

zenon driver manual
MODBUS_ENERGY

v.7.50

©2016 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 5

2. MODBUS_ENERGY ... 5

3. MODBUS_ENERGY - Data sheet .. 6

4. Driver history .. 8

5. Requirements .. 9

5.1 Control .. 9

6. Configuration .. 9

6.1 Creating a driver .. 10

6.2 Settings in the driver dialog .. 12

6.2.1 General ... 12

6.2.2 Settings ... 15

6.2.3 Connections .. 19

7. Creating variables .. 21

7.1 Creating variables in the Editor ... 22

7.2 Addressing ... 25

7.3 Driver objects and datatypes .. 27

7.3.1 Driver objects ... 27

7.3.2 Mapping of the data types ... 37

7.4 Creating variables by importing .. 38

7.4.1 XML import ... 39

7.4.2 DBF Import/Export ... 39

7.5 Driver variables ... 48

8. Driver-specific functions .. 54

8.1 ICE NPx800 .. 57

8.2 GE Multilin UR series ... 61

8.3 COSTRONIC DFB .. 62

9. Driver commands .. 64

4

10. Error analysis ... 66

10.1 Analysis tool .. 66

10.2 Check list ... 68

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. MODBUS_ENERGY

The Open Modbus TCP/IP driver supports Sequence of Events for energy projects and in addition (also
for non energy projects) communication via a TCP/IP gateway with several slaves connected to the same
serial bus.

When using a Modbus gateway, the driver can be configured so that only one TCP connection to the
gateway will be established, even with several devices (slaves) behind the gateway.

The driver supports the reading of the event buffer (events) of:

 AREVA MiCOM P125/P126/P127

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

MODBUS_ENERGY - Data sheet

6

 COSTRONIC DFB: supports the reading of events from the Schneider Modicon TSX Premium PLC
with the "lynxPileHorodatageV3a" function block (DFB) created by Costronic SA
(www.costronic.ch (http://www.costronic.ch)).

 GE Multilin F650 and UR series controls

 IEC NPx800

 Schneider SEPAM

3. MODBUS_ENERGY - Data sheet

General:

Driver file name MODBUS_ENERGY.exe

Driver name Modbus Energy driver

PLC types All controllers and gateways supporting Open Modbus
TCP/IP.Sequence of Events is only available for AREVA MiCOM
P126/P127, GE Multilin F650, GE Multilin UR-series, ICE NPI 800,
ICE NPID 800 and Schneider MODICON TSX
(Premium,M340,Quantum) with Function block (DFB) from
Costronic and Schneider Sepam Protection Relais.

PLC manufacturer ABB; GE Automation&Controls; Modbus RTU; Mondial; Schiele;
Telemecanique; Schneider; Wago; SE Elektronic; Areva; GE
Multilin; ICE; Costronic;

http://www.costronic.ch/

MODBUS_ENERGY - Data sheet

7

Driver supports:

Protocol Modbus RTU over TCP;

Addressing: Address-based X

Addressing: Name-based --

Spontaneous
communication

X

Polling communication X

Online browsing --

Offline browsing --

Real-time capable X

Blockwrite X

Modem capable --

Serial logging --

RDA numerical X

RDA String --

Requirements:

Hardware PC --

Software PC --

Hardware PLC --

Software PLC For Schneider MODICON TSX Premium: Function block (DFB)
"cosZenonPileHorodatageV2c" from Costronic

Requires v-dll --

Driver history

8

Platforms:

Operating systems Windows CE 6.0, Embedded Compact 7; Windows 7, 8, 8.1, 10,
Server 2008R2, Server 2012, Server 2012R2;

CE platforms x86; ARM;

4. Driver history

Date Driver version Change

26.03.09 500 Created driver documentation

The first release test has been conducted (GE Multilin F650 and Areva
MiCOM P127)

14.10.09 900 Added COSTRONIC DFB and IEC NPx800.

07.01.10 1100 GE Multilin UR series added

09.06.10 1699 Schneider SEPAM added

15.01.201
6

25506 New driver object type File record

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of
this version. This is the number in the 4th position of the file version,
For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build number
4228.

Expansions or error rectifications will be incorporated into a build in the future and are then available
form the next consecutive build number.

 Example

A driver extension was implemented in build 4228. The driver that you are using is build
number 8322. Because the build number of your driver is higher than the build number
of the extension, the extension is included. The version number of the driver (the first
three digits of the file version) do not have any significance in relation to this. The drivers
are version-agnostic

Requirements

9

5. Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 Control

For the use of the Modbus Energy Driver, the following conditions apply:

 The PLC must support the Open Modbus TCP/IP protocol in the conformity class 0

 The reading of the event buffer is only possible with the PLCs mentioned in chapter
MODBUS_ENERGY (on page 5).

 The PLCs should be set to UTC time. The driver assumes that all incoming time stamps are in UTC
time.

AREVA MICOM P125/P126/P127

The time format in Areva MiCOM P12/P125/P127 Register 012Fh should be set to "Internal format" (not
to "IEC format").

COSTRONIC DFB

The block should be carried out by task "FAST" and should be configured as follows.

 ControleVie, IndiceEchange and balEvenements must be behind one another, for example
%MW900 and %MW901 and %MW902:56

 balEvenements must be 56 registers large

 NombreMaxEven… must lie between 1 and 7 (number of events in the mailbox)

 The stack for buffering of events is connected to pile

 tableEvenments contains the status of all events (1 bit per event)

 numeroPremierEvenement must be 0.

6. Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

Configuration

10

 Information

Find out more about further settings for zenon variables in the chapter Variables
(main.chm::/15247.htm) of the online manual.

6.1 Creating a driver

In order to create a new driver:

1. Right-click on Driver in the Project Manage and select Driver new in the context menu.

main.chm::/15247.htm

Configuration

11

2. In the following dialog the control system offers a list of all available drivers.

3. Select the desired driver and give it a name:

 The driver name has to be unique, i.e. if one and the same driver is to be used several times
in one project, a new name has to be given each time.

 The driver name is part of the file name. Therefore it may only contain characters which are
supported by the operating system. Invalid characters are replaced by an underscore (_).

 Attention: This name cannot be changed later on.

Configuration

12

4. Confirm the dialog with OK. In the following dialog the single configurations of the drivers are
defined.

Only the respective required drivers need to be loaded for a project. Later loading of an additional driver
is possible without problems.

 Information

For new projects and for existing projects which are converted to version 6.21 or higher,
the following drivers are created automatically:

 Internal

 MathDr32

 SysDrv.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later
for editing, double click on the driver in the list or click on the Configuration property.

Configuration

13

Parameters Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:

A connection to the control is established.

 Simulation static

No communication between to the control is
established, the values are simulated by the driver.
In this modus the values remain constant or the
variables keep the values which were set by zenon
Logic. Each variable has its own memory area. E.g.
two variables of the type marker with offset 79 can
have different values in the Runtime and do not
influence each other. Exception: The simulator
driver.

 Simulation - counting

No communication between to the control is
established, the values are simulated by the driver.
In this modus the driver increments the values
within a value range automatically.

 Simulation - programmed

N communication is established to the PLC. The
values are calculated by a freely programmable
simulation project. The simulation project is created
with the help of the zenon Logic Workbench and
runs in a zenon Logic Runtime which is integrated in
the driver. For details see chapter Driver simulation
(main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested from the
control even if they are currently not needed.
This has the advantage that e.g. multiple screen switches after
the screen was opened for the first time are executed faster
because the variables need not be requested again. The
disadvantage is a higher load for the communication to the
control.

Output can be written Active: Outputs can be written.

Inactive: Writing of outputs is prevented.

Note: Not available for every driver.

Variable image remanent This option saves and restores the current value, time stamp and
the states of a data point.

Fundamental requirement: The variable must have a valid value
and time stamp.

main.chm::/25206.htm

Configuration

14

The variable image is saved in mode hardware if:

 one of the states S_MERKER_1(0) up to S_MERKER8(7),
REVISION(9), AUS(20) or ERSATZWERT(27) is active

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not programmed
simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a
criterion in order to restore the remanent variable image.

Stop on Standby Server Setting for redundancy at drivers which allow only on
communication connection. For this the driver is stopped at
the Standby Server and only started at the upgrade.

Attention: If this option is active, the gapless archiving is no
longer guaranteed.

Active: Sets the driver at the not-process-leading Server
automatically in a stop-like state. In contrast to stopping via
driver command, the variable does not receive status
switched off (statusverarbeitung.chm::/24150.htm) but an
empty value. This prevents that at the upgrade to the
Server irrelevant values are created in the AML, CEL and
Historian.

Note: Not available if the CE terminal serves as a data
server. You can find further information in the zenon
Operator manual in the CE terminal as a data server
chapter.

Global Update time Active: The set Global update time in ms is used for all
variables in the project. The priority set at the variables is not
used.

Inactive: The set priorities are used for the individual
variables.

Priority The polling times for the individual priority classes are set here.
All variables with the according priority are polled in the set time.

The allocation to the variables takes place separately in the
settings of the variable properties.
The communication of the individual variables are graduated in
respect of importance or necessary topicality using the priorities.

statusverarbeitung.chm::/24150.htm

Configuration

15

Thus the communication load is distributed better.

Attention: Priority classes are not supported by each driver For
example, drivers that communicate spontaneously do not
support it.

CLOSE DIALOG

Parameters Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR CYCLICAL DRIVERS

The following applies for cyclical drivers:

For Set value, Advising of variables and Requests, a read cycle is immediately triggered for all drivers -
regardless of the set update time. This ensures that the value is immediately available for visualization after
writing. Update times can therefore be shorter than pre-set for cyclical drivers.

6.2.2 Settings

You can configure the general settings for all Open Modbus TCP/IP connections in the tab Settings. To
do this:

 click on the property Configuration in the group General

 now the dialog for the configuration of the driver opens.

Configuration

16

 select the Settings tab

Configuration

17

COMMUNICATION PARAMETER

Parameters Description

Communication parameter

Maximum block size Defines the maximum number of registers that can be
queried or written using a data telegram. The configured
value applies for both read and write requests. If you
configure a value bigger than 100, a maximum number of 100
registers will be used for write requests.

Allowed value range: 1 - 125.

Offset 1 Active: The driver subtracts 1 when the variable addresses (coils,

register) are sent and adds 1 when they are received.

Affects the addressing of all variables.

Grouping connections to PLCs with

the same IP address
Active: Connections with the same IP address and port
number will be grouped.

If you want to establish only one TCP connection to a
gateway, activate this option.

BYTE SEQUENCE FOR DWORD

Parameters Description

Byte sequence for DWORD Defines the sequence of lower-value and higher-value words
for double word objects (DINT/UDINT). You can choose
between Motorola (Big-Endian) and Intel (Little-Endian).

Motorola Format (Big-Endian
Active: DWORD ordering in accordance with Motorola
format.

Intel Format (Little-Endian)
Active: DWORD ordering in accordance with Intel format.

BYTE SEQUENCE FLOAT

Parameters Description

Byte sequence FLOAT Defines the sequence of lower-value and higher-value words
for FLOAT objects (REAL). You can choose between Modbus
Standard (Big-Endian) and HB-Controller (Little-Endian).

Modbus Standard (Big-Endian)
Active: Float ordering in accordance with Modbus
standard.

Configuration

18

HB Controller Float (Little-Endian)
Active: Float ordering in accordance with HB controller.

BYTE SEQUENCE FOR STRING

Parameters Description

Byte sequence for STRING Defines display of the byte sequence.

Note: If there is relevant information in the documentation of a PLC
the following is usually applicable:

MSB-first =

 Motorola = Big-Endian = Modbus.

 Intel = Little-Endian = PC.

This can be handled differently in some documentation however.

Modbus Standard (Big-Endian) Display in accordance with Modbus standard with switched
characters.

PC-Format (Little-Endian) Display in accordance with Modbus standard with switched
characters.

ERROR HANDLING

Parameters Description

Connection timeout Time in milliseconds to wait for a response from the Slave. A
communication error will be displayed if there is no response
within this time.

Retries on error Number of send repetitions when there is no answer from the
slave after the set communication timeout.

 1: a connection attempt, no repetitions

 0: constant repetition

 Default: 6

Delay after connection termination Time in milliseconds to wait after a communication error
before trying to reestablish the connection.

Target folder Folder for file transfer.

CLOSE DIALOG

Parameters Description

OK Applies all changes in all tabs and closes the dialog.

Configuration

19

Parameters Description

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

 Information

Sequents of Events: If a variable is created for a connection in the event area, SOE is
used. Otherwise SOE is not used.

6.2.3 Connections

You can configure the connections to the PLCs via Open Modbus TCP/IP in the tab Connections: To do
this:

 click on the property Configuration in the group General

 now the dialog for the configuration of the driver opens.

 select the tab Connections

Configuration

20

Parameters Description

Connection list Displays the connection names with the corresponding hardware addresses. To
display the connection parameters of a name, click on the according connection
name.

Net address The net address identifies the connection. Therefore, every connection must
have a unique net address. Variables are assigned to a connection via the net
address.

At the creation of a new variable the net address with the highest existing
address + 1 is initialized.

Connection name Freely definable name for the easier distinction of connections.

Attention: The connection name must not contain any of the following

characters: {}|&~"';=

Primary IP address Primary IP address of the PLC with which you are communicating.

Port number The port number of the PLC.

Default for Open Modbus TCP/IP: 502

Secondary IP address Secondary IP address of the PLC with which you are communicating. If a
connection to the first address cannot be achieved, a connection to the
secondary IP address is tried.

Modbus Unit ID Modbus unit ID (slave address) - the address of the recipient

IED type Selection of the IED type (IED = Intelligent Electronic Device). A left-click opens
the drop-down list for selection:

 AREVA MiCOM P126/127

 COSTRONIC DFB

 GE Multilin F650

 GE Multilin UR series

 ICE NPx800

 Schneider SEPAM

 None (disabled) - Standard Modbus TCP/IP

Default: None (disabled)

New Creates a new connection with default settings.

Clear Deletes the connection selected in the connection list.

Edit Opens the selected connection for editing.

Save Saves a new or edited connection.

Cancel Cancels the editing of connection settings without saving changes.

ENHANCEMENT WHEN SELECTING COSTRONIC DFB

Creating variables

21

Parameters Description

Base register Mailbox Address of ControleVie.

Base register Events Base address of tableEvenments.

Number of registers Length of the array which is connected to tableEvenments (number of
the Event bit/16).

CREATE NEW CONNECTION

1. click on the button New

2. enter the connection parameters Net address, Connection name and Modbus Unit ID

3. Choose the IED type if necessary

4. Click on Save

Note: If a established connection is selected at the creation, its configuration is copies.

DISPLAY CONNECTION PARAMETERS OF A CONNECTION

1. select the desired connection in the connection list with the mouse pointer.

2. the parameters will be displayed

EDIT CONNECTION

1. select the connection in the connection list

2. click on the button Edit

3. change the connection parameters

4. finish with Save

DELETE CONNECTION

1. select the connection in the connection list

2. click on the button Delete

3. the connection will be removed from the list

7. Creating variables

This is how you can create variables in the zenon Editor:

Creating variables

22

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

2. The dialog for configuring variables is opened

3. configure the variable

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

23

4. The settings that are possible depends on the type of variables

Creating variables

24

Property Description

Name Distinct name of the variable. If a variable with the same name already
exists in the project, no additional variable can be created with this name.

Maximum length: 128 character

Attention: The characters # and @ are not permitted in variable names. If
non-permitted characters are used, creation of variables cannot be
completed and the Finish button remains inactive.
Note: For some drivers, the addressing is possible over the property
Symbolic address, as well.

Drivers Select the desired driver from the drop-down list.

Note: If no driver has been opened in the project, the driver for internal
variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is
automatically loaded.

Driver object type
(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

Data type Select the desired data type. Click on the ... button to open the selection
dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays
chapter.

Addressing options Expanded settings for arrays and structure variables. You can find details
in the respective section.

Automatic element

activation
Expanded settings for arrays and structure variables. You can find details
in the respective section.

SYMBOLIC ADDRESS

The Symbolic address property can be used for addressing as an alternative to the Name or Identification
of the variables. Selection is made in the driver dialog; configuration is carried out in the variable
property. When importing variables of supported drivers, the property is entered automatically.

Maximum length: 1024 characters.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

Note for signal range: If a change is made to a data type that does not support the set signal range, the signal

range is amended automatically. For example, for a change from INT to SINT, the signal range is changed to

127. The amendment is also carried out if the signal range was not inherited from the data type. In this case, the
measuring range must be adapted manually.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm

Creating variables

25

7.2 Addressing

You define the addressing of the variables in the property window:

Creating variables

26

Group/Property Description

General

Name Freely definable name.

Attention: For every zenon project the name must be unambiguous.

Identification Any text can be entered here, e.g. for resource labels, comments ...

Addressing

Net address This address refers to the bus address in the connection configuration of the driver.
Specifies, on which PLC the variable resides.

Data block not used for this driver

Offset The meaning is dependent on the setting of the driver object types.

 For variables of the driver object type Register or SOE - Register event:

Reference number of the register [0 to 65535]

 For variables of the driver object type SOE - Numbered event: Identifies the
event. Value range depends on control unit, for example:

- AREVA MiCOM P125/P126/P127: 1 to 127 o.162

- Costronic DFB: 0 to (number of registers)*bit-1
 Example with 63 registers: 63*16-1=1007; range 0 to 1007
- GE Multilin F650: 0 to 191

- GE Multilin UR: 0 to number of FlexOperandStates

- ICE NPx800: to 8000h

- Schneider SEPAM: 1000h to 105Fh

Alignment Alignment for variables with byte length 1. You can choose between low byte and
high byte.

Bit number Number of the bit within the configured offset.

Possible entries: 0 ... 15

String length Only available for String variables:
Maximum number of characters that the variable can take.

Driver

connection/Driver

Object Type

Allows you to change the driver objec type which was selected during the creation
of the variable.

Driver

connection/Data Type
Allows you to change the data type which was selected during the creation of the
variable.

Attention: If you change the data type later, all other properties of the variable
must be checked and adjusted, if necessary.

Driver

connection/Priority
Setting the priority class. The variable of the priority class is thus assigned
as it was configured in the driver dialog in the General tab. The priority
classes are only used if the global update time is deactivated.

If the global update time option is activated and the priority classes are used,
there is an error entry in the log file of the system. The driver uses the highest

Creating variables

27

possible priority.

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out
which driver objects are provided by the driver and which IEC data types can be assigned to the
respective driver objects.

7.3.1 Driver objects

The following object types are available in this driver:

Creating variables

28

Driver-
object type

Chann
el
type

Read:
Modbus
function
(hex/dec
code)

Write:
Modbus
function
(hex/dec
code)

Supported
data types

Comment

Register 8 0x03 / 3 0x10 / 16 BOOL, DINT,

UDINT, INT,

UINT, LINT,

ULINT,

REAL,

LREAL,

SINT,

USINT,

STRING

Class 0 - multiple registers.

Linear addressing:

 Bit: one-step via offset
and bit number

 Byte (8 bits): one-step
via Offset and
Orientation

 Word (16 bits)
Double word (32 bits)
Float (32 bits)
String(n*Byte):
one-step via Offset

File record 68 0x14

0x15 String Addressing:

The string is addressed
using the net address
(connection number), the
data block (file record
number) and the offset
(number of the record in
the file record).

Note: Please note the
information in the file
record (on page 32)
chapter.

Coil 65 0x01 / 1 0x05 / 5 BOOL Class 1 - coils.

Linear addressing one-step
via offset.

File transfer 12 X X STRING PLC specific.

Input discrete 66 0x02/2 N/A BOOL Class 1 - input discretes.

Linear addressing one-step
via offset.

Creating variables

29

Driver-
object type

Chann
el
type

Read:
Modbus
function
(hex/dec
code)

Write:
Modbus
function
(hex/dec
code)

Supported
data types

Comment

Input register 64 0x04 / 4 N/A BOOL,
SINT,

USINT,
INT, UINT,
DINT,

UDINT,
REAL,

LREAL,

STRING

Class 1 - input registers.

Linear addressing as with

registers.

SOE - Numbered

vent
10 X N/A BOOL,

STRING
PLC specific.

Sequence of Events (read
event buffer): Addressing of
events takes place
according to event number.

SOE - Register

event
11 X N/A BOOL,

USINT, UINT
PLC specific.

Sequence of Events (read
event buffer): Addressing
according to the address of
the corresponding Modbus
register allocated to the
event.

Not suitable for
COSTRONIC.

Status 67 X N/A UINT, INT Status variables. For more
details see chapter
Driver-specific functions (on
page 54).

Treibervariable 35 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT,

REAL,

STRING

Variables for the
statistical analysis of
communication.

Note: Transfers between
Runtime and driver not
to the PLC.

Find out more in the
chapter about the Driver
variables (on page 48)

 Attention

Creating variables

30

Driver-
object type

Chann
el
type

Read:
Modbus
function
(hex/dec
code)

Write:
Modbus
function
(hex/dec
code)

Supported
data types

Comment

Please note:
If values are written to a string variable in zenon, with a configured String length of
approximately 130 characters, only one character length of 129 characters is
transferred to the PLC. The last character is replaced with a zero terminator.

Creating variables

31

Function codes

MODBUS FUNCTION CODES

Function
code
hex/dec

Modbus identifier Comment

0x01 / 1 Read coils This function code is used to read from 1 to 2000 contiguous
status of coils (bits) in a remote device

0x02/2 Read discrete inputs This function code is used to read from 1 to 2000 contiguous
status of discrete inputs (bits) in a remote device

0x03 / 3 Read multiple registers This function code is used to read a block of contiguous
holding registers (1 to 125 words) in a remote device.

0x04 / 4 Read input registers This function code is used to read a block of contiguous input
registers (1 to 125 words) in a remote device.

0x05 / 5 Write coil This function code is used to write a single output (one bit) to
either ON or OFF in a remote device.

0x06 / 6 Write single register This function code is used to write a single (one word)
holding register in a remote device.

0x10 / 16 Write multiple registers This function code is used to write a block of contiguous
holding registers (1 to approx. 120 words) in a remote device.

0x11 / 17 Report Slave ID This function code is used to read the description of the type,
the current status, and other information specific to a
remote device.

0x14/20 Read File Record This function code is used to perform a file record read.
All Request Data Lengths are provided in terms of number of
bytes and all Record Lengths are provided in terms of
registers.

Note: This Functioncode is supported by the
MODBUS_ENERGY driver only.

Creating variables

32

0x15/21 Write File Record This function code is used to perform a file record write.
All Request Data Lengths are provided in terms of number of
bytes and all Record Lengths are provided in terms of the
number of 16-bit words.

Note: This Functioncode is supported by the
MODBUS_ENERGY driver only.

0x2B/43 Read Device Identification This function code allows reading the identification and
additional information relative to the physical and functional
description of a remote device.

File Record

READ AND WRITE ACCESS

The content of a „File Record" is provided by the driver as a hexadecimal string when writing or
received as such for writing:

 If the „File Record" contains the string "12345", the driver will forward this to the application
as a hexadecimal string "3132333435".

 If the „File Record" contains the string "abcde", the application must pass the string
"6162636465" on to the driver.

DRIVER OBJECT TYPE

The string is addressed using the net address (connection number), the data block (file record number)
and the offset (number of the record in the file record).

READ VARIABLE

File record variables are read as polling.

It is always the defined length of the string that is read by the PLC:

 With a given string length of 10, 5 bytes are read from the PLC, coded as a hexadecimal string
(thus resulting in the length of 10) and forwarded to the application.

 If the string length is an uneven number, it is rounded up for the reading of data by the PLC, but
the lower-value nibble of the last byte is discarded.

Creating variables

33

WRITING VARIABLES

When writing, the length of the string passed on to the driver determines the amount of data that is
actually written.

It must be noted that the smallest data unit that can be written is one word – 2 bytes or 16 bits. The
string length should therefore always be a multiple of 4. If this is not the case, excess data bytes in the
string are ignored!

It must also be noted that the string must be coded in hexadecimal. Only the figures 0 to 9 (values 0 to
9) and the letters A to F (values 10 to 15) are permitted. The characters can be written with small letters
or capital letters. If a character that cannot be used is detected during conversion, there is no write
access to the PLC.

CONSTANT

Constant Value Description

MB_MIN_FREC_FILENO 1 Lowest valid file number

MB_MAX_FREC_FILENO 65535 Highest valid file number

MB_MIN_FREC_RECNO 0 Lowest valid record number

MB_MAX_FREC_RECNO 65535 Highest valid record number

MB_FREC_MINSTRLEN 4 Minimum string length – this value must not be gone
below if data is to be written.

MB_FREC_MAXSTRLEN 476 Maximum string length

Creating variables

34

LOG entries

The following LOG entries are created for file records:

Parameters Description

Write File record failed

[NETx1: 's']. TCP

connection failure (error

x2).

Write access
failed due to a
connection
error. Possible
causes: general
write error; not
enough data
was forwarded
to the PLC; the
transaction
could not be
completed
within the
permitted
timeout.

The following
replacements
were
undertaken
when creating
the error
message:

 x1
with the
net
address

 s
with the
string that
is to be
transferre
d

 x2
with the
socket
error code

Creating variables

35

Parameters Description

Write File record failed

[NETx1: 's']. Invalid

values (e.g. FileNo.[x2],

RecNo. [x3], ...).

Protocol data
that has been
set is not valid
(e.g. file
number/data
block, record
number/offset,
…).

The following
replacements
were
undertaken
when creating
the error
message:

 x1
with the
net
address

 x2
with the
file
number
(or data
block
number)

 x3
with the
record
number
(or offset)

 s
with the
string that
is to be
transferre
d

Creating variables

36

Parameters Description

Write File record failed

[NETx1: 's']. MODBUS

exception x2

The PLC
responds to a
command with
an exception.

The following
replacements
were
undertaken
when creating
the error
message:

 x1
with the
net
address

 s
with the
string that
is to be
transferre
d

 x2
the
exception
code of
the PLC

Creating variables

37

Parameters Description

Reading 's' failed [NETx1:

RefNum=x2, Count=x3].

Invalid values.

The protocol
data that has
been set is not
valid, e.g. file
number/data
block, record
number/offset,
…

The following
replacements
were
undertaken
when creating
the error
message:

 x1
with the
net
address

 x2
with the
marker
number

 x3
with the
number

 s
Name of
the data
object

 Information

All LOG messages are written with
the general module assignment and
the ERROR level.

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes
with the datatypes of the PLC.

Creating variables

38

PLC zenon Data type

Register / Event BOOL 8

Register USINT 9

Register SINT 10

Register UINT 2

Register INT 1

Register UDINT 4

Register DINT 3

Register ULINT 27

Register LINT 26

Register REAL 5

Register LREAL 6

Register STRING 12

- WSTRING 21

- DATE 18

- TIME 17

- DATE_AND_TIME 20

- TOD (Time of Day) 19

Data type: The property Data type is the internal numerical name of the data type. It is also used for the
extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every driver.

 Information

You can find details on the import and export of variables in the Import-Export
(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

39

7.4.1 XML import

For the import/export of variables the following is true:

 The import/export must not be started from the global project.

 The start takes place via:

 Context menu of variables or data typ in the project tree

 or context menu of a variable or a data type

 or symbol in the symbol bar variables

 Attention

When importing/overwriting an existing data type, all variables based on the existing
data type are changed.

Example:

There is a data type XYZ derived from the type INTwith variables based on this data
type. The XML file to be imported also contains a data type with the name XYZ but

derived from type STRING. If this data type is imported, the existing data type is
overwritten and the type of all variables based on it is adjusted. I.e. the variables are now

no longer INT variables, but STRING variables.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable settings, such
as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

Creating variables

40

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in the DBF file in
order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for
name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file name length
including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

File structure of the dBase export file

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

41

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with their name to the 8.3 DOS format (8 alphanumeric characters for name, 3
characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Identification Type Field size Comment

KANALNAME Char 128 Variable
name.

The length can
be limited
using the
MAX_LAENGE
entry in
project.ini.

KANAL_R C 128 The original
name of a
variable that is
to be replaced
by the new
name entered
under
"VARIABLENN
AME"
(field/column
must be
entered
manually).

The length can
be limited
using the
MAX_LAENGE
entry in
project.ini.

KANAL_D Log 1 The variable is
deleted with
the 1 entry
(field/column
has to be
created by
hand).

Creating variables

42

TAGNR C 128 Identification.

The length can
be limited
using the
MAX_LAENGE
entry in
project.ini.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g.
bit, byte,
word, ...)
corresponds
to the data
type.

KANALTYP C 3 Memory area
in the PLC (e.g.
marker area,
data area, ...)
corresponds
to the driver
object type.

HWKANAL Num 3 Bus address

BAUSTEIN N 3 Datablock
address (only
for variables
from the data
area of the
PLC)

ADRESSE N 5 Offset

BITADR N 2 For bit
variables: bit
address
For byte
variables:
0=lower,
8=higher byte
For string
variables:
Length of
string (max. 63
characters)

Creating variables

43

ARRAYSIZE N 16 Number of
variables in
the array for
index variables
ATTENTION:
Only the first
variable is fully
available. All
others are
only available
for VBA or the
Recipegroup
Manager

LES_SCHR L 1 Write-Read-Au
thorization
0: Not allowed
to set value.
1: Allowed to
set value.

MIT_ZEIT L 1 time stamp in
zenon (only if
supported by
the driver)

OBJEKT N 2 Driver-specific
ID number of
the primitive
object
comprises
TREIBER-OBJE
KTTYP and
DATENTYP

SIGMIN Float 16 Non-linearized
signal -
minimum
(signal
resolution)

SIGMAX F 16 Non-linearized
signal -
maximum
(signal
resolution)

ANZMIN F 16 Technical
value -
minimum
(measuring
range)

Creating variables

44

ANZMAX F 16 Technical
value -
maximum
(measuring
range)

ANZKOMMA N 1 Number of
decimal places
for the display
of the values
(measuring
range)

UPDATERATE F 19 Update rate
for
mathematics
variables (in
sec, one
decimal
possible)
not used for
all other
variables

MEMTIEFE N 7 Only for
compatibility
reasons

HDRATE F 19 HD update
rate for
historical
values (in sec,
one decimal
possible)

HDTIEFE N 7 HD entry
depth for
historical
values
(number)

NACHSORT L 1 HD data as
postsorted
values

DRRATE F 19 Updating to
the output (for
zenon DDE
server, in [s],
one decimal
possible)

Creating variables

45

HYST_PLUS F 16 Positive
hysteresis,
from
measuring
range

HYST_MINUS F 16 Negative
hysteresis,
from
measuring
range

PRIOR N 16 Priority of the
variable

REAMATRIZE C 32 Allocated
reaction
matrix

ERSATZWERT F 16 Substitute
value, from
measuring
range

SOLLMIN F 16 Minimum for
set value
actions, from
measuring
range

SOLLMAX F 16 Maximum for
set value
actions, from
measuring
range

VOMSTANDBY L 1 Get value from
standby
server; the
value of the
variable is not
requested
from the
server but
from the
Standby
Server in
redundant
networks

Creating variables

46

RESOURCE C 128 Resources
label.
Free string for
export and
display in lists.

The length can
be limited
using the
MAX_LAENGE
entry in
project.ini.

ADJWVBA L 1 Non-linear
value
adaption:

0: Non-linear
value adaption
is used
1: Non-linear
value adaption
is not used

ADJZENON C 128 Linked VBA
macro for
reading the
variable value
for non-linear
value
adjustment.

ADJWVBA C 128 ed VBA macro
for writing the
variable value
for non-linear
value
adjustment.

ZWREMA N 16 Linked counter
REMA.

MAXGRAD N 16 Gradient
overflow for
counter
REMA.

 Attention

When importing, the driver object type
and data type must be amended to the
target driver in the DBF file in order for
variables to be imported.

Creating variables

47

LIMIT VALUE DEFINITION

Limit definition for limit values 1 to 4, or status 1 to 4:

Identification Type Field size Comment

AKTIV1 L 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for a
dynamic limit value (see VARIABLEx)
(if VARIABLEx is 1 and here it is -1, the existing variable
linkage is not overwritten)

SCHWWERT1 F 16 Threshold value for limit value

HYSTERESE1 F 14 Is not used

BLINKEN1 L 1 Set blink attribute

BTB1 L 1 Logging in CEL

ALARM1 L 1 Alarm

DRUCKEN1 L 1 Printer output (for CEL or Alarm)

QUITTIER1 L 1 Must be acknowledged

LOESCHE1 L 1 Must be deleted

VARIABLE1 L 1 Dyn. limit value linking
the limit is defined by an absolute value (see field
GRENZWERTx).

FUNC1 L 1 Functions linking

ASK_FUNC1 L 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function
(if “-1” is entered here, the existing function is not
overwritten during import)

A_GRUPPE1 N 10 Alarm/Event Group

A_KLASSE1 N 10 Alarm/Event Class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

INVISIBLE1 L 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the
definition of variables. For more information, see chapter Variable definition.

Creating variables

48

7.5 Driver variables

The driver kit implements a number of driver variables. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables implemented in the driver kit are available in the import file drvvar.dbf

(on the installation medium in the \Predefined\Variables folder) and can be imported from
there.

Note: Variable names must be unique in zenon. If driver variables are to be imported from drvvar.dbf
again, the variables that were imported beforehand must be renamed.

Creating variables

49

 Information

Not every driver supports all driver variants.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Driver variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one
connection at a a time

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

Creating variables

50

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and no
OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver
simulation.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically
reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial
interface. Writing to this variable
immediately results in the method
SrvDrvVarApplyCom being called (which
currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the
modem. Writing this variable immediately
calls the method SrvDrvVarApplyModem.
This closes the current connection and
opens a new one according to the settings
PhoneNumberSet and ModemHwAdrSet.

Creating variables

51

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone
number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be
kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the
modem

ComPort UINT 9 Number of the serial interface.

Baudrate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial
interface

Value = 0 if the driver cannot establish any
serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be
established automatically for
reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone
number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer
occurs for this time in seconds (s)

Creating variables

52

WriteTimeout UDINT 19 Maximum write duration for a modem
connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is
accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a
connection.

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is
required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is
required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required
to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required
to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

Creating variables

53

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read
all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read
all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group
Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group
Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group
High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group
Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were
executed

ERROR MESSAGE

Name from import Type Offset Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error
occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error
occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error
occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error
occurred.

Driver-specific functions

54

RdErrHwAdresse DINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8. Driver-specific functions

The driver supports the following functions:

BLOCKWRITE

Blockwrite allows for the efficient sending of multiple set values (e.g. recipes). Variables that lie next to
each other in the PLC memory will be written to with a single write telegram or combined into a few
telegrams (for larger areas).

Attention: If blockwrite is activated, the write sequence of the variables does not necessarily have to
match their sending sequence.

Blockwrite can be activated with an entry in the project.ini file:

1. select the project in Project Manager

2. Press the keyboard short cut Ctrl+Alt+E

3. the SQL folder of zenon opens in the Windows Explorer

C:\ProgramData\COPA-DATA\[SQL folder]\[UID]}FILES

4. Go to \zenon\system\

 open the file project.ini with a text editor.

 add the following entry:

Driver-specific functions

55

[MODBUS_ENERGY]
BLOCKWRITE=1

SEQUENCE OF EVENTS

The driver contains functions for reading out the event buffer of the PLCs mentioned in chapter
MODBUS_ENERGY (on page 5). This functionality can be activated via the driver dialog Settings (on page
15). The type of PLC can only be set globally for the driver.

READ PROCEDURE

The MODBUS protocol does not give the slave any possibility to report without querying the master. The
controller must therefore save spontaneous events and the exact time they occurred and only transfer
these once the master has queried this.

Sequence of Events (SOE) is a buffer with events (values and time stamp) that are stored in a special
memory section in the PLCs. The address, the size, the format, and the procedure of reading from the
buffer is manufacturer-specific as the MODBUS protocol does not have any guidelines for this.

spontaneous communication only supports the driver for events that are read from the buffer. In doing
so, only these values receive a time stamp in the controller. These can therefore allocated as
spontaneous events in the control system at all points (such as as alarms, in the CEL, archives).

The driver checks the occurrence of new events cyclically with the highest priority used in the driver
configuration.

THE INITIAL STATUS OF THE EVENT VARIABLE

When connecting to the PLC the driver gets the initial status for events from the event buffer
(PLC-specific). If an event equals a distinct address in the MODBUS register and it was engineered as
SOE register event , it is possible for the driver to adjust the possible initial values with the
respective register. If however the initial status of the event variable was read out from the register (and
not from the event buffer) and the original time stamp of the event is not available in the PLC anymore,
this variable receives the local PC time as time stamp and receives the status bit T_INTERN (real time
internal).

Driver-specific functions

56

STATUS OF THE TCP/IP CONNECTION

The status of the TCP/IP connection to the controller can be read with the help of a Status object type variable.

The variables have a data type, Offset 0 and corresponding Net address. The variables relate to both IP addresses
if the secondary connection was defined in the driver configuration: Type: INT or UINT:

Bit Meaning

Bit 1 Displays whether the primary connection is active (is used for
communication).

Bit 2 Establishing a connection to the primary IP-address.

Bit 3 Failed to establish a connection to the primary IP address.

Bit 5 Displays whether the secondary connection is active (is used for
communication).

Bit 6 Establishing a connection to the alternative IP address.

Bit 7 Failed to establish a connection to the alternative IP address.

DRIVER-SPECIFIC COMMAND "SWITCHCONNECTION"

The active IP address for a Net address is closed without setting an INVALID bit with the driver-specific
command (on page 64) SwitchConnection <HwNb> . A connection is then established for the selected
connection. If the connection is not successfully established, the INVALID bit is set and a switch back to
the active connection is made.

Example: SwitchConnection 1

AREVA MICOM P125/P126/P127

After the communication has started the driver fetches all events which are available in the PLC from
the buffer (Register Page 35H). After that the retrieval (with acknowledgment) of the saved event
recording of the Page 36H takes place.

For register events which are not available in the buffer the initial value - if available on Page 0H - is read
out from the respective MODBUS register and stamped with the local PC time.

Numbered Events which are not available in the buffer receive initial value 0 and are stamped with the
local PC time.

GE MULTILIN F650

After the communication has started the driver fetches the initial status of the events from the register
(address 0xF000). After that the retrievals from the ring buffer (0xFD00) take place.

The events reported by the PLC arrive with the time stamp of the PLC and also receive the status bit
T_EXTERN (real time external).

Driver-specific functions

57

SCHNEIDER SEPAM

Events are created in area "SOE Numbered Events". As offset the coil bit address of the setting is stated
which should be read spontaneously. Supported are addresses 1000h - 105Fh. The read out of the initial
state after a new connection is supported.

THE DRIVER OBJECT TYPE OF THE EVENTS

For the events two Driver object types are possible: SOE - Numbered event and SOE - Register
event whereas not both have a function for each PLC.

AREVA MICOM P125/P126/P127

For Areva MiCOM both object types - Numbered event and Register event - are supported.

The SOE - Numbered event matches an event which is only generated if a condition occurs (and not if
a condition disappears). The identification of an event is defined with the help of the Offset setting in the
variable addressing (e.g. offset 5 for event 05). If there is an event in the PLC, the associated BOOL
variable will be set to 1 and then immediately set to 0 by the driver. The coming value can be evaluated
by creating an alarm/CEL/archive or a function for a limit value violation.

The Register events match the rest of the events. The Register events are assigned to one or
several bits in a special register of the Page 0 in the AREVA PLC (e.g. offset 20h, bit 0). This means that
the PLC makes sure that the event reflects the change of a status in a register. In the variable addressing
the identification of the event takes place via Offset and Bit and describes the associated data points in a
Page 0 register. You can use the datatypes BOOL, USINT and UINT.

Consult the documentation of the AREVA PLC to find out about the event types and which events are
supported by the AREVA PLC.

GE MULTILIN F650

For GE Multilin F650 only object type SOE - Numbered event is supported.

Via the driver object typeSOE - Numbered event, you can assign a BOOL variable to every event. The
identification of the event is defined via the Offset setting of the variables (0 - 191).

The driver object type SOE - Register event has no function for the GE Multilin F650 PLC.

8.1 ICE NPx800

The reading of the events is only supported for the simplified event mode of the NPx800: only On events
or Wiper events but no Status events (on/off).

Driver-specific functions

58

Event variables are created under the driver object type SOE-Numbered events as BOOL variables. The
event parameters can be read by creating a string variable with the same driver object type and offset.

Attention: The string variable only has a valid value when the event has just been triggered. Otherwise
the value of the string variable is an empty string. It behaves in the same way as a BOOL variable , i.e.
just like a Wiper event. The zenon AML/CEL entry can be triggered either by the BOOL variables or by
the string variable. The display of the string is only possible via dynamic limit texts
(Variablen.chm::/15311.htm).

The event number is configured with the help of the offset.

VALUE OF THE EVENT VARIABLE

The process if an event occurs:

1. The parameters are written in a possibly existing string variable.

2. The possibly existing BOOL variable is set to 1.

3. The possibly existing BOOL variable is set to 0.

4. The length of the possibly existing string variable with the parameters is set to 0.

PARAMETER STRING

In string variables, the parameter string consists of integer values that are separated by semicolons (;).
These integer values correspond to the following data of the event:

 1: Event data at word offset 2

 2: Event data at word offset 7 (parameter 0)

 3: Event data at word offset 8 (parameter 1)

 4: Event data at word offset 9 (parameter 2)

 5: Event data at word offset 10 (parameter 3)

 6: Event data at word offset 11 (parameter 4)

 7: Event data at word offset 12 (parameter 5)

 8: Event data at word offset 13 (parameter 6)

 9: Event data at word offset 14

PROCEDURE OF EVENTS

Procedure for an event:

 When Runtime is started or when the driver connection is restored, all events are initialized with
0.

variablen.chm::/15311.htm

Driver-specific functions

59

 If an event is received, then:

 A string variable is filled with the event parameters (if these have been created)

 The status of the A/D bits of the BOOL variable are allocated

If, once Runtime has started or if the driver connection is reinstated, a 0 event is received,
this change of value cannot be perceived.
If a 1 event is sent twice consecutively (without a 0 event), the second event cannot be
perceived.

 The string variable reset (empty string)

The string variable can also be evaluated with the event parameters. In the first parameter, the value of
the A/D bit is present. All events in the RT can be perceived using the string variable.

CHECKING THE EV FLAG

The driver checks the EV flag for the IECLEC alarm stack. If the value false is returned, the read data is
ignored and no other event are read.

FILE TRANSFER DISTURBANCE RECORDS

A string variable can be created for the file transfer of disturbance records. It is possible to read and
delete data with these.

A file is identified in the process by means of the number of the disturbance record descriptor.
Possible values: 1, 2, 3, 4

The records are in COMTRADE-format and have a serial number (0 - 255). The description of the records
is stored in the descriptors (1 - 4). These contain the date, time, serial number, source and position. A
maximum of 4 disturbance records can be created.

the target folder is defined in the driver configuration in the Settings (on page 15) tab.

UPLOAD AND DELETE

 Upload file: The GET x entry in the string variables uploads the corresponding file.

 Delete file: The DEL x entry in the string variables deletes the corresponding file.

x means Disturbance record descriptor number (1 - 4)

FILE NAME

The file is named according to the following schematics

A_yyyy-mm-dd_hh-mm-ss-MMM_DescriptorZ_(x-y)

Driver-specific functions

60

Meaning:

 A: Hardware address of the device

 yyyy: Year of creation.

 mm: Month of creation.

 hh: Hour of creation.

 mm: Minute of creation.

 ss: Second of creation.

 MMM: Millisecond of creation.

 Z: serial number of the record

 x: Source

 y: Position

For example:

1_2009-09-07_14-01-36-690_Disturbance_109_(19-420).HDR

1_2009-09-07_14-01-36-690_Disturbance_109_(19-420).CFG

1_2009-09-07_14-01-36-690_Disturbance_109_(19-420).DAT

Driver-specific functions

61

8.2 GE Multilin UR series

The IEC type is selected in the Connections (on page 19) tab of the driver configuration:

Click on the drop-down list in the IEC type section to open the selection of the IEC types. Select GE

Multilin UR series there.

SOE SUPPORT

Via the SOE functionality of the driver events can be read from the device. For this file EVT.TXT is
analyzed at the device. Events must be created of driver object type SOE - Numbered event and of
data type BOOL. The addressing takes places via the offset setting.

A list of event numbers and their meaning can be called up via the web server of the UR series.
http://IP_Address_ of_UR_unit/FlexOperandStates.htm (e.g.:
http://192.168.37.67/FlexOperandStates.htm).

The SOE - Numbered event matches an event which is only generated if a condition occurs (and not if
a condition disappears). The identification of an event is defined with the help of the Offset setting in the
variable addressing (e.g. offset 5 for event cause 5). If there is an event in the PLC, the associated BOOL
variable will be set to 1 and then immediately set to 0 by the driver. The coming value can be evaluated
by creating an alarm/CEL/archive or a function for a limit value breach.

Driver-specific functions

62

FILE TRANSFER

Via a command variable of the driver object type File transfer (see file transfer description for ICE
devices) the file is transferred to the local computer. The command consists of: GET followed by a
blank space and the file name: GET EVT.TXT

The file is copied to the file transfer folder (as defined on tab Settings (on page 15) of the configuration).
Format of the file name: Net address+underscore+file name.
The net address is taken over from the driver/variable and is only used for saving so that the data are
not overwritten for several controls.

Example: 0_EVT.TXT

8.3 COSTRONIC DFB

ALIVE TIMEOUT: DETECTION OF A PLC STOP

It is possible to detect if the PLC has stopped for COSTRONIC DFB. To do this, the counter for the event
communication in the Costronics communication mailbox is monitored. If this counter does not change
during a configurable waiting period, a status variable for the connection is set to 1. the next time the
counter is changed, it is set to 0 again.

Driver-specific functions

63

Configuration is carried out using the Alive timeout option in the driver configuration.

The status variable must be of the driver object type and have the Offset 1. The following values are
available:

Value Meaning

0 Event mailbox has not been read yet.

1 Alive Counter is increased.

2 Alive Counter waiting time has expired.

Attention: The Alive counter is part of the event mailbox. If the event mailbox is not read off (no
variables are active), the status is not updated. That means: In order for the Alive status to be
monitored, at least one event variable must be active.

Driver commands

64

DRIVER-SPECIFIC COMMAND FOR UPDATE EVENT STATUS

With a driver-specific command (on page 64), it is possible to force the reading in of the current values
of event-controlled values.

 Command: UpdateEventState <HwNb>

Forces the driver to read all event statuses from the PLC.

Example: UpdateEventState 1

9. Driver commands

This chapter describes standard functions that are valid for most zenon drivers. Not all functions
described here are available for every driver. For example, a driver that does not, according to the data
sheet, support a modem connection also does not have any modem functions.

Driver commands are used to influence drivers using zenon; start and stop for example.
The engineering is implemented with the help of function Driver commands. To do this:

 create a new function

 select Variables -> Driver commands

 The dialog for configuration is opened

Driver commands

65

Parameter Description

Drivers Drop-down list with all drivers which are loaded in the project.

Current status Fixed entry which has no function in the current version.

Driver command Drop-down list for the selection of the command.

 Start driver (online
mode)

Driver is reinitialized and started.

 Stop driver (offline
mode)

Driver is stopped. No new data is accepted.

Note: If the driver is in offline mode, all variables that were

created for this driver receive the status switched off (OFF;
Bit 20).

 Driver in simulation mode Driver is set into simulation mode.
The values of all variables of the driver are simulated by the
driver. No values from the connected hardware (e.g. PLC, bus
system, ...) are displayed.

 Driver in hardware mode Driver is set into hardware mode.
For the variables of the driver the values from the connected
hardware (e.g. PLC, bus system, ...) are displayed.

 Driver-specific command Enter driver-specific commands. Opens input field in order to
enter a command.

 Driver - activate set
setpoint value

Write set value to a driver is allowed.

 Driver - deactivate set
setpoint value

Write set value to a driver is prohibited.

 Establish connecton with
modem

Establish connection (for modem drivers) Opens the input fields
for the hardware address and for the telephone number.

 Disconnect from modem Terminate connection (for modem drivers)

Show this dialog in the Runtime The dialog is shown in Runtime so that changes can be made.

DRIVER COMMANDS IN THE NETWORK

If the computer, on which the driver command function is executed, is part of the zenon network,
additional actions are carried out. A special network command is sent from the computer to the project
server, which then executes the desired action on its driver. In addition, the Server sends the same
driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby
both have a working and independent connection to the hardware.

Error analysis

66

10. Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display
them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also
installed with zenon. You can find it under Start/All programs/zenon/Tools 7.50 -> Diagviewer.

zenon driver log all errors in the LOG files. The default folder for the LOG files is subfolder LOG in
directory ProgramData, example:

%ProgramData%\COPA-DATA\LOG. LOG files are text files with a special structure.

Attention: With the default settings, a driver only logs error information. With the Diagnosis Viewer
you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the
driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 Follow newly-created entries in real time

 customize the logging settings

 change the folder in which the LOG files are saved

Note:

1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more
columns activate property Add all columns with entry in the context menu of the column
header.

3. If you only use Error-Logging, the problem description is in the column Error text. For other
diagnosis level the description is in the column General text.

4. For communication problems many drivers also log error numbers which the PLC assigns to
them. They are displayed in Error text or Error code or Driver error parameter (1 and 2). Hints
on the meaning of error codes can be found in the driver documentation and the protocol/PLC
description.

5. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and
Deep Debug there are a great deal of data for logging which are saved to the hard drive and
which can influence your system performance. They are still logged even after you close the
Diagnosis Viewer.

main.chm::/12464.htm

Error analysis

67

 Attention

In Windows CE errors are not logged per default due to performance reasons.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer
(main.chm::/12464.htm) manual.

main.chm::/12464.htm

Error analysis

68

10.2 Check list

Problem Diagnostics Reason

Values can be read or
written by the
controller.

The controller can be contacted by
'pinging'?

 The controller is not connected to the
power supply or the network.

 The PC is not connected to the network.

 The controller is connected but is in a
different subnetwork and the network
gateway is not entered in the controller or
the subnetmask is not set correctly.

 Is the firewall activated? Port 502 is used
for communication as standard; add it to
the exceptions. Enter accordingly for
individual port numbers.

 The controller can be contacted by
'pinging'?

 The communication parameters are not set
correctly?

 The port must be set according to the
configuration of the controller (Modbus
Slave).

 The network address in the addressing of
the variable does not correspond to the
network address of the connection in the
driver. Attention: Network address 0 must
not be used. Address 0 is reserved as a
broadcast address in Modbus.

 The driver configuration file was not
transferred to the target computer?

 The PLC is connected serially The controller is not connected to the
power supply or the bus system.

 The serial cable is not connected to the
correct interface (COM1...64), or the
interface was set incorrectly.

 The serial interface is blocked by another
application.

 The network address in the addressing of
the variable does not correspond to the
Modbus address (device address).

 The cable is assigned incorrectly or
defective.

Certain values cannot
be read or written by
the controller.

Has an analysis with the Diagnosis
Viewer been carried out to see
which errors have occurred?

 See the following chapter: Error numbers

 Are the variables correctly addressed?

 Are the correct object types used in the

Error analysis

69

See Analysis tool (on page 66)
chapter.

variable? The object types determine the
function code to be used in the Modbus
telegram.

Incorrect values are
displayed.

Has an analysis with the Diagnosis
Viewer been carried out to see
which errors have occurred?

See Analysis tool (on page 66)
chapter.

 Are the variables correctly addressed?

 Are the correct data types used?

 Is the value calculation correct?

	1. Welcome to COPA-DATA help
	2. MODBUS_ENERGY
	3. MODBUS_ENERGY - Data sheet
	4. Driver history
	5. Requirements
	5.1 Control

	6. Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Settings
	6.2.3 Connections

	7. Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	Function codes
	File Record
	LOG entries

	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export

	7.5 Driver variables

	8. Driver-specific functions
	8.1 ICE NPx800
	8.2 GE Multilin UR series
	8.3 COSTRONIC DFB

	9. Driver commands
	10. Error analysis
	10.1 Analysis tool
	10.2 Check list

