes, based on XML, the interface hierarchy as a markup language. Depending on the
construction of the XAML file, there is the possibility to link properties, events and
transformations of WPF elements with variables and functions of
CD_PRODUCTNAME<.

73

» The framework unites the different areas of presentation such as user interface, drawing,
graphics, audio, video, documents and typography.

Microsoft .NET 3.5 or higher is required for execution.

6.1.1 WPF in process visualization

XAML makes different design possibilities possible for zenon. Display elements and dynamic elements
can be adapted graphically regardless of the project planning. For example, laborious illustrations are
first created by designers and then imported into zenon as an XAML file and linked to the desired logic.
There are many possibilities for using this, for example:

DYNAMIC ELEMENTS IN ANALOG-LOOK

Graphics no longer need to be drawn in zenon, but can be imported directly as an XAML file. This makes
it possible to use complex, elaborately illustrated elements in process visualization. Reflections, shading,
3D effects etc. are supported as graphics. The elements that are adapted to the respective industry
environment make intuitive operation possible, along the lines of the operating elements of the
machine.

INTRICATE ILLUSTRATIONS FOR INTUITIVE OPERATION

The integration of XAML-based display elements improves the graphics of projects and makes it very
easy to display processes clearly. Elements optimized for usability make operation easier. A clear display
of data makes it easier to receive complex content. The flexible options for adapting individual elements
makes it easier to use for the operator. It is therefore possible for the project planners to determine
display values, scales and units on their own.

CLEAR PRESENTATION OF DATA AND SUMMARIES

74

Grouped display elements make it possible to clearly display the most important process data, so that
the equipment operator is always informed of the current process workflow. Graphical evaluations,
display values and sliders can be grouped into an element and make quick and uncomplicated control
possible.

INDUSTRY-SPECIFIC DISPLAYS

Elements such as thermometers, scales or bar graphs are part of the basic elements of process
visualization. It is possible, using XAML, to adapt these to the respective industry. Thus equipment
operators can find the established and usual elements that they already know from the machines in
process visualization at the terminal.

ADAPTATION TO CORPORATE DESIGN

&8s

Illustrations can be adapted to the respective style requirements of the company, in order to achieve a
consistent appearance through to the individual process screen. For example, the standard operation
elements from zenon can be used, which can then be adapted to color worlds, house fonts and
illustration styles of the corporate design.

6.1.2 Transfer of values from zenon to WPF

zenon always works internally with the double or string. These are sent to the WPF element. The WPF
element is embedded in a .NET container. It usually needs to be converted so that the data type can be
used. This conversion can automatically be carried out by .NET.

The values are sent in accordance with the following rules:

» If the .NET type (system.Object) for zenon is not evident, the value is sent as it is to .NET. .NET
must take care of the display or conversion itself.

» If the .NET type is a Boolean type (System.Boolean), then zenon writes according to the .NET
convention 0 or -1.

» If the .NET type is known, a check is carried out to see if .NET can convert the value. The
converter from .NET is used for this.

e Yes: The value is sent.

e No: The value is sent nevertheless. If .NET reacts with an error message, the value of zenon
is converted into a string and sent again.

75

6.1.3 Referenced objects

In WPF not only standard objects such as rectangles, buttons, text fields, etc. can be used, but also WPF
user controls, which are referenced as assemblies.

WPF user controls are individually created objects. For example, this element can look like a tacho and
provide special properties and optical effects, such as a "Value" property, which causes the pointer of
the tacho to move and display the value when it is set.

The workflow for this:
» The appearance of a user controls is labeled with standard objects, which are offered by WPF.
» The properties and interactions are programmed.

» The whole package is compiled and present in the form of a .NET assembly.

This assembly can also be used for WPF projects. To do this, it must be referenced (linked) in the WPF
editor (for example: Microsoft Expression Blend). To do this, select the assembly in the zenon file
selection dialog:

v \E DemoApplication

0
=), Add Project Reference.. *

From this point in time, the WPF user controls of the assembly in the tool box can be selected under
Custom user controls and used in the WPF project.

v

USED REFERENCED ASSEMBLIES IN ZENON

To use an assembly in zenon, this must be provided as a file.
Collective files in . cdwpf format administer these independently; no further configuration is necessary.
Assemblies must be added to the Files folder for .xaml files:

» Clickon Files on the project tree

» SelectOther

» Selectadd file... inthe context menu
» The configuration dialog opens

» Insert the desired assembly

When displaying a WPF file in the wpF element (Editor and Runtime), the assemblies from this folder are
loaded. It is thus also ensured that that when the Runtime files are transferred using Remote Transport,
all referenced assemblies are present on the target computer.

76

A collective file (. cdwp£) can exist alongside an XAML file with the same name. All assemblies (*.dll)
from all collective files and the Other folder are copied to the work folder. Only the highest file version
is used if there are several assemblies with the same name.

& Attention

Assemblies are only only removed after loading when the application is ended. That
means:

If a WPF file with a referenced assembly in zenon is displayed, then this assembly is
loaded is in the memory until zenon is ended, even if the screen is closed again. If you
would like to remove an assembly from the Files/Other folder, the Editor must first
be restarted, so that the assembly is removed.

MULTI-PROJECT ADMINISTRATION

With multi-project administration, the same assembly must be used in all projects. If an assembly is replaced
by another version in a project, it must also be replaced in all other projects that are loaded in the Editor or in
Runtime.

6.1.4 Allocation of zenon object to WPF content

zenon objects are allocated to WPF content using the name of the WPF object. In doing so, note:

Visual objects do not have a RuntimeNamePropertyAttribute property. Therefore at the time when the
WPF content is loaded and created, the additional information of name is not available.

Thus a clear allocation of zenon objects to WPF objects is not possible. Therefore only logical objects are
listed in the configuration dialog of zenon. Which WPF objects the RuntimeNamePropertyAttribute has
available is visible in MSDN or on the Microsoft website.

WORKAROUND

Nevertherless, the following workaround is possible to animate visual objects:

For visual elements, the animateable property is linked to the text property of an invisible text box using
a data connection.

Because the text box as a logical object supports the name property, this is displayed in zenon.
The textbox property can also be animated with zenon.

This visual object is also indirectly animated as a result.

77

6.1.5 Workflows

The WPF/XAML technology makes new workflows in process visualization possible. The separation of
design and functionality ensures a clear distinction of roles between the project planners and designers;
design tasks can be easily fulfilled by using pre-existing designs, which no longer need to be modified by
the project planner.

The following people are involved in the workflow to create WPF elements in zenon:
» Designer
e illustrates elements
e takes care of the graphics for MS Expression Design
» MS Expression Blend operator
e Animates elements

e Creates variables for the animation of WPF elements in zenon, which project planners can
access

» Project planner
e Integrates elements into zenon:

e stores logic and functionality

We make a distinction:
» Workflow with Microsoft Expression Blend (on page 78)
» Workflow with Adobe lllustrator (on page 78)

Workflow with Microsoft Expression Blend

When using Microsoft Expression Blend, a WPF element is created in four stages:
1. lllustration of elements in MS Expression Blend (on page 80)
2. Openelementin MS Expression Design and export as WPF
3. Animation inMS Expression Blend (on page 80)
4

Integration into zenon (on page 123)

You can find an example for creating a WPF elements with Microsoft Expression Blend in the Create
button as XAML file with Microsoft Expression Blend (on page 80) chapter.

Workflow with Adobe Illustrator

Based on traditional design processes with adobe Illustrator the following workflow is available:

78

Illustration of elements in Adobe Illustrator (on page 84)
Import of . ai files and preparation in Ms Expression Design (0n page 85)
WPF export from Ms Expression Design (0On page 85)

Animation in MS Expression Blend (on page 87)

vk W oe

Integration into zenon (on page 131)

You can find an example for creation in the Workflow with Adobe lllustrator (on page 83) chapter.

6.2 Guidelines for designers

This section informs you how to correctly create WPF files in Microsoft Expression Blend and Adobe
Illustrator. The tutorials on Creating a button element (on page 80) and a bar graph element (on page
83) show you how fully functional WPF files for zenon can be created from pre-existing graphics in a few
steps.

The following tools were used for this:
» Adobe lllustrator CS3 (Al)
» Microsoft Expression Design 4 (ED)
» Microsoft Expression Blend 4 (EB)

» zenon 6.51

¥ Information

If referenced objects (assemblies) are used in WPF, note the instructions in the
Referenced objects (on page 76) chapter.

6.2.1 Workflow with Microsoft Expression Blend

With Microsoft Expression Blend, a WPF element:
» isillustrated
» is converted into WPF format using Ms Expression Design

» animated
The following example shows the illustration and conversion of a button element into an XAML file.

Note: A test version of "Microsoft Expression Blend" can be downloaded from the Microsoft website.

79

Create button as an XAML file with Microsoft Expression Blend

CREATE BUTTON

1. Start Expression Blend

2. selectthe New Project option

r bl

Projects

ﬁ New Project...
B Open Project...

VI Run at startup Close

S 4

3. Select wPF as project type

4. give it a path and name of your choice (MyBlendProject, for example)

New Project

Project types g;_ WPF Application

. Silverlight B
M v conat vy

g!; WPF Databound Application

A project for creating custom controls that can be reused across
other WPF applications.

MName
Location \ ject!, Browse...
Language

Version

Cancel

80

The Language and Version settings can be ignored, because no functionality is to be
programmed.

5. After the dialog has been confirmed with ok, Microsoft Blend creates a new project with the
chosen settings. Expression Blend adds an empty XAML file which already contains a class
reference.

6. Delete the CS file that belongs to the XAML file using the context menu.

7. Rename the XAML file MainControl.xaml t0 MyButton.xaml.

8. The development size of the file is set at 640 x 480 pixels as standard and must still be changed:
a) switch to xamL view
b) correct the size to 100 x 100 pixels

c) Delete the class reference x:Class="MyBlendProject.MyButton"

MyButton.xaml =

1 <UserControl

wmlns="http://schemas.microsoft. com/winfx/2806/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2066/xaml"”
xmlns:d="http://schemas.microsoft.com/expression/blend/2668"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2666"
mc:Ignorable="d"

»:Name="UserControl”

d:DesignWidth="1@8" d:DesignHeight="19q">

I B R SRR 5]

9

18 <@Grid x:Name="LayocutRoot" />
11

12 </UserControl>

9. switch to Design view

10. add a button via the tool bar
11. define the properties

e Width: 50

e Height: 50

81

e Margins: 25

v Layout
Width 50
Height 50
Row 0 RowSpan 1
Column 0 ColumnSpan 1

Zindex 0

HorizontalAlignment |[= =

VerticalAlignment [T - In
Margin + 25

t+ 25

12. Save the changes and open the file in Internet Explorer to check it. You will see that the button is
displayed in a size of 50 x 50 pixels.

MAKE BUTTON SCALABLE
If you integrate this status into zenon, the button will always have the exact size of 50 x 50 pixels.
Because the button can be implemented as a scalable button, switch to Expression Blend again:
1. select the button in the tree view
2. select the Group Into->Viewbox button in the context menu
3. the button is inserted into a viewbox
4. Define the properties of the viewbox
e Width: Auto
e Height: Auto

82

5. save the file

Cut

Copy
Paste
Delete
Rename

Order 3
Align 3
3

Auto Size

Group Into L Grid

StackPanel
PFin Active Container DockPanel
SIEEE ZTE I Data bind Content to Data... Canvas
Edit Text ScrollViewer
Border
WrapPanel
UniformGrid

e e ’

Edit Additional Templates 3

UserControl Make Into Control...
Make Into UserControl...

6. If you now open the file in Internet Explorer, the button is automatically scaled when the IE
window size is changed. This file will now also automatically adapt to changes in the size of the
WPF element in zenon.

CHANGE NAME

Before you can integrate the file into zenon, you must give the WPF element a name. The WPF elements
are not named in Expression Blend as standard, and are labeled with square brackets and their type.
zenon content is assigned to WPF content via the name of the WPF elements:

» intree view, change the name
e of the button on MyButton

o of the ViewBox to MyviewBox

This button can now be integrated in zenon (on page 123) as an XAML file.

6.2.2 Workflow with Adobe Illustrator

When Adobe Illustrator is used, a WPF element:
» isillustrated in Adobe Illustrator
» isconverted into a WPFinMS Expression Design

» isanimated in MS Expression Blend

The following example shows the illustration and conversion of a bar graph element into an XAML file.

83

Bar graph illustration

A bar graph is created in Adobe Illustrator.

1. Al: Starting element for bar graph

Illustrated in Adobe Illustrator CS3.

2. Al: Path view of bar graph in Adobe Illustrator

-
-

All effects must be converted (0object -> Convert appearance)

All lines are transformed into paths (0bject -> Path -> Contour line)

Do not use filters such as shading, blurring etc.

NOTES ON COMPATIBILITY

Illustrations that were created with Adobe Illustrator are in principle suitable for WPF export. However,
not all lllustrator effects can become corresponding effects in Expression Design/Blend. Note:

84

Effect

Clipping masks

Filters and effects

Text fields

Transparencies and group
transparencies

Multiply levels

Indicating instruments and
standard positions

WPF export

Description

Clipping masks created in Adobe Illustrator are not correctly interpreted
by Expression Design. These are usually shown in Blend as areas of black
color.

We recommend creating illustrations without clipping masks.

Not all Adobe Illustrator filters are transferred into Expression Design
accordingly: Thus blurring filters, shading filters and corner effects from
Illustrator do not work in Expression Design.

Solution:

> Most effects can be converted so that they can be read correctly by
Expression Design using the Object -> Convert appearance
command in Adobe Illustrator.

» Corner effects from Adobe lllustrator are correctly interpreted by MS
Design if they are converted to Al in paths.

To be able to link text fields with code, these must be created separately
in Expression Blend. "Labels" are required for dynamic texts; simple
"text fields" are sufficient for static information.

There is no possibility to create text labels in MS Design. These must be
directly created in MS Blend.

There can be difficulties in Adobe lllustrator with the correct
interpretation of transparency settings, in particular from group
transparency settings.

However MS Expression Blend and MS Expression Design do offer the
possibility to create new transparency settings.

These level settings in Adobe lllustrator are not always correctly
displayed by MS Expression Blend.

However, there is the possibility to "Multiply levels" directlyin
Expression Design.

To prepare the graphics optimally for animation, the indicator and slider
must always be set to the starting position, usually 0 or 12:00
o'clock.

Thus the position parameters for rotations etc. are also correct in Blend
and an animation can be implemented without conversion of position
data.

WPF files are required for animation in Microsoft Expression Blend. We recommend Microsoft
Expression Design for this export, because it provides good results and most lllustrator effects are

correctly interpreted.

85

Note: There is a free plug-in for the direct export of WPF files from Adobe lllustrator available on the
internet. This plug-in provides a quick, uncomplicated way of exporting from lllustrator, however it is
less suited to the current application because it lead to graphical losses. Even color deviations from the
original document are possible.

Files in .ai format can regularly be imported into Expression Design; the paths are retained in the
process.

Attention: Some common lllustrator effects cannot be displayed by Expression Design correctly however
(see lllustration (on page 84) chapter).

We export the pre-created bar graph element in 5 stages:

1. ED:Import

e Import the prepared lllustrator file (on page 84) in Microsoft Expression Design Via File ->
Import

2. ED: Optimization

Stop Alpha 100%

% oo stroke) v

e If the starting file is not correctly displayed in MS Expression Design, it can still be
subsequently edited and optimized here

3. ED:Select

e Highlight the element for WPF export with the direct selection arrow in MS Expression
Design; in this case it is the whole clock

86

4. ED: Start export

e Start the export via File -> Export
e the dialog for configuring the export settings opens

5. ED: Export settings

e Enter the following export settings:
a) Format: XAMIL Silverlight 4 / WPF Canvas

Always name objects: Activate with tick

Place the grouped object in an XAML layout container: Activate with tick
b) Text: Editable text block

c) Lineeffects: Rasterize all

The exported file has . xam1 file suffix. It is prepared and animated (on page 87) in MS Expression Blend
in the next stage.

Animation in Blend

With MS Expression Blend:
» static XAML files from MS Expression Design are animated
» Variables for controlling effects that can be addressed by zenon are created
In thirteen steps, we go from a static XAML to an animated element, that can be embedded in zenon:

1. EB:create project

87

5.

a) Open Microsoft Expression Blend

b) Create a new project

c) Selectthe Project type of WPF- >WPF Control Library
d) Give it a name (in our tutorial: My Project)

e) Select a location where it is to be saved

f) Select a language (in our tutorial: C#)

g) Select Framework Version 3.5

EB: delete MainControl.xaml.cs

a) Navigate to MainControl.xaml.cs

b) Delete this file using the pelete command in the context menu

EB: Open exported XAML file
B

a) Open the context menu for My_Project (right mouse button)
b) Select Add existing element..

c) Select the XAML file exported from Microsoft Expression Design, in order to open this in
Microsoft Expression Blend

EB: Open MainControl.xaml

a) Open the automatically created MainControl . xaml
b) Inthe Objects and Time axes area, navigate to the UserControl entry

EB: Adapt XAML code

88

a) Click on userControl with the right mouse button
b) Select pisplay xaMmL in the contextual menu.

c) Delete lines 7 and 9 in the XAML code:

x:Class="My Project.MainControl"

d:DesignWidth="640" d:DesignHeight="480"

EB: check XAML code

e The XAML code should now look like this:
<UserControl

xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d"
x:Name="UserControl">

<Grid x:Name="LayoutRoot"/>

</UserControl>

EB: Copy elements

a) Open the XAML file imported from Expression Design
b) Mark all elements

c) Select belete in the context menu

d) Change back to the automatically created XAML file

EB: Insert element

a) Click on Layout Root With the right mouse button

b) Select Insert

89

10.

11.

12.

13.

EB: Adapt layout type

a) Click on Layout root -> Change layout type -> Viewbox with the right mouse button
b) The structure should now look like this: UserControl -> LayoutRoot -> Grid -> Elements
¢) Give a name for LayoutRoot and Grid by double-clicking on the names

EB: Texts and values

¢ Dynamic and static texts are labeled with text fields
e Values (humbers) are issued with Labels

EB: Insert labels

e Labels replace numbers that are to be subsequently linked using INT variables (must be
carried out for all number elements)

EB: Set property

e Todisplay 100%, set the bar graph element's MaxHeight property to 341 (the maximum
height of the indicator element is 340)

EB: prepare for use in zenon

a) Delete all name labels (names may only be given for elements that are to be addressed via
zenon)

90

b) Save the XAML file with any desired name
c) Integrate the XAML file into zenon (on page 131)

A tip for checking: If the XAML file is displayed with no problems in Microsoft Internet Explorer and the
window size of Internet Explorer adapts to it, it will also be correctly used in zenon.

6.3 Engineering in zenon

To use WPF with zenon, Microsoft Framework 3.5 must be installed on both the editor computer and on
Runtime.

CONDITIONS FOR WPF DISPLAY IN ZENON
The animation is currently available for simple variables; arrays and structures cannot be animated.
Therefore the following WPF functions can be implemented in zenon:
» Element properties that correspond to simple data types, such as String, Int, Bool etc.
» Element properties of the "Object" type, which can be set with simple data types

» Element events can be used with functions; the parameters of the events are not however
available in and cannot be evaluated in zenon

» Element transformation, for which a render transformis present for the element in the XAML
file

Attention: if the content is outside of the area of the WPF element during transformation, this
part of the content is lost or is not labeled

Notes on dBase: No shade can be displayed in zenon for WPF elements.

A Attention

If the Runtime files were created for a project for a version before 6.50, existing WPF
elements are not included into Runtime screens.

DISPLAY ON WINDOWS 7

If a WPF screen contains a slider and Windows 7 Aero Effects are used, this may lead to refresh
problems in zenon Editor.

6.3.1 CDWPF files (collective files)

Rules for the use of collective files:

91

6.3.2

The files can be in the ZIP file directly or in a joint folder.
The name of the XAML file should correspond to the names of the collective file.
Only one XAML file may be contained.

The preview graphic should be small and no more than 64 pixels high.
Name of the preview file: preview.png or the name of the XAML file with the suffix png.

Any number of assemblies can be used. The distinction is made on the basis of the file version in
numerical form.

Collective files do not need to contain an assembly.
All folders are searched and only *.d11, *.xaml and *.png files are taken into account.

If a If a collective file (.cdwpf) is replaced by a file with a different version, all corresponding
CDWPF files in all symbols and images in all projects must be adapted.

create WPF element

To create a WPF element

1.

2
3
4,
5
6

In the elements toolbar, select the symbol for WPF element or the Elements entry in the menu
Select the start point in the main window.

Pull open the element with the mouse.

In properties, select Representation the propertyXAML file in the group.

The file selection dialog opens.

Select the desired file
Files of the following formats are valid:

e *xaml: Extensible Application Markup Language
e *.cdwpf: WPF collective file, also shows preview image

(the file must already be present in the Project Manager under Files/graphics or created in
the dialog.)

configure the links (on page 93).

Y Information

If referenced objects (assemblies) are used in WPF, note the instructions in the
Referenced objects (on page 76) chapter.

92

6.3.3 Configuration of the linking

To configure a WPF element
1. In properties, select WPF links the propertyConfiguration in the group.

2. The dialog with three tabs opens with a preview of the XAML file and the elements present in
the file

DIALOG CONFIGURATION

Configurstion [=E3e]
WPF glement
wor sement Lo]
I .
waiable elements Preview —]
'
- MyViewBox —l
MyButton f 1 L
- >
Action link
Propertes Events | Transformations
Name Linkage Type of ink | WPFinfo H Linked | «
| | | | I =
ActualHeight <nothing linked> 252 m]
ActualWidth <nothing linked> 404 a
AllowDrop <nothing linked> False]
ClipTeBounds <nothing linked> False (m]
ContextMenuService.HasDre... <nothing linked> False o
ContedMenuService Horizon,., <nothing linked> 0 a
ContetMenuServicelsEnabled <nothing linked> True (m]
ContextMenuService.Placem... <nothing linked> MousePoint (m]
ContextMenuService.Placem... <nething linked> Empty a
ContetMenuService.Show(... <nothing linked> False (]
ContextMenuService.Vertical... <nothing linked> 0 (m]
DataContext <naothing linked> O
DesiredSize <nothing linked> 404;252 a
FlowDirection <nothing linked> LeftToRight a
Encucable 1 1 <nothine linksds _Falce O _17]

93

Parameters

Available elements

Preview

Properties (on page 95)

Events (on page 101)

Transformations (on page 103)

Name
Connection
Link type

WPF info

Linked

¥ Information

Description

Shows the named file elements in a tree structure. The
selected element can be linked with process data.

WPF is assigned to process data based on the element
name. Therefore elements are only shown if they and the
attendant elements have a name. Allocations are
configured and shown in the Properties, Events,
Transformations tabs.

The selected element is shown flashing in the preview.

Configuration and display of properties (variables,
authorizations, interlockings, linked values).

Configuration and display of events (functions).
Configuration and display of transformations.
Name of the property.

Selection of link.

Type of link (variable, authorization, function)

Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

Only logical objects can be displayed in the configuration dialog. Visual objects are not
displayed. You can read about backgrounds and how visual objects can be animated in
the Allocation of zenon object to WPF content (on page 77).

EDIT HYPERLINKS

All configured hyperlinks can be edited from the properties of the element. Click on the element and
open the property group WPF links. Hyperlinks can be further configured here, without having to open

the dialog.

Limitations:

» The linking type cannot be changed here.

» New linkings can only be created via the configuration dialog.

» Insertion of a WPF elements into a symbol: WPF linkings cannot be exported.

94

Properties

The properties enable the linking of:

» Variables (on page 97)

» Values (on page 98)

» Authorizations and interlockings (on page 100)

Button

Type of ik | WEF irfo

Fiter tesd ¥

B kEnabled Authorization available Authorizatio... True

[0 DataContext <nothing lin...

[0 ContentStringFormat | <nothing lin...

O CommandTarget <nathing lin...

O ud <nathing lin...

O MaHeght <nothing lin... +unendlich
O Tag | <nothing lin...

O ToelTip <nathing lin...

(m] CommandParameter <nothing lin...

(m] ToolTipService. Vertical Offset | _<nothing lin... 0

(] MaxWidth <nething lin... +unendlich
(m] ContetMenuService.Harizont... <nething lin... 0

[0 Typography.AnnotationAltern... <nothing lin... 0

(m] . ice Vaeticalll thinn lin 0 e

fit

WPF element

Zzenon

Parameters
Name

Connection

Link type

WPF info

Linked

CREATE LINK

To create a link:

Description
Name of the property.
Linked variable, authorization or linked value.

Clicking in the column opens the respective selection
dialog, depending on the entry in the Link type column.

Selection of linking.

Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

1. Highlight the line with the property that is to be linked

2. Clickinthe Link type cell

3. select the desired link from the drop-down list.

Available are:

e <not linked> (deletes an existing link)

e Authorization/interlocking
e Variable
e Value linking

4. Click in the Link cell

5. The dialog for configuring the desired link opens

¥

Information

Properties of WPF and zenon can be different. If, for example the visibility property is
linked, there are three values available in .NET:

0 - visible
1 - invisible

2- collapsed

These values must be displayed via the linked zenon variable.

96

Link variable

To link a variable with a WPF property:
1. Highlight the line with the property that is to be linked
2. Clickinthe Link type cell
3. Select from the variable drop down list
4. Click in the Link cell
5

The dialog for configuring the variables opens

This dialog also applies for the selection of variables with transformations (on page 103). The
configuration also makes it possible to convert from zenon into WPF units.

Configuration @
Linked variable ;JOK
D Cancel
Range of values of the WPF element

[~ Conwvert range of values

Minimum Maximum

Parameters

Linked variables

Value range of WPF element

Convert value range

Minimum
Maximum
OK
Cancel

Help

Link values

Description

Selection of the variable to be linked. A click on the . ..
button opens the selection dialog.

Data to convert variable values into WPF values.

Active: WPF unit conversion is switched on.

Effect on Runtime: The current zenon value (incl.
zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

For example: The value of a variable varies from
100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

» for Transformations, the RotateTransform.Angle
property is linked to the variables

» Adjust value activated

» a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Defines the lowest WPF value.
Defines the highest WPF value.
Accepts settings and ends the dialog.
Discards settings and ends the dialog.

Opens online help.

Linked values can either be a string or a numerical value of the double type. When selecting the
screen, the selected value is sent in WPF content after loading the WPF content.

A Attention

The data type of the WPF property need not necessarily be double or string.
However only values of the string type or double are sent by zenon. These must be
converted to .NET on the WPF page. For details see the Value transfer from zenon to

WPF (on page 75) chapter.

To link a value with a WPF property:

98

Click in the L.ink cell

vk W oe

Highlight the line with the property that is to be linked
Click in the Link type cell

Select value linkings from the drop-down list

The dialog for configuration of value linking opens

Configuration @
Link constant value
Linked value
Use string Cancel
Numeric value]
Help
Unit
<Base unit> -
Parameters Description
Linked value: Entry of a numerical value or string value.
Use string Active: A string value is used instead of a numerical value.

String value/numerical value

Unit:

OK

Cancel

Help

The language of string values can be switched. The text is
translated in Runtime when the screen is called up and sent in
WPF content. If the language is switched whilst the screen is
opened, the string value is retranslated and sent.

Depending on what is selected for the Use string property, a
numerical value or a string value is entered into this field. For
numerical values, a unit of measurement can also be selected.

Selection of a unit of measurement from the drop down list. You must
have configured this in unit switching beforehand.

The unit of measurement is allocated with the numerical value. If
the units are switched in Runtime, the value is converted to the
new unit of measurement and sent to WPF content.

Accepts settings and ends the dialog.
Discards settings and ends the dialog.

Opens online help.

99

Link authorization or interlocking

Authorizations cannot be granted for the whole WPF element. The element is allocated a user level.
Authorizations are granted within the user level for individual controls. If an authorization is active, the
value 1 is written to the element.

To link an authorization or interlocking with a WPF property:

1. Highlight the line with the property that is to be linked

2. Clickinthe Link type cell

3. Select Authorization/interlocking from the drop down menu
4. Click in the Link cell
5

The dialog for configuring the authorizations opens

Configuration (=23
Link authorization/interlacking |
Linked stats
Parameters Description

Link authorization/interlocking Setting the authorizations.

Linked status selection of an authorization that is linked to a WPF control from
the drop down list. For example, visibility and operability of a
WPF button can depend on a user's status.

Configuration

Link authorizationfinterlocking |

Linked status o

Cancel

1

Authorization does not exist Help
Mot interlocked
Interlocked

Can be operated
Cannot be operated

100

WPF element

Zzenon

Authorization available

If the user has sufficient rights to operate the WPF element, a value of 1
is written to the property.

Authorization does not
exist

If the user does not have sufficient rights to operate the WPF element, a
value of 1 is written to the property.

Not interlocked

If the element is not locked, the value 1 is written to the property.

Interlocked

If the element is locked, the value 1 is written to the property.

Can be operated

If authorization is present and the element is not locked, then a value of
1 is written to the property.

Cannot be operated

If authorization is not present or the element is not locked, then a value
of 1 is written to the property.

Events

Events make it possible to link zenon functions to a WPF element.

WPF element

Available elements Preview

Iﬁ

[£38 LayoutRoot

Button

rperes | s | ansfornaons | v uberzaon s

Function 1 j
Function 2
Function 3

WPF element
Zenon

Name Name of the property.

Connection Linked function. Clicking in the cell opens the
configuration dialog.

Link type Selection of linking. Clicking in the cell opens the selection
dialog.
WPF info Shows the current value for properties in WPF content.

For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

LINK FUNCTIONS

To create a link:

1. Highlight the line with the property that is to be linked

2. Clickinthe Link type cell

3. Select from the drop down list function

4. Click in the Link cell

5. The dialog for configuring the function opens
Link function

Linked function E]

| < no function linked > | E

Help
Linked function Selection of the function to be linked. Clicking on the ...
button opens the dialog for Function selection.

OK Accepts selection and closes dialog.
Cancel Discards changes and closes dialog.
Help Opens online help.

Transformation

The WPF element does not support rotation. If, for example, the WPF element is in a symbol and the
symbol is rotated, the WPF element does not rotate with it. Therefore there is a different mechanism for
Transformation With WPF to turn elements or to otherwise transform them. These transformations are
configured in the Transformation tab.

Attention: If the content is outside of the WPF element area, this part of the contents is lost, i.e. it is not
shown.

Configuration
WPF element
Available elements Preview Cancel
=I- LayoutRoot
- Hi
M.Wiemﬂox - — I o

Button

:prDDErlies [E\-'Enis| Transformations | User authorization/Interlocking |

WPF transformation Linked variable -
RotateTransform. Angle WIZ_VAR_10
RotateTransform. Centerk Alarms not acknowledged

RotateTransform.CenterY
ScaleTransform, Center) L
ScaleTransform. CenterY
ScaleTransform. ScaleX
ScaleTransform, Scale
SkewTransform. AngleX
SkewTransform, AngleY
SkewTransform. Center)

103

Parameters Description
Name Name of the property.
Connection Selection of the linked variables.

Transformations are displayed in XAML as transformation objects with their own
properties. If an element supports a transformation, then the possible properties
of the transformation object are displayed in list view. (more on this in: Integrate
button as WPF XAML in zenon (on page 123)

For example, if the linked variable is set at the value of 10, then this value is
written as a WPF target and the WPF element is rotated by 10°.

Type of link Selection of transformation link type.

WPF info Shows the current value for properties in WPF content. For the user, it is directly
visible what type of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected using Context
menu->Column selection.

LINK TRANSFORMATIONS

To link a transformation with a WPF property:
1. Highlight the line with the property that is to be linked
2. Clickinthe Link type cell
3. Select from the Transformation drop down list
4. Click in the Link cell
5

The dialog for configuring the variables opens

The configuration also makes it possible to convert from zenon into WPF units.

Configuration @
Link variable
Linked variable I—IOK
D Cancel
Range of values of the WPF element

Convert range of values

Minimum Maximum

104

Parameters

Linked variables

Value range of WPF element

Convert value range

Minimum
Maximum
OK
Cancel

Help

6.3.4 Validity of XAML Files

Description

Selection of the variable to be linked. A click on the . ..
button opens the selection dialog.

Data to convert variable values into WPF values.

Active: WPF unit conversion is switched on.

Effect on Runtime: The current zenon value (incl.
zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

For example: The value of a variable varies from
100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

» for Transformations, the RotateTransform.Angle
property is linked to the variables

» Adjust value activated

» a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Defines the lowest WPF value.
Defines the highest WPF value.
Accepts settings and ends the dialog.
Discards settings and ends the dialog.

Opens online help.

XAMIL files are valid subject to certain requirements:

» correct name space
» no class references

» Scalability

CORRECT NAME SPACE

The WPF element can only display WPF content, i.e.:

105

Only XAML files with the correct WPF namespace can be displayed by the WPF element. Files that use a
Silverlight namespace cannot be loaded or displayed. However, in most cases it is suffice to change the
Silverlight namespace to the WPF namespace.

WPF-Namespace:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

NO USE OF CLASS REFERENCES

Because the XAML files can be loaded dynamically, it is not possible to use XAML files that contain
references to classes ("class" key in header). Functions that have been programmed in
independently-created C#- files cannot be used.

SCALABILITY

If the content of a WPF element is adjusted to the size of the WPF element, then the controls of the WPF
element are interlaced in a control that offers this functionality, such as a view box for example. n
addition, care must be taken to ensure that the height and width elements are configured as

automatic.

CHECKING AN XAML FILE TO SEE IF IT IS CORRECT

To check if an XAML file has the correct format:
» Open XAML file in Internet Explorer

e Ifit can be opened without additional plug-ins (Java or similar), then it can be assumed with
a high degree of certainty that this file can be loaded and displayed by zenon

e if problems occur during loading, these are then shown in Internet Explorer and the lines in
which problems arise can be clearly seen

The scaling can also be tested in this manner: If the file has been created correctly, the content will
adjust to the size of the Internet Explorer window.

ERROR MESSAGE

If an invalid file is used in zenon, then an error message is displayed in the output window when loading
the file in the WPF element.

For example:
"error when loading

xaml-Datei:C:\ProgramData\COPA-DATA\SQL\781b1352-59d0-437e-al73-08563c3142e9\
FILES\zenon\custom\media\UserControll.xaml

106

The attribute "Class" cannot be found in XML namespace
"http://schemas.microsoft.com/winfx/2006/xaml". Line 7 Position 2."

6.3.5 Pre-built elements

zenon is already shipped with several WPF elements. More are available for download in the web shop.

All WPF elements have properties which determine the graphical design of the respective element

(). Setting the values via an XAML file or linking the property via zenon can directly
change the look in the Runtime. The following tables contain the respective depending
on the control.

Elements:
» Round display (on page 108)
» Progress bar (on page 112)
» Vertical bar graph (on page 113)
» Temperature control (on page 114)
» Analog clock (on page 115)
» Universal slider (on page 116)
» Pareto diagram (on page 117)
» Sankey diagram (on page 120)
» Waterfall diagram (on page 122)

REPLACING ASSEMBLY WITH A NEWER VERSION

Per project only one assembly for a WPF element can be used in the Editor as well as the Runtime. If
two versions of an assembly are available in a project, then the first loaded file is used. A user enquiry
is made as to which version should be used. No further actions are needed for the maintenance of the
versions used up until now. If a newer version is chosen, all corresponding CDWPF files in all symbols
and images in all projects must be adapted.

Note for Multi-Project Administration: If an assembly in a project is replaced by a new version, it must
also be replaced in all other projects that are loaded in the Editor or in Runtime.

107

Circular gauge control

Property
CurrentValue

IsReversed

ElementFontFamily

MinValue
MaxValue
ScaleRadius

ScaleStartAngle

ScalelLabelRotationMode

ScaleSweepAngle

ScaleLabelFontSize

ScaleLabelColor

ScaleLabelRadius

ScaleValuePrecision

PointerStyle

MajorTickColor
MinorTickColor
MajorTickSize
MinorTickSize
MajorTicksCount
MajorTicksShape

Function

Current value which should be displayed.
Scale orientation - clockwise or anti-clockwise
Element font.

Minimum value of the scale.

Maximum value of the scale.
Radius of the scale.

Angle at which the scale starts.

Alignment of the scale caption.

Angel area which defines the size of the scale.
Font size of the scale caption.

Font color of the scale caption.

Radius on which the scale caption is orientated.

Accuracy of the scale caption.

Shape of the pointer displaying the value.

Color of main ticks on the scale.
Color of sub ticks on the scale.
Size of main ticks on the scale.
Size of sub ticks on the scale.
Number of main ticks on the scale.

Shape/type of main ticks on the scale.

Value
Double
Boolean
Font
Double
Double
Double
Double
Enum:

> None
> Automatic

) SurroundI
n

) SurroundO
ut

Double
Double

Color

Double
Integer
Enum:

) Arrow

» Rectangle

» TriangleC
ap

) Pentagon
» Triangle
Color

Color

Size

Size
Integer
Enum:

» Rectangle

108

WPF element
zenon

» Trapezoid

» Triangle

MinorTicksShape

MinorTicksCount
PointerSize
PointerCapRadius
PointerBorderBrush

PointerCapStyle

PointerCapBorderBrush
PointerBrush
GaugeBorderBrush
GaugeBackgroundBrush
PointerCapColorBrush
GaugeMiddlePlate
PointerOffset
RangeRadius
RangeThickness
RangeStartValue
RangelEndValue
Range2EndValue
Range3EndValue
Range4EndValue
Range5EndValue
Range6EndValue
RangelColorBrush
Range2ColorBrush
Range3ColorBrush
Range4ColorBrush
Range5ColorBrush
Range6ColorBrush

Shape/type of sub ticks on the scale.

Number of sub ticks on the scale.
Size of the pointer.

Size of the pointer fastening point.
Color of pointer border.

Shape/type of pointer fastening point.

Color of pointer fastening point.

Color of pointer.

Color of the element border.

Color of element background.

Color of pointer fastening point.

Radius of the element background middle plate.
Offset of the pointer (displacement).

Radius of the total range display.

Thickness of the total range display.

Start value of the total range display.

End value of the 1st area and start value of the 2nd range.
End value of the 2nd area and start value of the 3rd range.

End value of the 3rd area and start value of the 4th range.

End value of the 4th area and start value of the 5th range.
End value of the 5th area and start value of the 6th range.
End value of the 6th range.

Color of the first range.

Color of the sedond range.

Color of the third range.

Color of the fourth range.

Color of element fifth range.

Color of element sixth range.

Enum:

> Rectangle
> Trapezoid
> Triangle
Integer
Size

Double
Brush

Enum:

> BackCap
> FrontCap
) Screw
Brush

Brush

Brush

Brush

Brush
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Brush

Brush

Brush

Brush

Brush

Brush

110

ScaleOuterBorderBrush
ScaleBackgroundBrush

ValueTextFrameStyle

ValueTextContent

ValueTextSize
ValueTextColor
IsGlasReflection

GaugeOffsett

Color of the scale border.
Color of scale background.

Shape/type of value display.

Content of the value display.

Font size of the value display.
Font size of the value display.

Activate the glass effect on the element.

Lowering the rotation point of the whole element.

Brush
Brush
Enum:

) LargeFram
e

) SmallFram

e
> None
Enum:
b Text

) TextValue
) Value

Double

Color

Boolean

Double

111

Progress bar - ProgressBarControl

Property

CurrentValue

MinValue

MaxValue
ProgressbarDivisionCount
Visibility Text

TextSize

TextColor
ProgressBarBoxedColor

ProgressBarMarginDistance

ProgressBarlnactiveBrush
ProgressBarActiveBrush

ProgressBarPadding

ElementBorderBrush

ElementBackgroundBrush

Function

Current value which should be displayed.
Minimum value of the value area.
Maximum value of the value area.
Number of divisions of the progress bar.
Visibility of the value display.

Font size of the value display.

Color of the value display.

Color of the border of the progress bar.

Distance of the progress bar box from the element edge (left,
top, right, down).

Indicator color not active.
Indicator color active.

Distance of the progress bar from the progress bar box (left,
top, right, down).

Color of the element border.

Color of element background.

Value
Double
Double
Double
Integer
Boolean
Double
Color
Color

Double

Brush
Brush

Double

Brush

Brush

112

Bar graph vertical - VerticalBargraphControl

WPF element
Zenon

CurrentValue Current value which should be displayed. Double
MinValue Minimum value of the scale. Double
MaxValue Maximum value of the scale. Double
MajorTicksCount Number of main ticks on the scale. Integer
MinorTicksCount Number of sub ticks on the scale. Integer
MajorTickColor Color of main ticks on the scale. Color
MinorTickColor Color of sub ticks on the scale. Color
ElementBorderBrush Color of the element border. Brush
ElementBackgroundBrush | Color of element background. Brush
ElementGlassReflection Activate the glass effect on the element. Visibility
ElementFontFamily Element font. Font
ScaleFontSize Font size of the scale. Double
ScaleFontColor Font color of the scale. Color
IndicatorBrush Bar graph fill color. Brush
BargraphSeparation Number of bar graph dividion. Integer
BargraphSeparationColor | Color of the scale division. Color

Temperature indicator - TemperaturelndicatorControl

Property
CurrentValue
MinValue
MaxValue
MajorTicksCount
MinorTicksCount
TickNegativColor

TickPositivColor

MinorTickColor
ElementBorderBrush
ElementBackgroundBrush
ElementGlassReflection
ElementFontFamily
IndicatorColor
IndicatorBorderColor
MajorTickSize
MinorTickSize

ScaleLetteringDistance

IndicatorScaleDistance
ScaleFontSize
ScaleFontColor

Unit

ElementStyle

Function

Current value which should be displayed.
Minimum value of the scale.

Maximum value of the scale.

Number of main ticks on the scale.
Number of sub ticks on the scale.

Color of the negative main tick (gradient to
TickPositivColor).

Color of the positive main tick (gradient to
TickNegativColor).

Color of the sub ticks.

Color of the element border.

Color of element background.

Activate the glass effect on the element.
Element font.

Color of the indicator fill color.

Color of the indicator border.

Size of main ticks on the scale.

Size of sub ticks on the scale.

Distance of the scale caption (vertical), each x. main tick
should be captioned.

Distance between indicator and scale (horizontal).
Font size of the scale.

Font color of the scale.

Unit.

Shape/type of element.

Value
Double
Double
Double
Integer
Integer

Color

Color

Color
Brush
Brush
Visibility
Font

Color
Color

Size

Size

Integer

Double
Double
Color
String
Enum:

» SmallFram

e
> Unit
> None

114

WPF element
zenon

Analog clock - AnalogClockControl

ElementStyle Shape/type of element. Enum:
> SmallNumbe
rs

» BigNumbers

> No
ElementBackgroundBrush Color of element background. Brush
ElementGlassReflection Activate the glass effect on the element. Visibility
Offset Value in hours (h) which displays the time lag to the Intle

system clock.

OriginText Text which is displayed in the clock (e.g. location). String

Universal slider - UniversalReglerControl

Property
CurrentValue
ElementFontFamily
MinValue
MaxValue

Radius

ScaleRadius

ScaleStartAngle

ScalelLabelRotationMode

ScaleSweepAngle
ScaleLabelFontSize
ScaleLabelColor
ScaleLabelRadius
ScaleValuePrecision

ElementStyle

MajorTickColor
MinorTickColor
MajorTickSize
MinorTickSize
MajorTicksCount
MajorTicksShape

MinorTicksShape

Function

Current value which should be displayed.
Element font.

Minimum value of the scale.

Maximum value of the scale.

Radius of the scale.
Angle at which the scale starts.

Alignment of the scale caption.

Angel area which defines the size of the scale.
Font size of the scale caption.

Font color of the scale caption.

Radius on which the scale caption is orientated.

Accuracy of the scale caption.

Display type of the element

Color of main ticks on the scale.
Color of sub ticks on the scale.
Size of main ticks on the scale.
Size of sub ticks on the scale.
Number of main ticks on the scale.

Shape/type of main ticks on the scale.

Shape/type of sub ticks on the scale.

Value

Double

Font

Double
Double
Double
Double
Double

Enum:

> None

> Automatic
) SurroundIn

) SurroundOu
t

Double
Double

Color

Double
Integer
Enum:

» Knob

> Plate

> None
Color

Color

Size

Size

Integer
Enum:

> Rectangle
> Trapezoid
» Triangle

Enum:

116

> Rectangle
> Trapezoid

> Triangle

MinorTicksCount Number of sub ticks on the scale. Integer
BackgroundBorderBrush Color of the element border. Brush
BackgroundBrush Color of element background. Brush
PointerCapColorBrush Color of pointer fastening point. Brush
GaugeMiddlePlate Radius of the element background middle plate. Double
ValueFontSize Font size of the value display. Double
ValueFontColor Font size of the value display. Color
IsGlasReflection Activate the glass effect on the element. Boolean
KnobBrush Color of the knob. Brush
IndicatorBrush Color of the indicator. Brush
IndicatorBackgroundBrush Background color of the inactive indicator. Brush
KnobSize Diameter of the knob. Double
KnoblndicatorSize Indicator size of the knob. Size
ElementSize Size of the element. Size
VisibilityKnob Activating of the knob. Boolean
ValuePosition Position of the value display. Double
ValueVisibility Activating the value display. Boolean

Pareto diagram

The Pareto diagram, WPF element is available to exclusive partners of COPA-DATA and is available to
these via the Partner Portal.

117

An example of a Pareto diagram in Runtime is shown below:
100%

75%
50%

25%

Speed Losses
Minor Stops
Breakdown
Cleaning
Unplanned Break
Quality Losses
Changeover

Unplanned Maintenance

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

118

Property

zenonBarColorl

zenonBarColor2

zenonBarColor3

zenonBarColor4

zenonBarColor5

zenonBarColor6

zenonBarColor7

zenonBarColor8

zenonBarColor9

zenonBarColor10

zenonColorPercentageL ine

zenonLineVisibility

zenonVariablel Label
zenonVariablel Value
zenonVariable2_Label
zenonVariable2_Value
zenonVariable3_Label
zenonVariable3_Value
zenonVariable4 Label
zenonVariable4 Value
zenonVariable5_Label
zenonVariable5_ Value
zenonVariable6_Label
zenonVariable6_Value

zenonVariable7_Label

Function

Color of the first Bar

Color of the sedond Bar

Color of the third Bar

Color of the fourth Bar

Color of element fifth Bar

Color of element sixth Bar

Color of element seventh Bar

Color of element eighth Bar

Color of element ninth Bar

Color of element tenth Bar

Color of the percentage line (relative sum
frequency).

Visibility of the percentage line (relative sum
frequency).

Labeling for the 1st Bar
Value of the 1st Bar
Labeling for the 2nd Bar
Value of the 2nd Bar
Labeling for the 3rd Bar
Value of the 3rd Bar
Labeling for the 4th Bar
Value of the 4th Bar
Labeling for the 5th Bar
Value of the 5th Bar
Labeling for the 6th Bar
Value of the 6th Bar

Labeling for the 7th Bar

Value

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Boolean

String
Double
String
Double
String
Double
String
Double
String
Double
String
Double

String

119

zenonVariable7_Value
zenonVariable8 Label
zenonVariable8 Value
zenonVariable9 Label
zenonVariable9 Value
zenonVariablel0 Label

zenonVariablel0 Value

Value of the 7th Bar
Labeling for the 8th Bar
Value of the 8th Bar
Labeling for the 9th Bar
Value of the 9th Bar
Labeling for the 10th Bar

Value of the 10th Bar

The following events can be used and linked to zenon functions:

Event

zenonBarlClick
zenonBar2Click
zenonBar3Click
zenonBar4Click
zenonBar5Click
zenonBar6Click
zenonBar7Click
zenonBar8Click
zenonBar9Click

zenonBar10Click

Sankey diagram

Function

Function that is executed when the 1st
clicked on.

Function that is executed when the 2nd
clicked on.

Function that is executed when the 3rd
clicked on.

Function that is executed when the 4th
clicked on.

Function that is executed when the 5th
clicked on.

Function that is executed when the 6th
clicked on.

Function that is executed when the 7th
clicked on.

Function that is executed when the 8th
clicked on.

Function that is executed when the 9th
clicked on.

Function that is executed when the 10th bar is

clicked on.

bar is

bar is

baris

bar is

bar is

bar is

bar is

bar is

bar is

Double
String
Double
String
Double
String

Double

Value

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

The Sankey diagram, WPF element is available to exclusive partners of COPA-DATA and is available to

these via the Partner Portal.

120

The Sankey wizard must be used to model a Sankey diagram. The wizard creates an XML file that is then
evaluated by the WPF element. To do this, the zSankeyName property must be given the name of the
XML file. The XML file must be in the Other folder of a project. This is saved there by the wizard.

An example of a Sankey diagram in Runtime is shown below:

3,032 I 1 Undefinierter L700 .

3.832. M1
4,000 Me) |
1,000 s Eingang"t S.M. Ausgang 1

2,000 M3

s,ooofL' | s i

11,000 & M2
8,000 Eingang 2
o) s ! 7,000 Ausgang 2

2,200 I Eingang 3

1.332. Verluste
133288

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

121

Property
FontSize

zBackgroundColor

zFontColor

zFontFamily

zLossDetectionActive

zNoDataText

zNoValidXMLText

zNumberOfDecimalPlaces

zPreviewActive

zRefreshRate

zSankeyName

zShowRelativeValues

Function Value

Font size of the texts. Integer
Background color of the diagram. Color
(String)
Color of the texts. Color
(String)
Font of all texts. Font
(String)
Automatic loss detection activated/deactivated. If Boolean

true, then losses are automatically shown at a
node points as flows.

Text that is displayed if there are no values to String
display and zPrevireActive is false.

Text that is displayed if no valid XML file with String
entered name has been found and zPreviewActive
is false.

Denotes how many decimal places are to be Integer
displayed.
Display of a preview activated/deactivated. Boolean

The preview can be displayed if

There is no data present (the modeled diagram is
filled with default values) or

the XML file was not found or

this does not contain a valid definition (an example
Sankey diagram is displayed).

Rate at which the diagram is refreshed in ms. Integer
Name of the XML file with the modeling of the String
diagram.

Display of the values in absolute false or relative Boolean
values true.

Note: The Sankey diagram does not work in zenon Web Client.

Waterfall diagram

The waterfall diagram, WPF element is available to exclusive partners of COPA-DATA and is available to

these via the Partner Portal.

The meaning and waterfall chart wizard must be used to model a waterfall diagram. A waterfall can be
modeled with this wizard. The information is saved directly for the variables concerned in the Analyzer
--> Parameters for waterfall diagram.

122

An example of a waterfall diagram in Runtime is shown below:

Cleaning 0:00:08 03.64%

Changeover C00:00 00.00 %

Unpl. Maintenance 0:00:08 04.25 %

Unplanned Break 0:00:00 00,00 %
Breakdown [0:00:42 1839%

operaing Time | 00252 7372%
Minor Stops [0:0053 2277%

Speed Losses [0:01:33 4024 %

Net operating Time [0:00:25 10.72%
Quality Losses 0:00:00 00.16 %

Valuable Operating - 0:00:24 10.56 %

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

zenonRefreshRate Time between the refreshes of the | Integer
diagram in ms.

zenonWaterfallldentifier Name of the waterfall diagram. String

zenonZSystemModel Equipment group of the variables String
used.

Note: The waterfall diagram does not work in zenon Web Client.

6.3.6 Examples: Integration of WPF in zenon

You can see how XAML files are created and integrated as WPF elements in zenon from the following
examples:

» Integrate button as WPF XAML in zenon (on page 123)
» Integrate bar graph as WPF XAML in zenon (on page 131)

» Integrate DataGrid Control in zenon (on page 136)

Integrate button as WPF XAML in zenon

Example structure:

123

>

>

Creating a button (on page 80) in Microsoft Expression Blend
Integrate into zenon

Link to a variable and a function

adjust the button to the size of the element

Create button

As a first step, create a button as described in the Create button as XAML file with Microsoft Expression
Blend (on page 80) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the
Files/graphics folder.

INTEGRATE BUTTON

Note: A zenon project with the following content is used for the following description:

>

>

>

An empty screen as a start screen

an internal variable int of type Int

a function Funktion_0 of typeSend value to hardware with:
e Direct to hardware option activated

e Setwassetto 45

To integrate the button:

1.

2
3
4.
5

open the empty screen

place a WPF element (on page 92) in the screen

select XAML file in the properties window

select the XAML file (e. g. MyButton.xaml and close the dialog

select the Configuration property

124

CONFIGURE THE BUTTON

The configuration dialog shows a preview of the selected XAML file. All elements named in the XAML file
are listed in the tree:

Configuration [
WPF element
WPF element ILI
Available elements Preview m
LayoutRoot -
8 =

Button

Action nk
Properties Events | Transformations

Lirked | Name Linkage # Type of fink | WPFinfo -
O ActualHeight <nething lin... 50
O ActualWidth <nething lin... 50
[m] AllowDrop <nothing lin... False
[0 BorderThickness <nothing lin... 1111
(] ClickMode <nething lin... Release
O ClipToBounds <nothing lin... False
(m] Command <nothing lin...
m] CommandParameter <nething lin...
O CommandTarget <nothing lin...

[L0 Content int Voriable Button |
O ContentStringFormat <nothing lin...
O ContextMenuService. HasDrop... <nething lin... False
O ContetMenuService Horizont... <nething lin... 0
(m] ContetMenuServicelsEnabled <nothing lin... True
[l ContedhenSenics Placsment | |_cnothinalin _ MaussBoint E

1. select the WPF button, which is in LayoutRoot->MyViewBox->MyButton

2. Lookinthe properties Entrycontent tab; this contains the button's text

3. Click the Link type column

4. Select variable from the drop down list

5. Click in the Link column

6. the variable selection dialog is opened

7. selectthe int variable to link this variable with the content property
EVENTS

To also assign events:

125

1.

3
4
5
6.
7
8
9

select the events tab

Configuration
WPF element
Available elements Preview Cancel
=I- LayoutRoot
- Hi
M.Wiemﬂox —~ — I o

Button

:prDDErlie-;_ Events :Transforma:ims User authorization,Interiocking

WPF event Linked function -
Click Function 0
ContextMenuClosing

ContextMenuOpening

DataContextChanged

DragEnter

DraglLeave

DragOver

Drop

FocusableChanged

GiveFeedback

look for the 'Click’ entry, this event is triggered by the WPF element, as soon as the button is
clicked

Click in the Link type column

Select Function from the drop down list
Click in the Link column

the function selection dialog is opened
select Function_0

Confirm the changes with ok

Insert a numerical value element into the screen

10. Link this numerical value element to the int variables too.

11. Compile the Runtime files and start Runtime.

126

The WPF element is displayed in Runtime, the button text is 0. As soon as you click on the button, the
click event is triggered and the set value function is carried out. The value 45 is sent directly to the
hardware and both numerical value and button display the value 45 .

45 e

Define a set value of 30 via the numerical value element; this value is then also assumed by the WPF
element.

AUTHORIZATION

Similar to a numerical value, a WPF element can be locked according to authorizations (lock symbol) or
switched to be operable. Set the user authorization level to 1 for the WPF element and create a user
called Test withauthorization level 1. In addition, set up the functions Login with dialog and Logout .

You link these two functions with 2 new text buttons on the screen.

127

In the WPF element configuration dialog, select the MyButton WPF button and select the Properties:

tab
Konfiguration (el
WPF-Element
pre— Lo]
Vorhanden
e Blemente Vorschau —]
LayoutRoot -
=1 MyViewBex —l"’"e
MyButton !
Alcbonsverknupfungen
Eigenschaften Ereignisss I Transformationen
Name: Veskniipfung L] Verknipfungsart | WPF-info Verknipht *
| InputMethod.lsinputhethodE... <nichts verknipft> = False]
InputMethed lslnputMetheds.., <nichts verknipft> False (]
InputMethod.PreferredimeCo... <nichts verknipft> DoMotCare O |5
| InputMethod.PreferredimeSen... <nichts verkndpft> DoNotCare m]
InputMethod. PreferredlmeState <nichts verkndpft> DoNotCare O
IsArrangeValid <nichts verknipft> | True o
IsCancel <nichts verknipft> False]
| IsDefault <nichts verknipft> False O
leDefaulted <nichts verknipft> | False O
IsEnabled vorhanden i i True =
| IsFocused <nichts verknipft> False O
IsHitTestVisible <nichts verkndpft> True (]
Islnitialized <nichts verknipft> True]
<nichts verkniinft> _Falze BB

lelnmithdethndFnahled
|

I

1. Select the 1sEnabled element
2. Clickin the Link type column
3.
4. Click in the Link column
5. Inthe drop-down list, select the Authorized option
Configuration
Link authorizationfinterlocking |
Linked status
[+]

Authorization available

Authorization does not exist

Mot interlocked
Interlocked

Can be operated
Cannot be operated

(o]

X

Cancel

Help

6. Close the dialog with ok

Select Authorizations/interlocking from the drop down list

128

Compile the Runtime file and note that Authorizations to be Transferred must also be selected. After
Runtime has been started, the WPF button is displayed as deactivated on the screen and cannot be
operated. If you now log in as the user Test, the button is activated and can be operated. The button is
locked again as soon as you log out.

45 e

Login 1 ‘ Logout 1

TRANSFORMATION

The XAML files must still be adapted to use transformations:
1. switch tothe Expression Blend program

2. select MyButton, so that the properties of the element are visible in the events window

¥ Transform
RenderTransform

& 2 & a O K

EED 0

| Apply relative transform
3. Under Transform at RenderTransform select the Apply relative transform option

As a result of this, a block is inserted into the XAML file, which save the transformation settings
in runtime.

<Button.RenderTransform:
<TransformGroup>
<ScaleTransform ScaleX="1" ScaleY="1"/>
<SkewTransform AngleX="8" Anglev="0"/>
<RotateTransform Angle="a"/>
<TranslateTransform X="8" ¥Y="8"/>
</TransformGroup>
</Button.RenderTransform:

4. Save the file and replace the old version in zenon with this new file.
5. Open the WPF element configuration dialog again:

a) select the MyButton button

129

b) selectthe Transformations tab

Configuration @
WPF element
S—T—
Avaiable elements Preview W‘
LayoutRoot .
=I-MyViewBox - -, Help]

Button

| Properties | Events Transformations _.Jserauthorlzal:imﬁnnerbddrq

WPF transformation Linked variable
RotateTransform. Angle nt
RotateTransform. Centerx

RotateTransform.CenterY

ScaleTransform, Center) L
ScaleTransform. CenterY
ScaleTransform. ScaleX
ScaleTransform, ScaleY
SkewTransform. AngleX
SkewTransform, AngleY
SkewTransform. Center)

c) select the RotateTransform.Angle element

d) Click in the Link type column

e) Select Transformations from the drop down list
f) Click in the Link column

g) the variable selection dialog is opened

h) select the int variable to link this variable with the RotateTransform.Angle property

Compile the Runtime files and start Runtime. Log in as the Test user and click on the button. The button
has the value 45 and the WPF element rotates by 45°.

ZS\ 45

n [|

130

Integrate bar graph as WPF XAML in zenon

Example structure:
» Creating a bar graph (on page 83) in Adobe lllustrator and converting it to WPF
» Integrate into zenon
» Linking with variables

» Adapting the bar graph WPF element

CREATE BAR GRAPH

The first step is to generate a bar graph as described in the Workflow with Adobe lllustrator (on page
83) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the
Files/graphics folder.

INTEGRATE BAR GRAPH

Note: A zenon project with the following content is used for the following description:
» Anempty screen as a start screen
» Four variables from the internal driver for
e Scaleo
e Scale central
e Scalehigh
e Current value

» Avariable from the mathematics driver for displaying the current value (255)

To integrate the bar graph:

1. open the empty screen

2. place a WPF element (on page 92) in the screen
3. select XAML file in the properties window
4

Select the desired XAML file (for example bar graph_vertical.xaml) and close the dialog

131

ADJUST BAR GRAPH

Before configuration, the scale of the XAML file is adapted if necessary:

counting Value

To do this:

e Create a new mathematics variable that calculates the new value in relation to the scaling,
for example:

e Variable: 0-1000

132

WPF element
Zenon

¢ Mathematic variable {value created in xaml file}*Variable/1000

Properties: Variable: calculation - Project: DOKU * O X

E]
g
2
| »

|
|

;
§

1

:
;
:

[E=]

Limits
Value calculati

Calculaton active < no variable linked >

ju]

Decimals 0
Formula 3507%01/100
Hysteresis

&)

&)

Value adjustment linear

&)

Value adjustrment non-linear —

&)

Value range PLC

]ﬁ'Proper‘ties: Variable: calculation - Project: DOKU E ngeﬂ hele

The XAML file is then configured.

CONFIGURE BAR GRAPH

1. Click on the WPF element and select the Configuration property

2. The configuration dialog shows a preview of the selected XAML file.

3.

WPF element

WPF element
Avaiable elements
= COPA_DATA
- Bargraph
{-min
i mid
- max

Action bnk.

Imﬂlnamml
Name: Lnkage

Datal oot

liskesels

Typeofink | WFFimfo M Linked |

| File W Fiterted 3::-:--:3
ActualHeight <nathing linked> 52,9307402502... [m]
ActualWidth <nothing linked> 52 [m}
AllowDrop <nothing linked> False a
BorderThickness <nothing linked> 0,000 o
ClipToBounds <nothing linked> False m]
Content Varisble 128 (]
ContentStringFormat <nathing linked> O
ContextMenuService.HasDro... <nothing linked> False a
ContextMenuService. Horizon,.. <nothing linked> 0 [m}
ContextMenuServicelsEnabled <nothing linked> True [m]
ContextMenuService.Placem... <nothing linked> MousePoint [m]
ContextMenuService. Placem... <nathing linked> Empty a
ContestMenuService. ShowD... <nothing linked> False [m]
ContextMenuService.Vertical... <nothing linked> 0 [m]
=]

[y »

OK

=]

Zzenon

Select the minimum value, the average value and the maximum value and link each of these to
the corresponding variable in the content property

[‘Configuration

VP element |

WPF element ﬂ

Zzenon

4. Select the siider and link the value property to the mathematics variables (in our example:

Configuration
WPF clement |
p— []
Available elements [—]
= COPA_DATA
&
-min
- mid
- max
Action ink
Em:pe«m Evenlsl Transfa-mﬁonsl
Name Linkage " Type of Ink | WPFinfo | Lirke =
[e W | o]
| FlowDirection <nothing linked> LeftToRight O [=
| Focusable <nothing linked> True]
| FontSize <nothing linked> 12]
| FontStretch <naothing linked> Normal (m]
| FontStyle <naothing linked> Normal m]
| FontWeight <nothing linked> MNormal]
| ForceCursor <nothing linked> = False m]
| Grid.Column <nothing linked> | 0 (]
| Grid.ColumnSpan <nething linked> | 1 (]
| Grid.Row <nothing linked> | 0 m]
| Grid.RowSpan <nothing linked> 1 m]
HasAnimatedProperties <nothing linked> = False m]
) Maths Vanisble n. def, (=)
| HnriznntalAlisnment <nnthinn linked> | Rinkt II'I sl
4 nr L3
calculation)

5. Check the project planning in Runtime:

counting Value _

Integrate DataGrid Control in zenon

To create DataGrid control, you need:
» WPF Toolkit: available as a download at http://wpf.codeplex.com (http://wpf.codeplex.com)

» Visual Studio

Ensure that you always create projects that are based on .NET Framework 3.5.

CREATE WPF USER CONTROL

1. Create a WPF User Control in Visual Studio.

New Project BIg =
NET Famework33__» |Sontby Dot a3 [fil cuh z s
Instalied Templat
- - Type: Visual C=
5 oCH| Windows Forms Appication Visual €%
4 Visual Ce 2 ‘iindows Presentation Foundation uzes
Vindows " control Bbrary
Web & | WPF Application Visual C#
Office
Cloud % Console Application Visusl C#
Reporting
SharePont Licfl| Class Library Visual 3
£
Silverlight
Test “cdl WPF Browser Application Visual C#
icF
Workfiow o] Empty Project Visual C2
Other Languages
Other Preject Types 7
Y Vindows Senvice Visual 2
Database b—j
Test Projects y '
@t WPF Custoen Control Library Visual C#
€ WPF User Control Library Visual C2
w=ch| Wndows Forms Control Libraey Visual C=
Name:
Location: \users\marting) documents\visual studio 2010\Projects - Browse..
| Solution: Creste new sohution -
' Solution name: <Enter_nsme> 4| Creste directory for solution
Add to source control

In our example, it is given the name MyWPFLibrary.
2. Add the WPF Toolkit assemblies to the references. To do this:
a) Right-click on the project
b) Select Add reference..
c) Select this in the .NET tab

d) Select system.Data and System.Data.DataSetExtensions too if these are not already
present

3. Create a new data connection in Server Explorer. To do this:
a) right-click on pata Connections
b) Select add connection..

In our example, the database Northwind is used; this has been created by Microsoft as an
example database.

136

http://wpf.codeplex.com/

After adding the connection, the Server Explorer window should look a little like this:

Server Explorer - ax

2] <] | T
a ,J] Data Connections

4 [J; cdsbgD30\zenon_2008r2. Nerthwind.dbo

» [Database Diagrams
4 [Tables
[Categories

» [Customers
> [Employees
» [Order Details
» [Orders
- [Products
- [Shippers
> [Suppliers
3 Views
[Stored Procedures
[Functions
3 Synonyms
3 Types
[Assemblies
4 _4‘5 Servers

> M CDSBGO30
> gHi SharePoint Connections

>
>
>
>
>
>

A new DataSet is created in the next step.

CREATING A DATASET

Right-click on the project
In the context menu, select the Ad New Item....
Create a new DataSet.

double click the DataSet It should now open in the designer.

vk w N e

Drag the tables that you need into the DataSet design window.

Bl My Datater ot [N

% B
4 (3} Data Connections

4 L cdsbgid0\zercn_2008r2 Northwind.d
3 Database Diagrams

4 [Tables
O Categarses
O Cumtomers
T Employess ,7
T Order Desails J !
2 o & o]
T Products R Customers 6]
O shippers CustomerdD OrdedD =
2 supphers Comparylame CuitomenD
3 Vews: Cortact Employeel
3 Stered Procedues ContactTitle Orderliate
3 Functions Addvess Feguredate
- Synomyms City ShippedDate
3 Types Fagion Shigia
3 Assemblies Poaiods Freight
+ By Serven Country Shiphiame
M cowesin Phone ShipAddress
4 SharePoint Comnections F= ShipCity
6, CustomensTableAdapter () b I
[FilGethata () T
[FinGesDuta O

The XAML file is configured in the next step.

137

CONFIGURATION OF XAML FILE

1. Insert the namespaces into the XAML file.
You need the namespace of the WPF toolkits and a reference to the class:

esign t B XAML

<UserControl x:Class="MyWPFLibrary.UserControll™
http://schemas.microsoft.com/winfx/2006/xaml/presentation”
="http://schemas.microsoft.com/winfx/2006/xaml"
c="http://schemas.openxmlformats.org/markup-compatibility/2006"
="http://schemas.microsoft.com/expression/blend/2008"
rable="d"

ht="300" d:DesignWidth="300"
tp://schemas.microsoft.com/wpf/2008/toolkit"
yl="clr-namespace:MyWPFLibrary">

2. Define the resources and the DataGrid that is to be used in the WPF:
<UserControl.Resources>
<myl:MyDataSet x:Key="MyDataSet" />

<CollectionViewSource x:Key="customersvViewSource" Source="{Binding Path=Customers,
Source={StaticResource MyDataSet}}" />

</UserControl.Resources>
<Grid DataContext="{StaticResource customersViewSource}">

<my:DataGrid Height="304" HorizontalAlignment="Left" Margin="6,7,0,0"
Name="dataGridi" VerticalAlignment="Top" Width="497"
DisplayMemberPath="companyName" ItemsSource="{Binding}"
SelectedValuePath="customerID" />

</Grid>
3. Open the code-behind file (xaml.cs) and insert the following lines in the constructor:
public UserControll()
{
InitializeComponent();

MyWPFLibrary.MyDataset ds =
((MyWPFLibrary.MyDataset)(this.FindResource("MyDataSet")));

MyWPFLibrary.MyDataSetTableAdapters.CustomersTableAdapter ta = new
MyWPFLibrary.MyDataSetTableAdapters.CustomersTableAdapter();

ta.Fill(ds.Customers);

System.Windows.Data.CollectionViewSource customersViewSource =
((System.Windows.Data.CollectionvViewSource)(this.FindResource("customersViewSource

N

customersViewSource.View.MoveCurrentToFirst();

}
This has the following effect:

138

e Get DataSet
e Create a new ReportAdapter
e Fill DataSet

e Provide this information to the DataGrid Control

The solution can now be built.

BUILD

Now create the solution Some DLLs are created in the output folder in the process.

You now have a DLL with the necessary functionality available. However zenon can only display XAML
files that cannot be linked to the code-behind file. Therefore another DLL is required that references the
DLL that has just been built. To do this:

1. Create another project, another WPF user control library.
2. It was called DataGridControl in our example.

3. Insert a reference to the project that has just been built into this new project.
rw Add Reference LEJ @I&J

| NET | CoMm | Projects | Browse | Recent|

Project Name ‘ Project Directory

My WPFLibrary C\Users\Martin5\Documents\Visual Studio 20100...

0K] ’ Cancel

4. The XAML files looks as follows:

<UserControl x:Class="test.UserControll”
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns imc="http://schemas|.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"
d:DesignHeight="30@" d:DesignwWidth="3@0@">

<Grid>

</Grid>

</UserControl>

5. Because all necessary content is contained in the DLL and no code-behind is necessary, delete:

139

10.

11.

x:Class="test.UserControll"

Also delete (for the positioning) the following lines

mc:lgnorable="d"

d:DesignHeight="300" d:DesignWidth="300"

Define what is to be displayed in the XAML file. To do this, add the following lines:

<UserControl xmlIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
XmINs:Xx="http://schemas.microsoft.com/winfx/2006/xaml"
XmIns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmins:mywpflib="clr-namespace :MyWPFLibrary;assembly=MyWPFLibrary">

<Grid x:Name="GridName">

<mywpflib:UserControll HorizontalAlignment="Left" Name="userControlll"
VerticalAlignment="Top"/>

</Grid>

</UserControl>

The xmlns:mywpflib="clr-namespace:MyWPFLibrary;assembly=MyWPFLibrary" line defines

the namespace mywp£1ib and stipulates that this should use the assembly built before.

Insert a pre-existing name into the TAGs of the grid.

Insert the control mywp£flib:UserControll from our library and give it a name, because zenon

can only modify objects that have a name.

Construct this solution.
This now leads to an error message:

Error List - g x

& 1Emor | f\ 0 Wamings | (i) 0 Messages

Description File Line Column Project

e e . c—
conbed

To rectify the error, simply delete the code-behind file and carry out a rebuild.

In the next step, the XAML file is added in zenon.

STEPS IN ZENON

1.
2.

Open the zenon Editor

GotoFile -> Graphics

140

3.

6.

Select add file... in the context menu

l; User administration
Z7 SAP intedace
) Files

nl

Add file...

Folder new...

Rename folder...

[ERF- [l
PAEFE

Delete folder
o O
L History Editor profile ¥
v Project
sbal symbol il Help - |5

in

tree Reﬂ Netwaork topology

Select the XAML file from the save location and insert this.

FEMNECE R —RNEETE W S T M)

Status File name | Type Size Preview
r r r r r
UserControll xaml xaml 0KB

Insert the DLLs with the functionality for the XAML file. To do this:
a) Select, in the context menu, File -> Otheradd file.. ..

b) Select the wPFToolkit.d11 and the DLL of the first project

2 L 5 T T, 4 ke]

Status Fle name " Type Sire Preview
WPFToolkit.dil dil 456 KB
My WPFLibrary.dll dil 95 KB

2 total / 2 filtered / 0 selected

Create a screen.

141

WPF element
Zenon

7. Insert a WPF element and select an XAML file. You should now see the following:

R H a0 st wer oataGD Test B
DAE g F- I -
|| Status | Nome A | Screenty
) Standard | CustomeriD CompanyName Contact ContactTitle
ALFKE Alfreds Futterioste Maria Anders Ssles Representat
ANATR Ana Tryjilo Emparedados y helados | Ana Trujillo Onner |z =
ANTON Antonio Moreno Taqueria Antonio Moreno | Owner .
AROUT [Around the Hom Thomas Hardy | Sales Representat
SERGS Berglunds srabbisp Christing Berghund | Order Administrat
BLAUS Bisuer See Deliatessen Hana Moos Sales Representat
BLONP. lazonw pere et fis Frécénique Cteaux| Marketing Mansg
B0UD Bhdo Comidas preparadas Martin Sommer | Onner
SONAP _ |[Bon spp’ Laurence Lebihan | Onner
BOTIM Bottom-Dollar Markets Elizadeth Lincoln | Accounting Mana
BSBEV B Beverages Victoria Ashworth [Sales tat
CACTU Cactus Comidas pars Bevar Patricio Simpson _| Ssles Agent
CENTC Centro comercial Moctezuma Francisco Chang | Marketing Mansg
CHOPS (hw:ww Chinese Yana Wana Owner X
e] B
3| P —— v
1 total /1 filtered / 1 selected | I
U@ 3 '

Note: If the XAML file is to be deleted or updated within the zenon project, it may be the case that the
DLLs are still open and cannot be deleted from the file folder. The editor must be restarted in order to
delete them. It may also be sufficient to deactivate the project and reactivate it again.

6.3.7 Error treatment

ENTRIES IN LOG FILES

Entry

Xaml file found in %s
with different name,
using default!

no preview image
found in %s

Xaml file in %s not
found or not unique!

Could not remove old
assembly $%s

Could not remove old
assembly %s

file exception in %s

Generic exception in
%s

Level

Warning

Warning

Error

Warning

Error

Error

Error

Meaning

The name of the collective file and the name of the XAML file
contained therein do not correspond. To avoid internal conflicts, the
file with the name of the collective file and the suffix .xam1l is used.

The collective file does not contain a valid preview graphic
(preview.png or [names of the XAML file].png). Thusno
preview can be displayed.

The collective file does not contain an XAML file or several files with
the suffix .xaml. It cannot be used.

There is an assembly that is to be replaced with a newer version, but
cannot be deleted.

A new version is available for an assembly in the work folder, but it
cannot be copied there. Possible reason: The old example is still
loaded, for example. The old version continues to be used, the new
version cannot be used,

A file error occurred when accessing a collective file.

A general error occurred when accessing a collective file.

143

	1. Welcome to COPA-DATA help
	2. Controls
	3. General
	3.1 Access zenon API
	3.2 Methods
	3.2.1 CanUseVariables
	3.2.2 MaxVariables
	3.2.3 VariableTypes
	3.2.4 zenonExit
	3.2.5 zenonExitEd
	3.2.6 zenonInit
	3.2.7 zenonInitEd

	4. ActiveX
	4.1 Develop ActiveX elements
	4.1.1 Methods
	CanUseVariables
	MaxVariables
	VariableTypes
	zenonExit
	zenonExitEd
	zenonInit
	zenonInitEd

	4.2 Example LatchedSwitch (C++)
	4.2.1 Interface
	4.2.2 Control
	4.2.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.2.4 Operate and display
	Setting values
	Drawing

	4.2.5 zenon Interface

	4.3 Example CD_SliderCtrl (C++)
	4.3.1 Interface
	4.3.2 Control
	4.3.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.3.4 Operate and display
	Drawing
	Setting values

	4.3.5 zenon Interface

	4.4 Example :NET control as ActiveX (C#)
	4.4.1 Creat Windows Form Control
	4.4.2 Change .NET User Control to dual control
	4.4.3 Work via VBA with ActiveX in the Editor
	4.4.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5. .NET user controls
	5.1 Different use .NET Control in Control Container or ActiveX
	5.2 Example .NET control container
	5.2.1 General
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnExit()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5.2.2 Create .NET user control
	5.2.3 add a CD_DotNetControlContainer and a .NET User Control
	5.2.4 Accessing the user control via VSTA or VBA

	5.3 Example :NET control as ActiveX (C#)
	5.3.1 Creat Windows Form Control
	5.3.2 Change .NET User Control to dual control
	5.3.3 Work via VBA with ActiveX in the Editor
	5.3.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	6. WPF element
	6.1 Basics
	6.1.1 WPF in process visualization
	6.1.2 Transfer of values from zenon to WPF
	6.1.3 Referenced objects
	6.1.4 Allocation of zenon object to WPF content
	6.1.5 Workflows
	Workflow with Microsoft Expression Blend
	Workflow with Adobe Illustrator

	6.2 Guidelines for designers
	6.2.1 Workflow with Microsoft Expression Blend
	Create button as an XAML file with Microsoft Expression Blend

	6.2.2 Workflow with Adobe Illustrator
	Bar graph illustration
	WPF export
	Animation in Blend

	6.3 Engineering in zenon
	6.3.1 CDWPF files (collective files)
	6.3.2 create WPF element
	6.3.3 Configuration of the linking
	Properties
	Link variable
	Link values
	Link authorization or interlocking

	Events
	Transformation

	6.3.4 Validity of XAML Files
	6.3.5 Pre-built elements
	Circular gauge control
	Progress bar - ProgressBarControl
	Bar graph vertical - VerticalBargraphControl
	Temperature indicator - TemperatureIndicatorControl
	Analog clock - AnalogClockControl
	Universal slider - UniversalReglerControl
	Pareto diagram
	Sankey diagram
	Waterfall diagram

	6.3.6 Examples: Integration of WPF in zenon
	Integrate button as WPF XAML in zenon
	Integrate bar graph as WPF XAML in zenon
	Integrate DataGrid Control in zenon

	6.3.7 Error treatment

