zenon manual

COPADATA

©2016 Ing. Punzenberger COPA-DATA GmbH
All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

Table of contents

1. Welcome to COPA-DATA help ... 5
7R o 11 N 5
R €= 4 T - | 6
3.1 ACCESS ZENON APttt e s a e s 6

3.2 MBS .ttt bt bt e bt bRt e h e e bt e bt et e et s aee st sheenbeebeenreens 8
3.2, CanUSEVAriables.....couiiuiiiiiiiieieeee ettt s bbbttt et b e b b s 8

3.2.2 Y DAY T T o] L= TP 9

3.23 VarTADIETYPES ettt ettt ettt st st st e st sttt e bt e s be e e nee s beeenee et 9

3.24 ZENONEXIT 1oiiiiiiiiiiiiiii e 10

3.25 P21 oo 0] =5 (1 4 =T [PSSP 10

3.2.6 ZENONINIT. ..ottt 10

3.2.7 ZENONINTEED. ..ottt nee e 10

L Y o 1) G 10
4.1 DeVElOP ACLIVEX BIEMENTES oo e e e e e st e e e e s e s et b a e e e e e e e sanbbaaeeaeeesnnraaraeeens 11
4.1.1 IMBENODS ...t s ettt sr e b e s sreeenee s 11

4.2 Example LAatCh@ASWITCN (CHH) woeiiiiii ettt ettt e e ette e e et e e e st b e e e ette e e sabaaeesatbeeeensaeeennnaeas 14
4.2.1 INTEITACE e s e st 14

B.2.2 CONEIOLaiiiiiiiiieee et sttt e et n e e e st saeeneeneen 15

4.2.3 IMEENODS ...t st e et sa e st s b e e b e et sbeeeanee s 18

4.2.4 (O] o1 e u oY Y= TaTo lo 11 o] - 1Y RSN 21

4.2.5 ZENON INTEITACE ...ttt s e e 23

4.3 EXAMPIE CD_SIA@ICIIT (CH4) urieeiiiiie et ettt eeete ettt e e et e e e ette e e e ateeeeeabaeeeeabeeesessaaaessbeseenssaesennneeas 24
43.1 INEEITACE .t ettt s e bbb e e sbeeeanee s 24

B.3.2 CONEIOl ittt st st e n ettt e n e st s sreesreeneenneeae 24

433 T34 g o Te TSP P TSRO PT PP 27

43.4 (O] X=T = 1A (oY oY= oo e 11 o] F- 1V A0SR PPN 30

4.3.5 ZENON INTEITACE. ettt et e s s s b e e re e s b e ree e 31

4.4 Example :NET control @s ACHIVEX (CH) ..uueiiicieeeeiiiieceies sttt e sttt e et e s aee e e st e e e e sate e e s ensaeeesnsteeeessaeesnnnneas 31
4.4.1 Create Windows FOrm CONEIOl.......ooeiiieriiiiinieriere ettt 32

4.4.2 Change .NET User Control to dual CONtroleeeiiiiiiiiiiiiiee et e e 35

5.

4.4.3 Work via VBA with ActiveX in the EditOrccovvviiiiiiiiiiee s 39

4.4.4 Connect zenon variables with the .NET USer controlc.ccecveviirienienieeiecnenc e 40
NET USEI CONTIOIS. ... 44
5.1 Different use .NET Control in Control Container or ACHIVEXccceeuierieiiiieiieeniee e 44
5.2 Example .NET CONTrol CONTAINET ..c...iiiiiieiieit ettt sttt 45
5.2.1 GBNEIAL ettt et ettt e h e bbbt e b e et e et s e sheesbee bt ereenneeae 45
5.2.2 Create NET USEI CONEIO ..ciiiiiiieiiieeeee ettt ettt st sttt s e b e sbeeeneeeane 47
5.2.3 add a CD_DotNetControlContainer and a .NET User Controlcccceecverrviieeeeniieeeeecieeesveeenns 55
5.2.4 Accessing the user control via VSTA Or VBAoo ittt tree et e s eaae e e avee e 60
5.3 Example :NET cONrol s ACHIVEX (CH) ..eeeiuiieeeiiiie ettt e ettt e eette e st e e e sate e e s e aae e e s stveeeesataeeesanaaeesanreeeans 63
53.1 Create WIindows FOrmM CONTIOl........eiiiiiiiiiiieiieeeee sttt sttt st 63
5.3.2 Change .NET User Control to dual CoONrolc.coeveiiiiiiiiiiiiieeeeee e 66
5.3.3 Work via VBA with ActiveX in the Editorc.cccieeiieniiiiiiieereeeee e 70
5.3.4 Connect zenon variables with the .NET USer CONtrolcceceeeenieneniennenenie e 71
L = =T 0 T= 4 N 75
6.1 2T 1 ok PP PRR PP 75
6.1.1 WPF in process VISUAlIZAtioNncceiiiiiiiiiiiiee et e e e s e et a e e e e s e e s snrraaeeee s 76
6.1.2 Transfer of values from zenon tO WPFco it 77
6.1.3 Referenced assembIIES........coiuiiiiiiieeeee e et 78
B.1.4 WOIKFIOWS ..ttt ettt ettt ea e s bt e b e b e et e e beeatesaeesaeesbeenbeenneenteans 79
LT A CU] o L= g ToT fo] e [=E Y F=q =Y oSSR 81
6.2.1 Workflow with Microsoft EXpression BIENdcoceeeiieeiiiiiieeniienieeniee et 81
6.2.2 Workflow with Adobe IUSTrator.......cocuiiiiiiiieee e e 85
6.3 (S aY T[Tl e Ta Y= o I2=T o o SRS 93
6.3.1 CDWPF files (COIRCEIVE TIlES) wuvrrriieiieiiiiieiie ettt et e e et r e e e e e eeaarreeeeeeeeenas 93
6.3.2 Create WPF @lEemMENt ..cc.oi ittt s s e 94
6.3.3 Configuration of the lINKINGceoi i e e e e et re e e e e e e 95
6.3.4 Validity Of XAML FIlES ..eeeieeieeeciiee e ctiee ettt e te e s et e e st e e e st e e e e nee e e sanaeeeesntaeesnnnaneesnneeaans 107
6.3.5 Pre-BUilt @l@MENTEScoveiei e e e 109
6.3.6 Display of WPF elements in the zenon web clientcccoooiiiiiiiii s 135
6.3.7 Examples: Integration of WPF in ZENONuiiiiiiiiiiiieec ettt e eeaar e e e 139
6.3.8 3o o= Yo Vo I 1 Y-S 158

1. Welcome to COPA-DATA help

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. Controls

In zenon you can integrate own controls. For this following is available:

» .NET user controls (on page 44) (For implementing in zenon see also .NET controls in manual
Screens.)

» ActiveX (on page 10) (For implementing in zenon see also ActiveX in manual Screens.)

» WPF (on page75)

mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

¥ Information

You can find information about how to use the zenon programming interfaces (PCE, VBA,
VSTA) in manual Programming Interfaces.

3 License information

Part of the standard license of the Editor and Runtime.

& Attention

Note that errors in applications such as ActiveX, PCE, VBA, VSTA, WPF and external
applications that access zenon via the API can also influence the stability of Runtime.

3. General

Controls for zenon can be implemented via ActiveX, .NET and WPF. Via VBA/VSTA you can access the
zenon API.

3.1 Access zenon API
Under zenon you can enhance an ActiveX control with special functions in order to access the zenon API.

ACCESS THE ZENON API

» In Project References, select Add References... the zenon RT object library

» add the enhanced functions to the class code of the control

ENHANCED ZENON ACTIVEX FUNCTIONS

// Is called during the initializing of the control in the zenon Runtime.
public bool zenon>Init (zenon.Element dispElement)..

// Is called during the destruction of the control in the zenon Runtime.

public bool zenonExit ()

// Supports the control variable linking
public short CanUseVariables()..

// Com control supports data types.
public short VariableTypes()..

// Maximum number of variables which can be linked to the control.

public short MaxVariables()...

EXAMPLE

The COM object of a zenon variable is temporarily saved in a Member in order to access it later in the
Paint Event of the control.

zenon.Variable m cVal = null;
public bool zenon>Init (zenon.Element dispElement)
{
if (dispElement.CountVariable > 0) {
try |
m cVal = dispElement.ItemVariable (0);
if (m_cval != null) {
object obRead = m cVal.get Value((object)-1);
UserText = obRead.ToString();
}
}catch { }
}
return true;
}
public bool zenonExit ()
{
try f
if (m cval != null) {
System.Runtime.InteropServices.Marshal.FinalReleaseComObject (m_cVal) ;

m cVal = null;
}

catch { }

return true;

public short CanUseVariables ()

return 1; // the variables are supported

public short VariableTypes ()

{
return short.MaxValue; // all data types are supported

public short MaxVariables ()

{

return 1; // as maximum one variable should be linked to the control

private void SamplesControl Paint (object sender, PaintEventArgs e)

{

// zenon Variables has changed

try {
if (m_cval != null) {
object obRead = m cVal.get Value((object)-1);

UserText = obRead.ToString();

}
}catch { }

3.2 Methods

ActiveX and .NET controls which use zenon variables need certain methods.

3.2.1 CanUseVariables

Prototype: short CanUseVariables() ;

This method either returns 1 or 0

General

Zzenon

1: The control can use zenon variables.

For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method variableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

3.2.2 MaxVariables

Prototype: short MaxVariables() ;
Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

3.2.3 VariableTypes

Prototype: short VariableTypes() ;

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy type.h):

WORD 0x0001 Position 0
BYTE 0x0002 Position 1
BIT 0x0004 Position 2
DWORD 0x0008 Position 3
FLOAT 0x0010 Position 4
DFLOAT 0x0020 Position 5
STRING 0x0040 Position 6
IN_OUTPUT 0x8000 Position 15

3.24 zenonExit

Prototype: boolean zenonExit() ;
This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

3.2.5 zenonExitEd

Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.
Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

3.2.6 zenonlnit

Prototype: boolean zenonInit (IDispatch*dispElement) ;

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or Up.

The Element Input dialog appears after double-clicking the ActiveX element or after selecting property
ActiveX settings in the element properties in node Representation.

3.2.7 zenonlnitEd

Equals zenonlnit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4. ActiveX

With ActiveX the functionality of the zenon Runtime and Editor can be enhanced autonomously.

10

In this manual you can find:
» Develop ActiveX elements (on page 11)
» Example LatchedSwitch (C++) (on page 14)
» Example CD_SliderCtrl (C++) (on page 24)
» Example :NET control as ActiveX (C#) (on page 31)

You can find information about the dynamic element ActiveX in manual Screens in chapter ActiveX.

ACTIVEX FOR WINDOWS CE

If an ActiveX Control should run under Windows CE, the apartment model must be set to Threading. If
it is set to Free, the control will not run in zenon Runtime.

4.1 Develop ActiveX elements

The dynamic element ActiveX in zenon can forward variables to the ActiveX control without using VBA
to operate the control.

The control now defines by itself, how many zenon variables it can use and of what type they may be.
The properties of the control can be established by means of dynamic elements.

To do this, the interface (dispatch interface) of the control must support a range of certain methods (on
page 11).

4.1.1 Methods

Each ActiveX control which can use zenon variables must contain the following methods:
» CanUseVariables (on page 8)
» MaxVariables (on page 9)
» VariableTypes (on page 9)
» zenonExit (on page 10)
» zenonExitEd (on page 10)
» zenonlnit (on page 10)

» zenonlnitEd (on page 10)

It does not matter, which dispatch ID the methods have in the interface. On calling the methods zenon
receives the correct ID from the interface.

11

CanUseVariables

Prototype: short CanUseVariables() ;
This method either returns 1 or 0

Valu Description

e

1: The control can use zenon variables.
For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method VariableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

MaxVariables

Prototype: short MaxVariables() ;
Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

VariableTypes

Prototype: short VariableTypes() ;

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_ type.h):

12

Value 1 Value 2 Equivalent

WORD 0x0001 Position 0
BYTE 0x0002 Position 1
BIT 0x0004 Position 2
DWORD 0x0008 Position 3
FLOAT 0x0010 Position 4
DFLOAT 0x0020 Position 5
STRING 0x0040 Position 6
IN_OUTPUT 0x8000 Position 15
zenonExit

Prototype: boolean zenonExit() ;
This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

zenonExitEd

Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.
Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

zenonlnit

Prototype: boolean zenonInit (IDispatch*dispElement) ;

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or Up.

The Element Input dialog appears after double-clicking the ActiveX element or after selecting property
ActiveX settings in the element properties in node Representation.

13

zenonlnitEd

Equals zenonlnit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4.2 Example LatchedSwitch (C++)

The following example describes an ActiveX control, that realizes a latched switch with two bit variables.
The first variable represents the switch, the second variable the lock. The value of the switching variable
of the ActiveX control can only be changed, if the locking variable has the value 0.

The status of the element is displayed with four bitmaps which can be selected in the properties dialog
of the control in the zenon Editor.

4.2.1 Interface

The control LatchedSwitch has the following dispatch interface:

[wuid(EB207159-D7C9-11D3-B019-080009FBEAA2) ,
helpstring (Dispatch interface for LatchedSwitch Control), hidden]
dispinterface DLatchedSwitch

{
properties:
// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_ PROP (CLatchedSwitchCtrl)
[id(1)] boolean SollwertDirekt;
] IPictureDisp* SwitchOn; // container for the bitmaps
] IPictureDisp* SwitchOff;
] IPictureDisp* LatchedOn;
)] IPictureDisp* LatchedOff;
//}}AFX_ODL PROP

[id (2
[id(3
[id (4
[1d (5

methods:

// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFXioDLiMETHOD(CLatchedSwitcthrl)

//}}AFX_ODL METHOD

[id(6)] short CanUseVariables();

[1d(7)] short VariableTypes();

[1d(8)] short MaxVariables () ;

14

[1d(9)] boolean zenonInit (IDispatch* dispElement) ;
[1id(10)] boolean zenonExit ();
[id(DISPID_ABOUTBOX)] void AboutBox () ;

}i
The properties SwitchOn to LatchedOff contain the bitmaps for displaying the four different states of the

control. The bitmaps themselves are stored in objects of the class CScreenHolder. The property
SollwertDirekt defines if the input of set values is done via a dialog or directly by clicking the control.

4.2.2 Control

Implementing the control is done with the class CLatchedSwitchCtrl. As members this class has the
CScreenHolder objects for the storage of the bitmaps. Additionally three dispatch drivers for the
dynamic element and the variables are generated:

class CLatchedSwitchCtrl : public COleControl
{

DECLARE DYNCREATE (CLatchedSwitchCtrl)

// Constructor

public:
CLatchedSwitchCtrl () ;
// Overrides

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CLatchedSwitcthrl)

public:

virtual void OnDraw (CDC* pdc, const CRecté& rcBounds, const CRect& rcInvalid);
virtual void DoPropExchange (CPropExchange* pPX);

virtual void OnResetState ();

virtual DWORD GetControlFlags();

//}}AFX VIRTUAL

// Implementation

protected:

~CLatchedSwitchCtrl () ;

15

DECLARE
DECLARE
DECLARE

DECLARE
// Mess
//{{AFX
afx msg
//}}AFX
DECLARE

// Disp

//{{AFX

~ OLECREATE EX (CLatchedSwitchCtrl) // Class factory and guid
_OLETYPELIB (CLatchedSwitchCtrl) // GetTypelnfo
_PROPPAGEIDS (CLatchedSwitchCtrl) // Property page IDs
_OLECTLTYPE (CLatchedSwitchCtrl) // Type name and misc status
age maps
~MSG (CLatchedSwitchCtrl)

void OnLButtonDown (UINT nFlags, CPoint point);
MSG
MESSAGE_MAP ()

atch maps

_ DISPATCH (CLatchedSwitchCtrl)

BOOL m sollwertDirekt;

afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
afx msg
//}}AFX
CScreen
CScreen
CScreen

CScreen

DECLARE

void OnSollwertDirektChanged() ;
LPPICTUREDISP GetSwitchOn() ;
void SetSwitchOn (LPPICTUREDISP newValue) ;
LPPICTUREDISP GetSwitchOff () ;
void SetSwitchOff (LPPICTUREDISP newValue) ;
LPPICTUREDISP GetLatchedOn () ;
void SetLatchedOn (LPPICTUREDISP newValue) ;
LPPICTUREDISP GetLatchedOff (),
void SetLatchedOff (LPPICTUREDISP newValue) ;
short CanUseVariables () ;
short VariableTypes();
short MaxVariables();
BOOL zenonInit (LPDISPATCH dispElement) ;
BOOL zenonExit () ;

_DISPATCH

Holder m_ SwitchOn;

Holder m_SwitchOff;

Holder m LatchedOn;

Holder m LatchedOff;

DISPATCH MAP ()

16

afx msg void AboutBox();

// Event maps

//{{AFX_EVENT (CLatchedSwitchCtrl)

//}}AFX_EVENT

DECLARE EVENT MAP ()

double VariantToDouble (const VARIANT FAR *v);

void VariantToCString (CString *c,const VARIANT FAR

BOOL IsVariantString(const VARIANT FAR *v);

BOOL IsVariantValue (const VARIANT FAR *v);

// Dispatch and event IDs

public:

CString szVariable[2];
IElement m dElement;

IVariable m dLatchVar, m dSwitchVar;

enum {

//{{AFX_DISP ID(CLatchedSwitchCtrl)
dispidSollwertDirekt = 1L,
dispidSwitchOn = 2L,
dispidSwitchOff = 3L,

dispidLatchedOn

41,
dispidLatchedOff = 5L,
dispidCanUseVariables = 6L,
dispidvVariableTypes = 7L,
dispidMaxVariables = 8L,
dispidZenOnInit = 9L,
dispidZenOnExit = 10L,
//}}AFX DISP ID

}i

}i

17

4.2.3 Methods

The following methods are used:
» CanUseVariables (on page 18)
» VariableTypes (on page 18)
» MaxVariables (on page 18)
» zenonlnit (on page 19)

» zenonExit (on page 20)

CanUseVariables

This method returns 1 so zenon variables can be used.
short CLatchedSwitchCtrl::CanUseVariables ()
{

return 1;

}

VariableTypes

The control only can work with bit variables, so 0x0004 is returned.
short CLatchedSwitchCtrl::VariableTypes ()
{

return 0x0004; // Only bit variables
}

MaxVariables

Two variables can be used. Therefore 2 is returned.
short CLatchedSwitchCtrl::MaxVariables ()
{

return 2; // 2 variables

}

zenonlnit

This method gets the Dispatchdriver of the variables via the Dispatchpointer of the dynamic
element. With this Pointer the variable values are read and written when clicking and drawing the
control.

BOOL CLatchedSwitchCtrl: :zenonInit (LPDISPATCH dispElement)
{

m_dElement = IElement(dispElement) ;
Element.m_lpDispatch->AddRef () ;

if (m_dElement.GetCountVariable() >= 2)

{

short iIndex = O;
m_dSwitchVar = IVariable (m_dElement.ItemVariable (COleVariant(iIndex)))
m_dLatchVar = IVariable (m_dElement.ItemVariable (COleVariant (++iIndex)))

}

return TRUE;

}

19

Y Information

Element.m_lpDispatch->AddRef();

Objects that are not used are automatically deleted from the memory. This must be carried
out by the programming. The programmer determines whether an object - based on a
reference counter - can be removed.

COM uses the TUnknow methods AddRe f and Release to administer the number of
references of interfaces to an object.

The general rule for calling up these methods are:

» AddRef must always be called up on the interface if the client receives an interface
pointer.

» ARelease must always be called up if the client ends the use of the interface pointer.

With a simple implementation, a counter variable in the object is increased with an AddRe £
call. Each call of a Release reduces this counter in the object. If this counter is at ZERO
again, the interface can be removed from the memory.

A reference counter can also be implemented so that each reference to the object (and not
to an individual interface) is counted.

In this case, each AddRef and each Release substitute call up a central implementation to
the object. A Release then unlocks the complete object if the reference counter has
reached zero.

zenonExit

This method releases the dispatch driver.
BOOL CLatchedSwitchCtrl::zenonExit ()

{

m dElement.ReleaseDispatch();
m_dSwitchVar.ReleaseDispatch();
m_dLatchVar.ReleaseDispatch() ;
return TRUE;

}

20

4.2.4 Operation and display

Write set value

A value can be set by clicking the control with the left mouse button.

If m_iSollwertDirekt is 0, a dialog for the selection of the set value is opened, otherwise the current
value of the switching variable is inverted.

If the locking variable has the value 1, only a MessageBeep is executed. No value can be set via the
control.
void CLatchedSwitchCtrl::OnLButtonDown (UINT nFlags, CPoint point)

{

CRect rcBounds;

GetWindowRect (&rcBounds) ;

COleVariant coleValue ((BYTE) TRUE) ;

BOOL bLatch = (BOOL)VariantToDouble ((LPVARIANT) &m dLatchVar.GetValue());
BOOL bSwitch = (BOOL)VariantToDouble ((LPVARIANT) &m dSwitchVar.GetValue());
if (bLatch) // Locked!!!

MessageBeep (MB ICONEXCLAMATION) ;
else

{

if (m_sollwertDirekt)
{

bSwitch = !bSwitch;
}

else

CSollwertDlg dlg;

dlg.m iSollwert = bSwitch 2 1 : 0;
if (dlg.DoModal () == IDOK)

{

21

if (dlg.m iSollwert == 2) // Toggle

bSwitch = !bSwitch;

else

bSwitch = (BOOL)dlg.m iSollwert;
}

}

coleValue = (double)bSwitch;

m_dSwitchVar.SetValue (coleValue);

}
COleControl::OnLButtonDown (nFlags, point);
}

Drawing

On drawing the control the values of the variables are read via their dispatch drivers, and accordingly
one of the four defined graphics is displayed. When the value of a variable changes, the control is
updated by the OnDraw routine.

void CLatchedSwitchCtrl: :0OnDraw (CDC* pdc, const CRect& rcBounds, const CRecté& rcInvalid)

{

CRect rcBitmap = rcBounds;

rcBitmap.NormalizeRect () ;

if (!m_dElement)
{

m_SwitchOn.Render (pdc, &rcBounds, &rcBounds);
return;

}
BOOL bvall = 0, bval2 = 0;
VARIANT vRes;

if (m_dSwitchvar) // Variable exists?

{

vRes = m _dSwitchVar.GetValue();

22

bvall = (BOOL)VariantToDouble (&vRes) ;

}

if (m_dLatchvVar) // Variable exists?
{

vRes = m dLatchVar.GetValue();
bvall = (BOOL)VariantToDouble (&vRes) ;
}

if (bvall && bVal2)

m SwitchOn.Render (pdc, rcBitmap, rcBitmap);
else 1f (!bVvall && bVal2)

m SwitchOff.Render (pdc, rcBitmap, rcBitmap):
else if (bvall && !bval2)

m_LatchedOn.Render (pdc, rcBitmap, rcBitmap);

else

m_LatchedOff.Render (pdc, rcBitmap, rcBitmap);
}

4.2.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the

Class Wizard of the development environment (button Add Class, select From a type library, select

zenrt32.tlb).

For our control these are the classes IElement and IVariable. They are defined in zenrt32.h and

zenrt32.cpp.

23

4.3 Example CD_SliderCtrl (C++)

The following example describes an ActiveX control which equals the Windows SliderCtrl. This
component can be linked with a zenon variable. The user can change the value of a variable with this
slider. If the value of the variable is changed with some other dynamic element, the slider is updated.

4.3.1 Interface

The control €D_SliderCtrl has the following dispatch interface:
[uuid (5CD1B01D-015E-11D4-A1DF-080009FD837F),
helpstring(Dispatch interface for CD SliderCtrl Control), hidden
]
dispinterface DCD SliderCtrl
{

properties: //*** Properties of the controls

[id(1)] short TickRaster;
[1d(2)] boolean ShowVertical;

[1d(3)] short LineSize;
methods: //*** method of the control (for zenon ActiveX)

[id(4)] boolean zenonInit (IDispatch* pElementInterface);
[1d(5)] boolean zenonExit ();

[1id(6)] short VariableTypes();

[id(7)] short CanUseVariables () ;

[1d(8)] short MaxVariables();
[1d(DISPID ABOUTBOX)] void AboutBox();

}i

4.3.2 Control

Implementing the control is done with the class CD_SliderCtrICtrl. This class has a standard Windows
cSliderCtrl as a member, with which the control is subclassed. The interfaces IVaribale and 1Element
contain zenon interfaces which had to be integrated. These are deduced from COleDispatchDriver.

24

class C

{

DECLARE

private

CD SliderCtrlCtrl : public COleControl

_ DYNCREATE (CCD_SliderCtrlCtrl)

. //*** member variables

BOOL m bInitialized;

BOOL

m_bShowVertical;

BOOL m bTicksBoth;

long
long

m nRangeStart;

m nRangeEnd;

long m nTickOrientation;

IVariab
IElemen

CSlider

public:

CCD_Sli

// {{AFX
public:
virtual
virtual
virtual
virtual

//}}YAFX

protect

~CCD_S1

le m interfaceVariable;
t m_interfaceElement;
Ctrl m wndSliderCtrl;

derCtrlCtrl () ;
_VIRTUAL(CCD_SliderCtrlCtrl)
void OnDraw (CDC* pdc, const CRect& rcBounds, const CRecté& rcInvalid);
BOOL PreCreateWindow (CREATESTRUCT& cs);
void DoPropExchange (CPropExchange* pPX);
void OnResetState () ;
__VIRTUAL

ed:

iderCtrlCtrl () ;

//*** methods for the conversion from variant

double

DECLARE

DECLARE

DECLARE
DECLARE

VariantToDouble (const VARIANT FAR *vValue);

_OLECREATE_EX (CCD_SliderCtrlCtrl) // Class factory and guid
_OLETYPELIB (CCD SliderCtrlCtrl) // GetTypelnfo
_PROPPAGEIDS (CCD_SliderCtrlCtrl) // Property page IDs

_OLECTLTYPE (CCD_SliderCtrlCtrl) // Type name and misc status

25

//*** methods for the functionality of the SliderCtrl
BOOL IsSubclassedControl ()

LRESULT OnOcmCommand (WPARAM wParam, LPARAM lParam);

//{{AFX_MSG(CCD_SliderCtrlCtrl)

afx msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
afx msg void HScroll (UINT nSBCode, UINT nPos);

afx msg void HScroll (UINT nSBCode, UINT nPos);

afx msg void OnLButtonDown (UINT nFlags, CPoint point);
afx msg void OnLButtonUp (UINT nFlags, CPoint point);
//}}AFX_MSG

DECLARE MESSAGE MAP ()

//{{AFX_DISPATCH(CCD_SliderCtrlCtrl)

afx msg BOOL GetTickOnBothSides();

afx msg void SetTickOnBothSides (short nNewValue);
afx msg BOOL GetShowVertical();

afx msg void SetShowVertical (BOOL bNewValue) ;

afx msg short GetTickOrientation();

afx msg void SetTickOrientation (short nNewValue);
afx msg BOOL zenonInit (LPDISPATCH pElementInterface);
afx msg BOOL zenonExit();

afx msg short VariableTypes();

afx msg short CanUseVariables();

afx msg short MaxVariables();

//}}AFX_DISPATCH

DECLARE DISPATCH MAP ()

afx msg void AboutBox();
//{{AFX_EVENT (CCD_SliderCtrlCtrl)
//}}AFX EVENT

DECLARE EVENT MAP ()

public:

enum {

//{{AFX_DISP ID(CCD SliderCtrlCtrl)
dispidShowVertical = 1L,
dispidTicksOnBothSides = 2L,
dispidTickOrientation = 3L,
dispidZenOnInit = 4L,
dispidZenOnExit = 5L,
dispidvariableTypes = 6L,
dispidCanUseVariables = 7L,
dispidMaxVariables = 8L,
//}}AFX DISP ID

}i

}i

4.3.3 Methods

The following methods are used:
» CanUseVariables (on page 27)
» VariableTypes (on page 28)
» MaxVariables (on page 28)
» zenonlnit (on page 28)

» zenonExit (on page 29)

CanUseVariables

This method returns 1 so zenon variables can be used.
short CCD_SliderCtrlCtrl::CanUseVariables ()
{

return 1;

}

27

VariableTypes

The control can work with word, byte, doubleword and float variables. You will find a list of the possible
data types in the general description (on page 9) of this method.

short CCD _SliderCtrlCtrl::VariableTypes ()
{

return 0x0001 | // Word

0x0002 | // Byte
0x0008 | // D-Word
0x0010 | // Float
0x0020; // D-Float
}

MaxVariables

Only one variable can be linked to this control.
short CCD_SliderCtrlCtrl::MaxVariables()
{

return 1; // 1 variables

}

zenonlnit

The parameter dispElement contains the interface for the dynamic element. With this element the
linked zenon variable determined. If it is valid, the area of the SlideCtrl is set. Additionally the settings
for the display (number of ticks, ...) are set. If no variable is linked, the display range is set to 0 to 0. Thus
the SliderCtrl cannot be changed. The variable m_blnitialized defines that values can be set from now
on.

BOOL CCD_SliderCtrlCtrl::zenonInit (LPDISPATCH dispElement)
{

//*** Determine the variable using the zenon element

m_interfaceElement = IElement (pElementInterface);
if (m_interfaceElement.GetCountVariable() > 0) {
short nIndex = 0;

28

m _interfaceVariable = IVariable
(m_interfaceElement.ItemVariable (COleVariant (nIndex)));

}

//*** Initialize the area of the Slider-Ctrl

if (m interfaceVariable) {

//*** Define range

m nRangeStart = (long) VariantToDouble (&m interfaceVariable.GetRangeMin()) ;
m nRangeEnd = (long) VariantToDouble (&m interfaceVariable.GetRangeMax());
m_wndSliderCtrl.SetRange(m_nRangeStart,m_nRangeEnd,TRUE);

//*** Define sub ticks

m wndSliderCtrl.SetTicFreq(m nTickCount);

m wndSliderCtrl.SetPageSize (m nTickCount);

m wndSliderCtrl.SetLineSize (m nLineSize);

} else {

m wndSliderCtrl.SetRange (0,0, TRUE) ;
return FALSE;
}

m bInitialized = TRUE;
return TRUE;

}

zenonExit

In this method the zenon interfaces are released again.
BOOL CCD_SliderCtrlCtrl::zenonExit ()
{

m interfaceElement.ReleaseDispatch();
m interfaceVariable.ReleaseDispatch();
return TRUE;

}

4.3.4 Operation and display

Drawing

With DoSuperclassPaint the SliderCtrl is drawn (as is a subclassed control). If at the moment of drawing
the slider is moved, the variable m_blnitialized gets the value FALSE. This makes sure that the value can
be changed. Normally the value of the variable is read and displayed with the method SetPos of the
SliderCtrl.

void CCD_SliderCtrlCtrl::0OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{

//*** update view
DoSuperclassPaint (pdc, rcBounds) ;

if (m_interfaceVariable && m bInitialized) {

COleVariant cValue (m_interfaceVariable.GetValue());
int nValue = (int) VariantToDouble (&cValue.Detach());
m wndSliderCtrl.SetPos (nValue);

}

}

Write set value

In the method LButtonDown the variable m_blnitialized is set to FALSE, and in the event LbuttonUp it
is set to TRUE again. This makes sure that the value can be changed. Otherwise the routine OnDraw
would be executed and the old value would be displayed.

void CCD_SliderCtrlCtrl::OnLButtonDown (UINT nFlags, CPoint point)
{
m_bInitialized = FALSE;

COleControl::OnLButtonDown (nFlags, point);

void CCD _SliderCtrlCtrl::0OnLButtonUp (UINT nFlags, CPoint point)
{

m_bInitialized = TRUE;

COleControl::OnLButtonUp (nFlags, point);

30

A value is sent to the hardware, when the slider is moved. In the methods Hscroll or Vscroll the value is
sent to the hardware (depending if it is a horizontal or a vertical slider).

void CCD_SliderCtrlCtrl::HScroll (UINT nSBCode, UINT nPos)
{

switch (nSBCode) {

case TB LINEUP:
case TB PAGEUP:
case TB LINEDOWN:
case TB PAGEDOWN:
case TB THUMBTRACK:

case TB THUMBPOSITION: {

//*** Set value without dialog ?

int nValue = m wndSliderCtrl.GetPos();
COlevVariant cValue ((short) nValue,VT I2);

m interfaceVariable.SetValue (cValue);

}

}

}

4.3.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the
Class Wizard of the development environment (button Add Class, select From a type library, select
zenrt32.tlb).

For our control these are the classes IElement and IVariable. They are defined in zenrt32.h and
zenrt32.cpp.

4.4 Example :NET control as ActiveX (CH)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1. Create Windows Form Control (on page 32)

31

2. Change .NET User Control to dual control (on page 35)
3. Work via VBA with ActiveX in the Editor (on page 39)

4. Connect zenon variables with the .NET user control (on page 40)

¥ Information

The screenshots for this theme are only available in English.

4.4.1 Create Windows Form Control

To create a Windows Form Control:

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

New Project E|E|

Project bypes: Templates: NET Framewark 3.5 v |E|E
T e
o s WSS PIORES 8| 25 WP tromser Applcation A
5 Visusl C# 2 Console Application
Windows [@Emety Project
web Awindows Service
Smart Device §# WPF Custom Control Library
Office &) WPF User Control Library
Database 7= Windows Forms Control Libeary
Reporting
5515_ScriphComponent My Templates
5515 _ScriptTask v 9

A project for creating controls bo use in Windows Forms apphcations (. NET Framework 3.5)

Solution: Create new Solution % |] Create directory For solution
[[]Add to Soyrce Control
Cx] (e

32

3.

Rename the default control to the desired control name.
In our example: SampesControl.cs.

File Edit Wiew Project Build Debug Data

Tools Test

Window Help

|=d| Properties
[s3] References

@Soluti..- @Class |\-§Macro... |Resou...

Properties

SamplesControl.cs File Properties -

> 0 x

|IE Output| |L‘3 Error List| 5 Find Resula|

Ready

ActiveX

Open the Control Designer and add the desired control; in our case a text box:

¥ zenOnDotNetControl - Microsoft Yisual Studio

File Edt View Project Buld Debug Data Tools Test Window Help

oLl S Gl LA ok Lo 3] g

-S54 @9 - - DD Debug

2% | age e O

‘extBox
Treevy Version 2.0.0.0 from Microsoft Corporation
NET Component

=/ Contal{ Enables the user to enter text, and provides multline
[—* Pointel ©3%ing and password character masking.

% Floud auratDanal hd|

(3 output| |5 Error List| 5 Find Resuks 1

cSokki... EpCiass ... | B Macro. ,:a‘?c’,wu |

|Properties -8 x|
textBox1 System.Windows.Forms. TextBox -
Bl [E]23 ,
Text o]
TextAbon Left
UseWakCursor False
B Behavior
AcceptsReburn False
AcceptsTab False v

When this property is true, the Cursor property of
the control and &s child controls is set to WaitCursor.

Ready

Zzenon

4. Normally controls have properties. Open the Code Designer via View Code and ass the desired

properties which should be available externally.
In our example: Externally visible property , UserText" with get and set access which contains

the text of the text box:

#% zenOnDotNetControl - Microsoft Visual Studio

File Edk ‘iew Project Buld Debug Data Took Test Window Help
G-l S d % s o B 3L b Debug ~ Ay CPU - %
{.__'l‘-“ a aT al : 53 = = [ts "1
% SamplesControl.cs® samplesControl, cs [Design]* L Sl Soltion Explorer
=) =] 2
£ || “tgzenOnDotietControl SamplesCortral % | UserText v| 2| F]E R &
2 £ using System; = ;E ?:r::lnnnl:eltmlml
using System.Collections.Generic; @ rropertis
®- [z References
using System.ComponentModel: 2
using System.Drawving: ' J Cpen
using System.Data; Open With. .
using System.Ling:
using System.Text; ﬂ Refresh
“using System.Windows.Forms: view Cade
[namespace zenOnDotNetControl \E— VW Uesger
{ & Wiew Class Disgram
=] :Juh].:.r: partial class SamplesControl : UserControl _i\Soluh... _Ti-'a-.: Exclude From Project
=) public SamplesControl() ELopertes # Cut
{ SamplesControlcs | 1y cqpy
InitializeComponenti);
L y il =y 7 Delete
—— T =] Rename
-
=] //hfhl.lc string UserText R\\ Bulld Actian . P .
ya N Copy to Output Dirg =1 Properties
(get { return textBoxl.Text; } :l Custom Tool
\ set { textBoxl.Text = wvalue; } / Custom Tool Namespac
AN / =]
R /_/" File Mame SamplesControl.cs
N — - v
Advanced
v
3] 3
=) oukpuk| |53 Error List| 5 Find Resuts 1
Ready

5. Compile the project.

The Windows Forms Control can now be used in other Windows Forms projects.

Important: The control must be inserted manually in the control tool box via Choose Items.

@2 zenOnDotNetControl - Microsoft Visual

File Edit View Project Build Debug D:

EnRACE R = NP WE= N Y

| = & o] | TR o ul | oo
3 Too trol.cs |
;).— (2b] Button ~
8_ | | PSS
o
o
b3 Cut
Copy
Paste
Delete

A LinkL
— Rename Iterm
, List View
Show All
T Mont Choose Items...

Sart Ikems Alphabetically

(| (R Reset Toolbox
|8 Pictu

@ Prog Add Tab

() Radid Move Up

ﬂ;i RichT] Move Down
|abll TextBd

K ToolTip

T Treeview

:‘j WebBrowser
= Containers
k Painter

4.4.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

35

1. Open the project and activate property Register for COM interop in the Build settings:

2% zenOnDotNetControl - Micrasoft Visual Studio (&=

Fle Edt Vew Froject Bud Debug Data Tooks Test Window Heb
RS RA= ™ N~ 2} \ . o T b Dsbug - Ay U - | [# AbmErsseaaedintiskzstion =
L : = =
_\I‘ 4 [Destign]
£ | aoteaton
Corfiguration: | Active (Debug) ¥ Platformc | Active (ny CPU) > ® U F] efresh
Bukd® &
= (] eud
Busld Events Rebud
Condtional compdation symbo: clomn
al [] Define DEBUG constart =
Resources [] Defire TRACE constant JE—
Services Platform target: Ay CPY ¥ Add Sevice Reference...
gmmm P L res—
u Cptirize code
Debug
R Paths
= kT G§ | Add Project to Souce Ct
Signirg Warring level: + » & ox
SUEER OS5 WATINGS: _?5.
Trest warmings a5 enmors » e
© Horw 2en0e [§ | Open Folder in Windows
() Speciic warnings: ELJ/‘—’L_-]_W&:_ |
fo]] Project Fle cenCrDiothetConts
Cutpat
ot o
’Q_:_n_mmmﬁ‘_ﬂ\
b Register for CoMinkercp)
Gersraks serokastion assebly: |42 :
Mise
Dowd] D
Resdy

2. Open the file Assemblylnfo.cs and
e set attribute ComVisible to true
e add attribute ClasslInterface

[assembly: ComVisible(true)]

ActiveX \

[assembly: ClassInterface(ClassinterfaceType.AutoDual)]

Ble £t Wew Project Buld Debug Data ook Teg Windew Help

(R A=A " 1 I N = e - "
I T W T a0 LG) N it e
> Assemblylnfo.cs SwrplesControles | SamplesCortrol.cs [Design]

-

RO |

Elusing Jystem.Reflection:
using Syscem.Runtime.CompilerServices:
using System.Runtime. IntercpServices:

/{ General Information about an assembly iz controlled through the following
/{ set of attributes. Change these attribute values to modify the informatio
// associated h an assembly.

[as=embly: le ("zenodnbotNetControl™)]
[as=embly: ("))
[as=embly: nf fguration (™))
[a==embly: ¥
[aszenbly roduct (Y zendnbotNetControl™)]
[azsenbly pyE ("Copyright & 2005"))
[aasexbly BT
[aasembly:
g5 [Tl jn: kR
/f Setting ComVisible to false makes the types in this assembly not visible B Sy
A to COM e EEd—to-access a type in this assembly from

w
/[-o0W, zet the ComWisible attribute to true on CREE-Lype.
[as=embly: z ible (erue)]
[assembly: Cl nterface (ClassInterfa Aurobual
— -

— -
4/ The following GUID is for the ID of che typelib if this project i3 exposes
[assenbly: Guid{"41bE85k7-coL5-47ce-bh17-541bIa65740e™)]

‘Cogry b Outpt Do not copy
Custom Tocl
Custom Tool b

B Misc

/f Version information for an assembly consists of the following four values

17 FleName Assemblylrfo.cs
" Major Version e
i Minor Version
I Build Number
I Revision
A Advanced
/7 You can specify all the values or you can defsult the Build and Revision I
£ >

& cutput| [4 Ervor List| 5] Find Resuits 1
Ttem(s) Saved

Open the code designer via View Code and add the necessary ActiveX attributes and using
entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

“ zenOnDotMetControl - Microsoft Visual Studio

File Edt Wew FProjct Buld Debug Dasta| Took |Test Window Help
- - b A M a9 - - D - S| B Debug - Ay CPU - [# AfxmEnsureMansgedinkislzation - =
. e N Ry - =

1220 2L L2 o a_aT ai |Gl Gl e i b b as
Assemblylnfo.cs ~ SamplesControles samplesControl.cs [Desion]

. S SIEFEEER
Eusing Syatem: ;'l :g.xn::w::u:ulﬁr\d

using System.Collections.Gensric: ; : Rer:mms

using System.ComponentHodel; i @
using System.Drawing: =
using System.Daca; 0’| 9pen
using System.Ling: Open Wih...

using System. Textc: Refresh

using System.Windows.Forms:

using Syatem.Runtime,InteropServices; [E] Ve Code

using System.Reflection: T VewDesgrer

jusing Microsoft.Windi;
L

[%

0cj00 | 3.

& Wiew Class isgram

El namespace zendnbotNetControl Esechyde From Project
! $ ot
[Progld("zentnbotNetConcrol. SamplesControl™)] .
[Guid ("CFFS0BED1-A3IDC-4a57-BOBA-A0B022CADETA™)] -’135-- “a Copy
Icom ble(true), Cla riaceType. AutoDual)] Proparties % Dekte
4y public partial class = Control
f Renams
=] public SamplesControl() L& Properties
t
InitializeC i) (Chaose the desied foemat below, then select "Copy” b I E.’ ’ ced
nitializefomponent () copy the resuls bo the cipbosrd [the reull: can then be tion Compide

) £ =
ipasted inko your sowce code]. Choose “Ewl” when Hew GUID :p Do nok copy
(5] public string UserTexc GUID Fomat Indl\

i
get { return textBox1.Text: } @)1 IMPLEMENT_OLECREATEL..)
set { textBoxl.Text = value: }) 2 DEFINE_GUIDL..)
-)2 static const st GUID = (...)

) 4 Regsty Format [ie. boosoocnn won)]

he SerplesCortrolcs

Resl
A CFFS0BD1 AIDC 4297 BOBAANBIZZCADETA)

IMPLEMENT_DLECREATE[«cclasty, <<endmnal_ namass,

< O s, Dial, 0:8D, 0422, Duca, 08,
e7al:

=] output| | Emor List S Find R

For the control to be selectable as Active X user interface control, you must add the functions to
the following control classes:

e RegisterClass

e UnregisterClass

% zenOnbatietContral - Micrasaft Visual Studio
B¢ E ww Project Buld Debuy Dgfa Took Tet Aiedow Help

RN A= =N I WY b Debg = Ay CRU = [AfmEraseMaragedintisiestion - | GGl S E] e O
- L2 & : e — ol
ks Assemtlyirio.cs SamplesControbcs | SanghesControlcs [Desgn] AL “ohtion Explorer

D n]| 1 &

45 enCiecttet Conksol SanplesControl || %o Lreegister Classistring b -
. . i enOnDotMetComtral
- OnbatNetontrol
mmespace senOnbatCont Bl & & oo
4 e
[Froglai"zeninborerconces 5 E—
[Guid | "CFFOOET -4 -
[Camiizible (true] , ©lassintectace | =Type, Autobuall]
public partial class lesContr 1
f
public Sampleacontroli)
Initializecomponsnt |)
public string UserText
ger { return cextBoxl.Texc:)
zet { textBoxl,Text = valus: !
Aregs -
11z static void RegisterClass|string keyl > TR
fer |key) : Properties -0

ROOT, ™
ClassesRoot.OpenSubley sb. ToStringl), true):

SamplesContralcs Fis Procert =

. k.Craace3ubFey | "Conrral ; FlE)

N a

e BprocServerlz = x.OpenSubKey|TInprocServeri®, truels Fuid Action Conpde
1 SerValus ["CodeBaze”, Leseubly.detExecutinghaseshly|).CodeBase) : Copy bo Outps Do nok copy
i Losw () Custom Todl
®.Clazel): Custom Todl b

=]

File Mo Samplesontrol o5
sistazFusctioni))
static woid Uncegisterdlassistring key)

FingButld new s < eyl :
#b, Replace LASZES_BOOTV®, *¥):
Regiatrs Classeshaat.OpenSubkey |=b. ToString|), tras)s
. e leteSubk falze) s
’ cyRey inpea 2 = k.OpensubFey |"InprocServerIZ", ceus):
k. DeleteSubkey (“CodeBase”, false):
x.Clome i)y
. Misc
Sandeagion -
< »
Mouns] |5 I
Rebudd A scceeded

After that you can register the control in the registry.
Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenOnDotNetControl.tlb was created in the output directory.

To use the control on another computer:
a) copy the DLL file and the TLB file to the target computer

b) register the files via the command line:
%windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll
/tib:zenOnDotNetControl.tlb

38

ActiveX
Zenon

Add the extended Windows Form Control as ActiveX control to the zenon Editor:

¥ (ot fewbeten Bider Dynamesche Elemerte YetorEloments Kortrolsmente Optonen fenster Hife - & x
BP AR SO Qreq SO Pk 22 S | &I o Y
& BAY %L (N, QidT-S| b |is LA AR TR
o —— ' = 00
= W) Adetsberech T\Dokumer & - n P
= [ACTIVEX) (Startpro T anXx s e ~D
* © Varablen IStatut Noroe Bidy . \D
= ¥ Bider F EEE B T e
| ¥ r»
i YN 2 Stare i z0n0n Net Control ;
@ Fatosmten SYSTEM E H -
B Prowkt Syl MDW_DETAR R asme
Q! F START S S’
" 08 Spachubeln 108 8% =
SYSTEM 3 Stare @
& % Rezepte B¥
& Zetsieunung 0o
. Skrptrg
PECEN1313) i ae
s ad
2 Vemegelngen rmmepe o g
Meseage Corticl Actvex]| #
= C}|e=
&) Report Genenator ActrveX Eemente PQ
3 : g:’: Cantrols aso -
* v & wreq Control {E6E518AC-68.... -
< > |egmam /g XSEdkee Control {SBCHI N9, []
g Control {BEE2A1-252,,
*
EoR 4w a-c 2 Vered 2 o e we..
L3 Darstelung . . SarnplesControl (CCIS:
g Skm‘mw 2| oetenn m>
¥ 03 Schebakenitirien Acexe] T AOmibat Control crd sver Corts _{EISSRERAAa—— o
© Wganen
() Postion ~
< > Veriatlerzuordnng
= ——
Onn 3EX R
K PR
VBA: Schreibberechtigung fur
Projekt: ‘ACTIVEX1' einftgen
Projekt: 'ACTIVEX1' laden
§ [voriste... | [machunten | [Nachoten |
oot T A L LT

Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

In the zenon Editor in node Programming interfaces/VBA macros create a new Init macro with
the name Init_ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

ActiveX
Zenon

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX element.

Historian ~ |§ Ei n ﬁ x ilui' "fl s @
Batch Macro modules ~

&

Time
zenon Logic (IEC 61131-3)

1

GEl> GRemssy

ﬁ Project tree | 5" Network

- 3 X

= ‘VE !
~4)) Representation
) Visibility/flashing
-4 General
i) Position
142 Size and rotation dynamic
) Runtime
) VBA macros
—40) Write set value

» i AR HFY @2t

- VSTA gesture recognition (General) v | Init_init_ActiveX v
- ——— e y—
Public Sub Init_Init_ActiveX (obElem As Element) ~
obElem.AktiveX.Usertext = "Den String auf das Control setzen®
End Sub

EXAMPLE INIT MACRO

Public Sub Init ActiveX (obElem As Element)
obElem.AktiveX.Usertext = "Set the string to the control"

End Sub

4.4.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS

» public bool zenOnlnit (on page 42) (Is called up during control initializing in the zenon Runtime.)
» public bool zenOnInitED (on page 42) (Is used in the Editor.)

» public bool zenOnExit() (on page 43) (Is called up during control destruction in the zenon
Runtime.)

» public bool zenOnExitED() (on page 43) (Is used in the Editor.)

» public short CanUseVariables() (on page 43) (Supports linking variables.)

» public short VariableTypes() (on page 43) (Supported data types by the control)

» public MaxVariables() (on page 44)(Maximum number of variables which can be linked to the

control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under Add References the zenon Runtime object library in
order to be able to access the zenon APl in the control.
* QI NS A R SR R e e e e ey
a _E zenon_CD_DotNetControlContainer
=d| Properties
g] References
a ﬂ zenon_CD_DotMetControlContainer.cs
) zenon_CD_DotMetControlContainer.Designer.cs
"-g zenon_CD_DotMetControlContainer.resx
©0 Add Reference l ? |
| MET | com |Projects | Browse | Recent|
Component Name Typelib Version Path i
WSHControllerLibrary 1.0 CA\Windows\SysWOV
wiv2dvrms 1.0 Type Library 1.0 CA\Windows\eHome\
WUAPI 2.0 Type Library 20 CA\Windows\SysWOV I
H5Editor ActiveX Control module 1.0 C\Program Files (x86
X5Monitoring ActiveX Control module 1.0 C\Program Files (x86.
XGo OLE Control module 20 C\Program Files (x86
XPS_SHL_DLL 1.0 Type Library 1.0 CA\Windows\system3
zenDBSrv 2.0 Type Library 20 C\Program Files (x86.
ZenMsgSrv 1.0 Type Library 1.0 C\Program Files (x86.
zenMetSrv 2.0 Type Library 20 C\Program Files (x86.
zenon programming interface library 1.0 C\Program Files (x86
zenOnDotMetControl 1.0 D:\Eigene Dokumente—
zenonDotNetDATAGRIDControl 1.0 D:\Eigene Dokumente _
4 [l | +
’ 0K] ’ Cancel]
" —r
2. Add the enhanced functions in the class code of the control in order to access the whole zenon

API.

41

In our example the COM object of a zenon variable is temporarily saved in a Member in order to
access it later in the Paint event of the control.

R84 B T2 O

SamplesControlcs Samplestontrol.cs [Design]

¥ | §¥SamglesControl_Panticbiect sender, PartEvertiegs o

dispklement)

Properties 3 x

public bool zenOnlnit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

» you double click the ActiveX element or
» select Properties in the context menu or

» select the ActiveX settings property in the Representation node of the property window

public bool zenOnlInitED(zenOn.Element dispElement)

Equals public bool zenOnlnit (on page 42) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

42

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 43) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button Variable) you can only state zenon variables with the
type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN_OUTPUT 0x8000 corresponds to position 15

43

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5. .NET user controls

With .NET control the functionality of the zenon Runtime and Editor can be enhanced autonomously.

In this manual you can find:
» Difference between control container and ActiveX (on page 44)
» Example .NET control container (on page 45)

» Example :NET control as ActiveX (C#) (on page 31)

You can find information about .NET controls in ActiveX in manual Screens in chapter .NET controls.

5.1 Different use .NET Control in Control Container or ActiveX

A .NET user control can:
» be integrated directly in the zenon ActiveX element via the CD_DotNetControlContainer control

» be used as ActiveX control and be integrated directly in the zenon ActiveX element

Above all the differences between container control and ActiveX control are:

CD_DotNetControlContainer control ActiveX control
» Does not have to be registered at the » Must be registered as Active X at the computer
computer. (regsrv32).
» For changes at the controller only the DLL » For changes at the controller the TLB must be
must be changed. registered again.
» Access via VBA and VSTA only possible via » Easy access via VBA and VSTA.

the CD_DotNetControlContainer method.

44

5.2 Example .NET control container

In this tutorial you get to know how to create a simple .NET user control in Visual Studio 2010
(programming language C#) and how to integrate it with the help of the zenon
CD_DotNetControlContainer control as ActiveX in a zenon ActiveX element.

5.2.1 General

The CD_DotNetControlContainer therefore acts as a wrapper between the user control and the zenon
ActiveX element. All methods used in the following example and all public methods and properties are
passed on via the CD_DotNetControlContainer from the user control to the ActiveX and can be used by
zenon; also in VBA and VSTA.

If there is a reference to the zenon programming interface in the user control, you can directly access
>CD_PRODUCTNAME< objects.

1 1
O zenen Programming
.NET User Control interface
A
] v

CD_DotNetControl
Container

F 3

]l v]

zenon Active X
Element

zenon Objects

F 3

In the following example we will:
» create .NET user control (on page 47)
» adda CD_DotNetControlContainer and a .NET User Control (on page 55)

» enable the access to the user control via VSTA (VBA) (on page 60)

PATH FOR DLL IN EDITOR AND RUNTIME

The path to .Net DLL that is selected in the Editor is also used in Runtime. It is set as absolute and
cannot be changed.

Ensure that the same path is used on all computers in the zenon network for Editor and Runtime.
Hint: Select an absolute path, for example: C: \Controls. Enter the path as fixed in
Remote-Transport and in the .NET Control Container. Use Remote-Transport to harmonize this path
with all computers.

45

public bool zenOnlinit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

» you double click the ActiveX element or
» select Properties in the context menu or

» select the ActiveX settings property in the Representation node of the property window

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button Variable) you can only state zenon variables with the
type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can

be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_type.h):

46

.NET user controls

Zzenon

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN_OUTPUT 0x8000 corresponds to position 15

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5.2.2 Create .NET user control

The user control is a simple control which can set a new value via an input field (text box). After clicking
the button, the value is written to the desired zenon variable.

An additional function should automatically detect the change of value of the variable in zenon and
display the new value automatically in the control.

Y Information

The screenshots for this theme are only available in English.

'CD DotNetControlContainer

WORK STEPS

1.

First you create a new project in VS and use project type ,, Windows Forms Control Library”

Important: Set framework to 3.5!

v 20

crms Appicmon Visual Co

fl

ba' §

% &l =] Q) RIGE

.

After that rename the CS file from "UserControl" to "zenon_CD_DotNetControlContainer.cs".
The files Designer.cs and the .resx are renamed automatically.

In the next step you create the user control. For this use two text boxes one each for the input
and the output and a button for writing new values to the zenon variable.
Name:

e the first text box "txtGetZenonVariable"
e the second text box "txtSetZenonVariable"

e the button "btnSetZenonVariable"

CD DotNetControlContainer

Q O
Q) Set Zenon Variable O
o o u}

In order to access zenon objects you need a reference to the <CD_PRODUCNAME> Programming
Interface. To do this:

e click on node "References" in the Solution Explorer
e open the context menu

e select Add References...

e switch to tab com

48

5.

e select zenon programming interface library

 [§] zenon_C0_DothetControlContamer.cs
‘%] zenon_CD_CotNetControlContainer Designes s
%] zenon_C0_DetNetContsolContainer sex

0 Add Reference 1 =
NET | COM | Projects | Browse | Recent
Component Mame Typelib Version Path -
WSHCantroberdibrary 10 CAWindows\ SyWON
whiddhrms 1.0 Type Library 10 ChWindows) eHome,
WUARL 20 Type Libaaey 13
XSEditer ActrveX Control modube 10
¥SManitoring dctiveX Control modsle 10
i OLE Cortrel module 13 I
5 SHL DL 10 Type Library 10 ¥
enDBSev 210 Type Library wn CAProgrem Files (86
ZenMsgSev 10 Type Library 10 CProgram Files (86
zenMetSry 2.0 Type Library 2 CA\Pregram Files (86
senen programening intedace iy 10 C\Presgram Files (186
zenOnDeothetControl 10 Di\figene Dokumenty
zenanDothesDATAGRIDC ontrol 1 D\ Eigene Dokuments .
¥ i '
3 Cancel
=

After that the "zenOn" reference should be visible in the reference list.

o Fiupsiucy
4 | References

<3 stdole

<3 System

<3 System.Core

+3 System.Data

+3 System.Data.DataSetExtensions

«3 System.Drawing

<3 System.Windows.Forms

<3 System.Xml

<3 System.Xml.Ling

<3 zenOn

In the next step create a global variable of type zenon.variable

zenon_CD_DotNetControlContainer.cs:

Susing Systes;
using System.Collections.Generic;
using Systes.Componenttiodel;
using System.Orawing;
using Systes.Oata;
using Systes.Ling;
using Systes.Text;
using Systes.windows.Forms;
using zenOn;

“Inasespace zemon_CD_DotMetControlContainer

{
public partisl class zenon CO_DothetControlContaine
1 be needed to get the zenon Varisble Contsiner
sble m_cval = null;
public zenon_CD_DotNetControlContainer()
InitializeComponent();
}
}

in the code of the

49

6. This variable is initialized via public method zenOninit:

public bool zenOnInit(zenOn.

dispElement)
(

(dispElement.CountVarisble > @)

arisble(0);
txtGetZenonvariable.Text = m_cval.get_Value(®).Tostring();
cateh { }

and enabled via public method zenOnExit:

public bool zendnExit()

f (m_cval 1= null)

Systes.Runtime. InteropServices. .FinalReleaseConObject (m_cval);
m_cval = null;

In the following methods we define whether <CD_PRODUTCNAME> variables and data types are
used and how many variables may be handed over:

short CanUsevarisbles()

n1;

rt VarisbleTypes()

7. Inthe next step define in the Click-Event of button btnSetZenonVariable that when you click

the button the value of text box txtSetZenonVariable is written to the zenon variable and then
the content of the text box is deleted.

private void btnSetZenonVariable Click(cbject sender, 15 e)
{

Set Value from TextBox to the zenon Verisble

m_cVal.set_Value(@,txtSetZenonVariable.Text.ToString());
this.txtSetZenonVariable.Text = string.Empty;

}

8. To react to a value change of the variable, you need the Paint Event of the control. The Paint

Event is also triggered if the value of the initialized zenon variable changes and it can therefore
be used to update values. As variables which are referenced in the zenon ActiveX element are

50

automatically advised, you can generally refrain from using the zenon.OnlineVariable
container in the control.

ate void zenon_CD_DothetControlContainer_Paint(object sender, ¢ e)

this. txtGetZenonvarisble.Text = =_cval,get_Value(®).Tostring();

this.txtGetZenonVarisble.Text = “Varisble Value®;
return;

THE CODE AT A GLANCE

Here is the whole code as review:
using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using zenOn;

namespace zenon_CD_DotNetControlContainer

{

public partial class zenon_CD_DotNetControlContainer : UserControl

{

//This will be needed to get the zenon Variable Container
zenOn.Variable m_cVal = null;
public zenon_CD_DotNetControlContainer()

{

InitializeComponent();

51

/17
/17
/17
/17
/17
/17

<summary>

This public Method will be called by the initialization of the control during

the zenon Runtime.
</summary>
<param name="dispElement"></param>

<returns></returns>

public bool zenOnlnit(zenOn.Element dispElement)

{

//Check if zenon Variables are added to the

//Control

/17
/17
/17
/17
/17

if (dispElement.CountVariable > 0)

{

try

{

//Take the first zenon Variable and added

//to the global Variable

m_cVal = dispElement.ltemVariable(0);

}
catch{}
!
return true;
}
<summary>

This public Method will be called by the release of the control during
the zenon Runtime.
</summary>

<returns></returns>

public bool zenOnExit()

{

try

52

if (m_cVal = nul1)

{
//Release the zenon Variable (Com-Object)
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(m_cVal);
m_cVal = null;
}
}
catch {}

return true;

}

/// <summary>

/// This public Method is needed to link zenon Variables
/// to the control.

/// </summary>

/// <returns></returns>
public short CanUseVariables()

{

return 1; // Only this Variable is supported
/// <summary>
/// This public Method returns the Type of
/// supported zenon Variables
/// </summary>

/// <returns></returns>

public short VariableTypes()

{

return short.MaxValue; // all Data Types supported

}

/// <summary>

53

changed.

/// This public Method returns the number of
/// supported zenon Variables
/// </summary>

/// <returns></returns>

public short MaxVariables()

{

returnl; // Only 1 Variable should linked to the Control

}

/// <summary>

/// This will be triggered by clicking the Button. The new Value will
/// be set to the zenon Variable

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void btnSetZenonVariable_Click(object sender, EventArgs e)

{

//Set Value from TextBox to the zenon Variable
m_cVal.set_Value(0,txtSetZenonVariable.Text.ToString());

this.txtSetZenonVariable.Text = string.Empty;

}

/// <summary>

/// This will be triggered by painting the User Control or the Value of the Variable

/// After the value of the Variable changed the Control will be new painted and

the new Value

/// will be set to the Textbox.
/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private voidzenon_CD_DotNetControlContainer_Paint(object sender, PaintEventArgs e)

{

if (m_cVal l=null)

54

this.txtGetZenonVariable.Text = m_cVal.get_Value(0).ToString();

return,

}

else

{
this.txtGetZenonVariable.Text = "Variable Value";
return,

}

CREATE RELEASE

AT last create a Release in order to integrate the completed DLL in zenon or in the
CD_DotNetControlContainer.

55.:@% Tpiceer

} Propeties Ao Erter

For this it is necessary that you switch from Debug to Release in the settings.

am Data Tools Test Analyze Window Help
.0 | P |Release ~|| Any CPU ~
$ wlh -

. zenon_CD_DotNetControlContainer.cs X

ontrolContainer.zenon_CD_DotNetControlContainer
<

5.2.3 add a CD_DotNetControlContainer and a .NET User Control

To prepare the zenon project and to add the CD_DotNetControlContainer and the .NET User Control,
carry out the following steps:

55

3.

Create an internal variable of type String and set the string length to 30.

\Lisars'Publc’\Documeant »

LY_SMIRR

R = Ja o BTG W& R R W L 0T
L]

Status | Name Treber | Ken

EREL
ALUMINIUM_DATAG

(LS
ETCONTROLCONTAL

Varisble_CD_DotMetControlContainer Intern - Treiber fir interme Variablen

In the zenon project node Project/Files/Others add the DLL of the created .NET user

controls. }

& Open

Organce v New folder

&)=/ « zen0n_CO_DeahetConreiContaines » bin » Relesse 1| seerch fetecse

-l

¢ Favortes “ Documents library
I Desitcp Relesse
& Downlcads
2 My sae
% Recent Places E @) zenon CO_DotNetControlContainer
4 zenon_CD_DotNetControlContainerdi
4 Ubeacies % Interop zenOn.dil

Name

+| Documents
& Music

= Pictures
B Videos

‘ % Computer

& Local Disk (C)
n Data (0)
G PROG_G (\CDSBG012) (G)

File name: ~ [AteDateien)

Open Cancel

The DLL is located in the Visual Studio Project folder under

bin\Release\zenon CD DotNetControlContainer.dll.

In the project select the ActiveX element and drag it in a zenon screen.

e v e

zenon 0 BothietCenteodC ontainer.dil

e The dialog Configuration is opened

e Select the CD_DotNetControlContainer.Container control.

] J

Configuration =
Activex
o
ActveX dements
Contrdls aso g Coodl
CaliegiEdCr Cass (CT326034. o
€0 Butten Contral {EDarE a4
0 _ComboBio (EDemoe 652
0 _DothietContralContaner, Contsner {roe29m2001.
@ _Edt Control (eSO 652 ~
Propertes...
Variobie assrment
Varabe Ooen w
| —r—"

56

To embed the .NET user control in the CD_DotNetControlContainer control:

e Click on button Properties

e Anew dialog is opened

p =T .

M
iy Windcews Fom Contral
HK
TET) | SelectlserCerssl
s

Ereaen

R
=

Lead Wguuration
-
AchveX elements
Conrols aso
D _Teves Contrel (EramE 2652,
Crldentity Chent (20020000000 ..
CommonDisioy Class (3s00ID1870...
Coniigiewer Cass (HBACHFEE...
Contact Selector (514031593,
Contentiost Cantral {omeccAs-®... *
Propertes...
Variatie assgrment
Variabie D Dothiet
o Variable.. Down up

BEL3Ezs2Z9 3% FIW OE<39Mig-

!

Cancel

e Edisc

Click on button Load in order to select the path of the project folder, for example:

C:\ProgramData\COPA-DATA\SQL\9888419d-251e-4595-b396-90e423679
97c\FILES\zenon\custom\additional\zenon CD DotNetControlContai

ner.dll

By adding the DLL to folder additional, the control is automatically transferred when
copying or loading the Runtime files to another computer. With this the link is lost.

Canti Wirndoms Form Cortral

|
1| Sectisarcomnst

20m0m,CO_DethirControX ontamer 41

Now the .NET user control should be displayed.

57

.NET user controls

Zzenon

Confirm the dialog by clicking on OK.

I
{26n0n_CD_DetNetControlContaner zenc_CD_DetetControiCortaner v [Losd
Preview: C\ProgramData/COPA-DATAISQLISE28419d-251e-4595-b396-3be42357997¢ FILES zenancustomiadditionalizenon_CD_D{ |
|
=
© Accessibility -
AccessibleDescription F
AccessibleName
AccessibleRole Defautt E
CD DotNetControlContainer B Appearance ‘
BackColor [Control
Backgroundimage] fhone)
Backgroundimagelayo Tie
Varabie Vahe BorderSyle Nors ‘
Cursor Defack
Set Zenoa Variable @ Font Mosch Sans Se: 825 | |
ForeColor Wl CortroiText
RightToLeft No
UselaitCursor Faise
8 Behavior
L_AllowDrep False hdl
pe— I
(oo] '

] |
Contgumren =
=
rem am <] |
gty o tcmaom.) =
@ St Gl EoaReen —
@ Comoton {rcan s
@ Dot aCararn e (FBTIOON
@ g v e -
s et
BN | OO | o
e

The variable selected first is automatically linked with our globally defined variable (.NET
UserControl) via public method zenonlnit. The linking with the control is carried out after the
Runtime start.

e L — =
(5 B Wiokspace C \Users \Pubc Do)
<% aroe.tezy m”.:.\ “ A | Kethcaton Means_| Nt address |
THALES_ITALY_SMIRR |
1 TESTS_GENEREL v, ot ¥ o Ve ¥ 4
£, NEUMANN_ALUMINIUM_D: : i e
&, ANALYZER Variable_CD_DotNetControlContain.. 0
&, FACTORYLINK
2 CD_DOTNETCONTROL(
o I p— v
pa— » | 1total /1 filtered / 1 selected | 0 tags used / unlimited tags available |
Name dentfication Address Project
Variable_CD_DothetContr.... S (0) 0000.00 CD_DOTNETCONTROLCONTAINER

‘|m Remove o sefecson o J [concd | [ne |

.NET user controls

Zzenon

Then link the internal variable with a text element.

After the Runtime start the control is initially empty.

CD DotNetCortrolContainer

If you enter a value in the second text box and then confirm it with button Set zenon variable,
the value is written to the zenon variable. (The btnSetZenonVariable_Click event is carried
out.)

.NET user controls

Zzenon

If the value is directly changed in the zenon text element,

CD DotNetCortrolContainer

5.2.4 Accessing the user control via VSTA or VBA

This examples shows the access via VSTA. The procedure is the same as with VBA.

1. Enhance the control with a label (label) and name it Iblzenonlinfo. In this label the value of
another zenon variable should be displayed. The new value should be set via a VSTA macro.

2. Enhance the code by a property (Information) and add the properties get and set to the property.
They allow you to read and write the text of the label.

13 B public partisl class zencn_CD_DotMetControlContainer : UserControl
14

15 F£fThis will be needed to get the zenon Variable Container
16 zenOn.Variable m_cval = null;

17

18 &= public zencn_CD_DotMetControlContainer()

19 {

bl InitialireComponent();

a | }

22

23 5 public string Information

24 {

25 set{thiz lblZenonInfo.Text = value;}

26 get { return this.lblZenonInfo.Text; }
FE ¥
28

Create a new release for our user control and copy it to folder additional of the zenon

project.

Do not forget: Close the zenon Editor before you do this!
Delete the old DLL and restart the zenon Editor. If the DLL is still in the folder, just delete it a

second time. Now you can import the changed DLL. The CD_DotNetContainerControl and the

ActiveX are updated automatically.

In the zenon Editor click on the ActiveX and open the property window.

Configuration ==
[Actrve | |
| e |
| ActveX elements

Controls asm & l Cancel]

Calendar Adapter Class M?E]-A‘M.. l el]

Calendar Syrk Class. {ABATDADO-G4...

CallrgefdinCtr Class. {4CTR9260-3A...

€0 _Button Control {FEDETE14652...

CD_ComboBox {3EDETE0S-652...

CD_DothetControiContaner.Container {FOF2572-D01...

Wariable assgrment

Varisble CD_DothetControkContiner j

Now you can see the new property Information in the selection window of the control and you

can also set a value.

[*zenon.CD_DotNetControiContainer' Config Windows Form Control - il
SelectUserCentrol
[W_CO,D«WM EWM = [Load

Preview: C:\ProgramData\COPA-DATAISQLIS882419d-2516-4535-b396-3be42367997c FILES:zencn'\customiadditionalizenon_CO_Dd

EDa
Anchor Top. Lekt -
i AutoScroll False
@ AutoScroliMargin 0.0
I B AutoScrcliMinSize 0.0
D Abssasuote Gy
_~ut zel
i Dock Nons
Location 0:0
Yadublo Yolue 8 Margin 3333
oo & MaximumSize 0.0
| SetZencn Variable B MinimumSize 0.0
& Padding 0:0.0:0
@ Size 318; 158 E
B Misc
U -
Informabon
oK] [Coce

This value is also set in the control ("mylnformation")

CD DotNetCortrolContainer
mylnformation

Variable Value

Set Zenon Variable

61

5. Inorderto able to work with the CD_DotNetControlContainer in VSTA or VBA, you first need the
reference to the control. After VSTA has been opened for the project (ProjectAddin), you must
add the reference of the CD_DotNetControlContainer.

O Add Reterence N » ; A [0

MNET | COM | progects | Browse | Recent

Componert Name Typelib Vession Path

POCube 20 Type Libeary 10 C:\Program Files (86]\Comemon Files\SYSTEMNOLE DEMSA
Microsct OUAP Designer Server Driver 80 10 CA\Program Files (61\Common Files\SYSTEMOLE DB\MSA
MSOLP 30 Type Library 1 C\Program Files (6] Common Files\Systemi cle db\msce
Microseft OLE DB provider for OLAP Serd... 10 C\Program Files (86]\Common Files\SYSTEMOLE DBUMSC
michki010 Type ibeary 10 CProgram Fies (861 Common Files) Systen) cie dbmaclu
Microseft OLE DB Service Componert 1.0 10 APy des (x86)\ Common Files\ Systeny\Ole DS\oledt
OLE DB Errers Type Library 19 1 Files\System Ole DFoledb
(DothetControiContames 10

K5Clouds ActiveX Control module 10

StratOnCom 10 CA\Program Fil

$PC_Hast ActiveX Contrel 10 C:\Program Fikes (86]\COP,

<OC Tomad ActibsaY Fasteat 10 £ Bummrnem Edur BN AOR AT A) samnn & € SONEOF Tro

In addition you must also add the Assembly System.Windows.Forms.

S TE| >EMNgSs.LUEsIQnEr.Cs

7 References

«3 CD_DotMetControlContainer

<3 Microsoft.VisualStudic. Tools.Applications.Runtimev9.0
<3 System

<3 System.AddIn

+3 System.Data

<3 System.Windows.Forms

<3 System.Xml

<3 zenonVSTAProxyG510

m

6. With the following code you can set the value of our property Information anew.

public void Macro_Test()
«

START") .Elements();

zAktiveX.SetExternalUserControlProperty(“Information®, "mylnformaticn®);

System.Diagnostics. LPrint ("ERROR : * + ex.Message + " " + ex.Source) ;

7. Finally:
° create a new zenon function Execute VSTA macro

e link the function to a button

62

5.3

The following example describes a .NET control which is executed as ActiveX control in zenon.

In the Runtime the label is changed from mylnformation to New Information by clicking on the
button.

CD DotNetControlContainer
New Information

s

And back when you click the button again.

CD DotNetControlContainer
mylInformation

E

Example :NET control as ActiveX (CH)

The creation and integration is carried out in four steps:

1
2
3.
4

53.1

Create Windows Form Control (on page 32)
Change .NET User Control to dual control (on page 35)
Work via VBA with ActiveX in the Editor (on page 39)

Connect zenon variables with the .NET user control (on page 40)

Y Information

The screenshots for this theme are only available in English.

Create Windows Form Control

To create a Windows Form Control:

63

.NET user controls ﬂ

Zzenon

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

New Project

Broject types: Templates: ET Framework 35 |v | |§|

i
& B lm“ Inkeligence Profects & | = WPF Browser Appication A
& Visusl C# 7% Console Application

Windows (3] Empty Project

Web Awindows Service

Smart Device §# WPF Custom Control Library
& Office ¥ WPF User Control Library

Database :

Reporting

5515 _ScriptComponant My Templates

| 5515 _SoriptTask o - L 2|

| & project for creating controls to use in Windows Forms apphcations {NET Framework 3.5) |

ame:

Solution: | Create new Solution | [Create directory for solution

2. Rename the default control to the desired control name.
In our example: SampesControl.cs.

zenOnDotNetControl - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Test Window Help
- i 5 e | ¥ B9 -~ B -5 b Debug -

{208 8112 2 %] a aT an

=d| Properties
[s3] References

@Soluti... @Class |\-§Macro... |Resou...|

Fropetties -+ 1 X

SamplesControl.cs File Properties -

B Misc =

Misc

| = Output|

Ready —I

|L‘3 Errar List| % Find Results 1

3.

Open the Control Designer and add the desired control; in our case a text box:

2% zenOnDotNetControl - Microsoft Visual Studio

Fle Edt WView Project Buld Debug Data Tools Test Window Help

3 G0 — b b Debug z Any CPU L.] &

A ” 3 Rl Hs 83 & <4 di=le 2 {0) s =

- 4 - a3 & &
SamplesControl.cs [Design]* v X | Solution Explorer >3 x

BAREEA

(2 zenOnDotNetControl

® 34 Properties

o @ =4 References
Q 2 ® (8 SemplesControl.cs

zen0n Net Control

SOkt [FgCiass ... | B Meco

Properties
textBox1 System.Windows.Forms. TextBox -
Bl =
Text ~
TextAbgn Left
Use'WakCursor False
B Behavior
. e G o AcceptsRetun False
17 Treevy Version 2.0.0.0 from Micr Corporation AcceptsTab False
73 wepa] NET Component ept 2
- UseWaitCursor
QO oo e o ety s, sty o
R Ponts the control and &s chid controls is sek to WakCursor.

% Floud auce#Oanal b

Normally controls have properties. Open the Code Designer via View Code and ass the desired
properties which should be available externally.
In our example: Externally visible property , UserText" with get and set access which contains
the text of the text box:

#% zenOnDotNetControl - Microsoft Visual Studio EHEH')__(,
File Edk ‘iew Project Buld Debug Data Took Test Window Help
E R A= I R N N I = A LT = Any CPU 1)
_{ ol _,':1 53— aT al) | (# =) b L\‘. A
% SamplesControl.cs® samplesControl, cs [Design]* v X
= = | 3 E BB
2 | | Hgzenonbothietcontrol SamplesControl || S UserText ~| k| G 7] EL R &
i £ using System; = ? :z:er:JnDnI;Neltmhd
using System.Collections.Generic; & : Rr:rl:;nzs
using System.ComponencModel; 'ﬂ [
using System.Drawing: ' |_T Cpen
using System.Data; Open With. ..
using System.Ling:
using System,Text; ﬂ Refresh
“using System.Windows.Forms: view Cade
[namespace zenOnDotNetControl =] | View Cesrer
{ & View Class Disgram
E ?“’-"L:.r: partial class SamplesControl : UserControl ey Solut... | Class Exclude From Project
=} public SamplesControli) Properties &£ Cut
{ o SamplesControl.cs B3 Ccopy
InitializeComponenti);
L y ¥ Delete
T T B Advanced Rename
=] /4:61: string UserText H‘“‘x\ Build Action & | Proger
S N Copy bo Output Dirg < FTOPEriEs
get { return textBoxl.Text; } :l Custom Tool
set { textBoxl.Text = walue; } Custom Tool Namespac
~ / B Misc
Loy "n_H__ o Filz Name: SamplesiControl.cs =2
Ly — - | sicue b
Advanced
v
a3 L2
(3 Cutput| | g Error List| 5 Find Resuls 1
Ready

65

5. Compile the project.
The Windows Forms Control can now be used in other Windows Forms projects.

Important: The control must be inserted manually in the control tool box via Choose Items.

@2 zenOnDotNetControl - Microsoft Visual

File Edit View Project Build Debug D:

EnRACE R = NP WE= N Y

| = & o] | TR o ul |2 g
5 Toolbox trol.cs |
_)" (2b] Button ~
o o | TS—
=}
= Chec\Bo. |
= Chec & | Cut

Comb 53 Copy

Date] [paste

et >(Delete

LinkL

Rename Iterm

ListE:

Listi Loy

Mas Show All
[Maontl Choose Items...
] ;
ﬂ Matif Sart Ikems Alphabetically
[13] mMume

Reset Toolbox

|8 Pictu
@ Prog Add Tab
() Radid Move Up
ﬂ% RichT] Move Down
a TextBoR
K ToolTip
T Treeview

__‘j WebBrowser
= Containers
k Painter

5.3.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

66

1. Open the project and activate property Register for COM interop in the Build settings:

2% zenOnDotNetControl - Micrasoft Visual Studio (&=

Fle Edt Vew Froject Bud Debug Data Tooks Test Window Heb
RS RA= ™ N~ 2} \ . o T b Dsbug - Ay U - | [# AbmErsseaaedintiskzstion =
L : = =
_\I‘ 4 [Destign]
£ | aoteaton
Corfiguration: | Active (Debug) ¥ Platformc | Active (ny CPU) > ® U F] efresh
Bukd® &
= (] eud
Busld Events Rebud
Condtional compdation symbo: clomn
al [] Define DEBUG constart =
Resources [] Defire TRACE constant JE—
Services Platform target: Ay CPY ¥ Add Sevice Reference...
gmmm P L res—
u Cptirize code
Debug
R Paths
= kT G§ | Add Project to Souce Ct
Signirg Warring level: + » & ox
SUEER OS5 WATINGS: _?5.
Trest warmings a5 enmors » e
© Horw 2en0e [§ | Open Folder in Windows
() Speciic warnings: ELJ/‘—’L_-]_W&:_ |
fo]] Project Fle cenCrDiothetConts
Cutpat
ot o
’Q_:_n_mmmﬁ‘_ﬂ\
b Register for CoMinkercp)
Gersraks serokastion assebly: |42 :
Mise
Dowd] D
Resdy

2. Open the file Assemblylnfo.cs and
e set attribute ComVisible to true
e add attribute ClasslInterface

[assembly: ComVisible(true)]

[assembly: ClassInterface(ClassinterfaceType.AutoDual)]

Ble £t Wew Project Buld Debug Data ook Teg Windew Help
i RNEE RN ™ - R W N C - R - = Any CFU

, o) S D
> Assemblylnfo.cs SwrplesControles | SamplesCortrol.cs [Design]

-

2.0 802 o a_aT ai | 31

RO |

Elusing Jystem.Reflection:
using Syscem.Runtime.CompilerServices:
“using Syscem.Runtime.InteropServices;

/{ General Information about an assembly iz controlled through the following
/{ set of attributes. Change these attribute values to modify the informatio

/f associated h an assembly.
[assembly: A le ("zendnbotNetControl™))
[assembly:
[as=embly:
[aszembly:
[aszembly:
[azsenbly
[aaserbly
[aasembly:

5 '“_I"CI.. vlf“:“ k.
/f Setting ComVisible to false makes the types in this assembly not visible
// to COM components—H JUW TEwdto-sccess a type in this assembly from oSt oL o
/[-o0W, zet the ComWisible attribute to true on CREE-Lype. AssemblyInfo.cs Fie Properties -
[assembly: ComVisible (erue}] E:l =
[assembly: ClassInterface(ClassInterfa Ahurobual)) B Advanced

- e Buld Action Comple
// The following GUID is for the ID of the typelib if this project is exposes Copytn Outpy Oonck cmpy
[assenbly: Guid{"41bE85k7-coL5-47ce-bh17-541bIa65740e™)] Custom Tod
Custom Tool b
B Misc

/f Version information for an assembly consists of the following four values

17 FleName Assemblylrfo.cs
" Major Version e
G Minor Version
I Build Number
I Revision
A Advanced
/7 You can specify all the values or you can defsult the Build and Revision I
£ 3

& cutput| [4 Ervor List| 5] Find Resuits 1
Ttem(s) Saved

Open the code designer via View Code and add the necessary ActiveX attributes and using

.NET user controls

entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

“ zenOnDotMetControl - Microsoft Visual Studio

Fle Edt Viw Propct Buld Debuy Data| Tocks

= [Af:mEnsureManagedinkislieation -

[AR - I W R =

L2 0 2LLa o 4 T au LGl G = el (3 il (3 4R 3)

X Assemblylnfo.cs ~ SamplesControles samplesControl.cs [Desion]

& [#z=oroone v v BLEEES
g 1 [zenDnbotNetControl

Clusing Syatem; [F

-] Properties
using Syscem.Collections.Generice: | ; : Ref:ennes
using System.ComponentHodel; i @

using System.Drawing: -
using System.Daca; g oen
using Syscem.Ling: Open With...

jusing Microsoft.Windi;
L

using System. Textc: Refresh
using System.Windows.Forms:
using Syatem.Runtime,InteropServices; [E] Ve Code

using System.Reflection;:]| View Desigrer

) £ =
ipasted inko your sowce code]. Choose “Ewl” when Hew GUID :p Do nok copy
(5] public string UserTexc GUID Fomat Indl\

¢
get { revurn textBoxl.Text: } ©1 IMPLEMENT_OLECREATE]..}
set { textBoxl.Text = value: } (2 DEFINE_GUIDL,..)
P ©)3 stsbe const st GUID = (..)

) 4 Regsty Format [ie. boosoocnn won)]

he SerplesCork

Resl

A CFFS0BD1 AIDC 4297 BOBAANBIZZCADETA)

IMPLEMENT_DLECREATE[«cclasty, <<endmnal_ namass,
N Cwodal7. OxbD, Dvba.

< O Dval, 0630, 0422, Dvca, 048,
e7al:

=] output| | Emor List S Find R

& Wiew Class isgram
[l namespace zenOnlotNetControl Ezeclude From Project
! $ ot
[Progld("zentnbotNetConcrol. SamplesControl™)] .
[Guid ("CFFS0BED1-A3IDC-4a57-BOBA-A0B022CADETA™)] -?_?5-- “a Copy
[com eitrue), Cla rfaceType.Autobual)] ¥ Dakte
4y public partial class = Control
f Renams
=] public SamplesControl() L& Properties
t
InitializeC i) (Chaose the desied foemat below, then select "Copy” b ced
nitializefomponent () mwuammmmmmdmmguammm[l—m ton Compile

rol.cs

For the control to be selectable as Active X user interface control, you must add the functions to
the following control classes:

e RegisterClass

e UnregisterClass

% zenOnbatietContral - Micrasaft Visual Studio
B¢ E ww Project Buld Debuy Dgfa Took Tet Aiedow Help

RN A= =N I WY b Debg = Ay CRU = [AfmEraseMaragedintisiestion - | GGl S E] e O
- L2 & : e — ol
ks Assemtlyirio.cs SamplesControbcs | SanghesControlcs [Desgn] AL “ohtion Explorer

D n]| 1 &

45 enCiecttet Conksol SanplesControl || %o Lreegister Classistring b -
. . i enOnDotMetComtral
- OnbatNetontrol
mmespace senOnbatCont Bl & & oo
4 e
[Froglai"zeninborerconces 5 E—
[Guid | "CFFOOET -4 -
[Camiizible (true] , ©lassintectace | =Type, Autobuall]
public partial class lesContr 1
f
public Sampleacontroli)
Initializecomponsnt |)
public string UserText
ger { return cextBoxl.Texc:)
zet { textBoxl,Text = valus: !
Aregs -
11z static void RegisterClass|string keyl > TR
fer |key) : Properties -0

ROOT, ™
ClassesRoot.OpenSubley sb. ToStringl), true):

SamplesContralcs Fis Procert =

. k.Craace3ubFey | "Conrral ; FlE)

N a

e BprocServerlz = x.OpenSubKey|TInprocServeri®, truels Fuid Action Conpde
1 SerValus ["CodeBaze”, Leseubly.detExecutinghaseshly|).CodeBase) : Copy bo Outps Do nok copy
i Losw () Custom Todl
®.Clazel): Custom Todl b

=]

File Mo Samplesontrol o5
sistazFusctioni))
static woid Uncegisterdlassistring key)

FingButld new s < eyl :
#b, Replace LASZES_BOOTV®, *¥):
Regiatrs Classeshaat.OpenSubkey |=b. ToString|), tras)s
. e leteSubk falze) s
’ cyRey inpea 2 = k.OpensubFey |"InprocServerIZ", ceus):
k. DeleteSubkey (“CodeBase”, false):
x.Clome i)y
. Misc
Sandeagion -
< »
Mouns] |5 I
Rebudd A scceeded

After that you can register the control in the registry.
Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenOnDotNetControl.tlb was created in the output directory.

To use the control on another computer:
a) copy the DLL file and the TLB file to the target computer

b) register the files via the command line:
%windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll
/tib:zenOnDotNetControl.tlb

69

.NET user controls

Zzenon

Add the extended Windows Form Control as ActiveX control to the zenon Editor:

¥ (ot fewbeten Bider Dynamesche Elemerte YetorEloments Kortrolsmente Optonen fenster Hife - & x
BP AR SO Qreq SO Pk 22 S | &I o Y
& BAY %L (N, QidT-S| b |is LA AR TR
o —— ' = 00
= W) Adetsberech T\Dokumer & - n P
= [ACTIVEX) (Startpro T anXx s e ~D
* © Varablen IStatut Noroe Bidy . \D
= ¥ Bider F EEE B T e
| ¥ r»
i YN 2 Stare i z0n0n Net Control ;
@ Fatosmten SYSTEM E H -
B Prowkt Syl MDW_DETAR R asme
Q! F START S S’
" 08 Spachubeln 108 8% =
SYSTEM 3 Stare @
& % Rezepte B¥
& Zetsieunung 0o
. Skrptrg
PECEN1313) i ae
s ad
2 Vemegelngen rmmepe o g
Meseage Corticl Actvex]| #
= C}|e=
&) Report Genenator ActrveX Eemente PQ
3 : g:’: Cantrols aso -
* v & wreq Control {E6E518AC-68.... -
< > |egmam /g XSEdkee Control {SBCHI N9, []
g Control {BEE2A1-252,,
*
EoR 4w a-c 2 Vered 2 o e we..
L3 Darstelung . . SarnplesControl (CCIS:
g Skm‘mw 2| oetenn m>
¥ 03 Schebakenitirien Acexe] T AOmibat Control crd sver Corts _{EISSRERAAa—— o
© Wganen
() Postion ~
< > Veriatlerzuordnng
= ——
Onn 3EX R
K PR
VBA: Schreibberechtigung fur
Projekt: ‘ACTIVEX1' einftgen
Projekt: 'ACTIVEX1' laden
§ [voriste... | [machunten | [Nachoten |
oot T A L LT

Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

In the zenon Editor in node Programming interfaces/VBA macros create a new Init macro with
the name Init_ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

.NET user controls

Zzenon

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX element.

A E -)
Macro modules ~

~4)) Representation

) Visibility/flashing
-4 General
i) Position
142 Size and rotation dynamic
) Runtime
) VBA macros
rgwmmulue » i @ EFY 0@ 2
{0 VSTA gesture recognition (General) v [Init_init_Activex v
e —
Public Sub Init_Init_ActiveX (obElem As Element) ~
| obElem.AktiveX.Usertext = "Den String auf das Control setzen"
End Sub

EXAMPLE INIT MACRO

Public Sub Init ActiveX (obElem As Element)
obElem.AktiveX.Usertext = "Set the string to the control"
End Sub

5.3.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS

» public bool zenOnlnit (on page 42) (Is called up during control initializing in the zenon Runtime.)
» public bool zenOnInitED (on page 42) (Is used in the Editor.)

» public bool zenOnExit() (on page 43) (Is called up during control destruction in the zenon
Runtime.)

» public bool zenOnExitED() (on page 43) (Is used in the Editor.)

» public short CanUseVariables() (on page 43) (Supports linking variables.)

» public short VariableTypes() (on page 43) (Supported data types by the control)

» public MaxVariables() (on page 44)(Maximum number of variables which can be linked to the

control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under Add References the zenon Runtime object library in
order to be able to access the zenon APl in the control.
* QI NS A R SR R e e e e ey
a _E zenon_CD_DotNetControlContainer
=d| Properties
g] References
a ﬂ zenon_CD_DotMetControlContainer.cs
) zenon_CD_DotMetControlContainer.Designer.cs
"-g zenon_CD_DotMetControlContainer.resx
©0 Add Reference l ? |
| MET | com |Projects | Browse | Recent|
Component Name Typelib Version Path i
WSHControllerLibrary 1.0 CA\Windows\SysWOV
wiv2dvrms 1.0 Type Library 1.0 CA\Windows\eHome\
WUAPI 2.0 Type Library 20 CA\Windows\SysWOV I
H5Editor ActiveX Control module 1.0 C\Program Files (x86
X5Monitoring ActiveX Control module 1.0 C\Program Files (x86.
XGo OLE Control module 20 C\Program Files (x86
XPS_SHL_DLL 1.0 Type Library 1.0 CA\Windows\system3
zenDBSrv 2.0 Type Library 20 C\Program Files (x86.
ZenMsgSrv 1.0 Type Library 1.0 C\Program Files (x86.
zenMetSrv 2.0 Type Library 20 C\Program Files (x86.
zenon programming interface library 1.0 C\Program Files (x86
zenOnDotMetControl 1.0 D:\Eigene Dokumente—
zenonDotNetDATAGRIDControl 1.0 D:\Eigene Dokumente _
4 [l | +
’ 0K] ’ Cancel]
" —r
2. Add the enhanced functions in the class code of the control in order to access the whole zenon

API.

72

In our example the COM object of a zenon variable is temporarily saved in a Member in order to
access it later in the Paint event of the control.

R84 B T2 O

SamplesControlcs Samplestontrol.cs [Design]

¥ | §¥SamglesControl_Panticbiect sender, PartEvertiegs o

dispklement)

Properties 3 x

public bool zenOnlnit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

» you double click the ActiveX element or
» select Properties in the context menu or

» select the ActiveX settings property in the Representation node of the property window

public bool zenOnlInitED(zenOn.Element dispElement)

Equals public bool zenOnlnit (on page 42) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

73

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 43) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

» 1:Forthe dynamic element (via button Variable) you can only state zenon variables with the
type stated via method variableTypes in the number stated by method Maxvariables.

» 0:If canUsevariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0
BYTE 0x0002 corresponds to position 1
BIT 0x0004 corresponds to position 2
DWORD 0x0008 corresponds to position 3
FLOAT 0x0010 corresponds to position 4
DFLOAT 0x0020 corresponds to position 5
STRING 0x0040 corresponds to position 6
IN_OUTPUT 0x8000 corresponds to position 15

74

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

6. WPF element

With the WPF dynamic element, valid WPF/XAML files in zenon can be integrated and displayed.

¥ Information

All brand and product names in this documentation are trademarks or registered
trademarks of the respective title holder.

6.1 Basics

XAML

XAML stands for Extensible Application Markup Language. The XML-based descriptive text developed
by Microsoft defines graphic elements, animations, transformations, displays of color gradients etc. in
Silverlight and WPF user interfaces. The use of XAML makes it possible to strictly separate design and
programming. The designer prepares, for example, the graphical user interface and creates basic
animations that are then used by the developers/project planners who create the application logic.

WPF
WPF stands for Windows Presentation Foundation and describes a graphics framework that is part of
the Windows .NET framework:

» WPF provides a comprehensive model for the programmer.

» XAML describes, based on XML, the interface hierarchy as a markup language. Depending on the
construction of the XAML file, there is the possibility to link properties, events and
transformations of WPF elements with variables and functions of
CD_PRODUCTNAME<.

75

» The framework unites the different areas of presentation such as user interface, drawing,
graphics, audio, video, documents and typography.

For execution in zenon, Microsoft .NET framework version 3.5 or higher is required.

6.1.1 WPF in process visualization

XAML makes different design possibilities possible for zenon. Display elements and dynamic elements
can be adapted graphically regardless of the project planning. For example, laborious illustrations are
first created by designers and then imported into zenon as an XAML file and linked to the desired logic.
There are many possibilities for using this, for example:

DYNAMIC ELEMENTS IN ANALOG-LOOK

Graphics no longer need to be drawn in zenon, but can be imported directly as an XAML file. This makes
it possible to use complex, elaborately illustrated elements in process visualization. Reflections, shading,
3D effects etc. are supported as graphics. The elements that are adapted to the respective industry
environment make intuitive operation possible, along the lines of the operating elements of the
machine.

INTRICATE ILLUSTRATIONS FOR INTUITIVE OPERATION

The integration of XAML-based display elements improves the graphics of projects and makes it very
easy to display processes clearly. Elements optimized for usability make operation easier. A clear display
of data makes it easier to receive complex content. The flexible options for adapting individual elements
makes it easier to use for the operator. It is therefore possible for the project planners to determine
display values, scales and units on their own.

CLEAR PRESENTATION OF DATA AND SUMMARIES

76

Grouped display elements make it possible to clearly display the most important process data, so that
the equipment operator is always informed of the current process workflow. Graphical evaluations,
display values and sliders can be grouped into an element and make quick and uncomplicated control
possible.

INDUSTRY-SPECIFIC DISPLAYS

Elements such as thermometers, scales or bar graphs are part of the basic elements of process
visualization. It is possible, using XAML, to adapt these to the respective industry. Thus equipment
operators can find the established and usual elements that they already know from the machines in
process visualization at the terminal.

ADAPTATION TO CORPORATE DESIGN

&€&

Illustrations can be adapted to the respective style requirements of the company, in order to achieve a
consistent appearance through to the individual process screen. For example, the standard operation
elements from zenon can be used, which can then be adapted to color worlds, house fonts and
illustration styles of the corporate design.

6.1.2 Transfer of values from zenon to WPF

zenon always works internally with Double or String data types. These are sent to the WPF element.
The WPF element is embedded in a .NET container. It usually needs to be converted so that the data
type can be used. This conversion can automatically be carried out by .NET.

The values are sent in accordance with the following rules:

» If the .NET type (System.Object) for zenon is not evident, the value is sent as it is to .NET. .NET
must take care of the display or conversion itself.

» If the .NET type is a Boolean type (System.Boolean), then zenon writes according to the .NET
convention 0 or -1.

» If the .NET type is known, a check is carried out to see if .NET can convert the value. The
converter from .NET is used for this.

e Yes: The value is sent.

e No: The value is sent nevertheless. If .NET reacts with an error message, the value of zenon
is converted into a string and sent again.

77

INTERLOCKING

If a value change is forwarded to the WPF content, an interlocking ensures that no Property changes can
be forwarded to zenon. This interlocking works at Property level.

Example

The following are present in the WPF:
» Property1 (Element1)
» Property1 (Element2)

If Property1 (Element1) of zenon is updated, the change notifications from this
Property and for this element are blocked. However, direct linking of Property1
(Element1) to Property1 (Element2) leads to an updating of the linking of Property1
(Element2).

6.1.3 Referenced assemblies

It is not just standard objects (rectangles, graphics, etc.) or effects (color gradients, animations, etc.) that
can be displayed using the WPF elements, but also customized user controls (with logic in the code
behind), which are referenced as assembilies.

For example, a user control that looks like a tacho and provides special properties and optical effects can
be created, such as a "Value" property, which causes the pointer of the tacho to move and/or the
corresponding value to be displayed in a label.

The workflow for this:
» The appearance of a user controls is labeled with standard objects, which are offered by WPF.
» The properties and interactions are programmed.

» The whole package is compiled and present in the form of a .NET assembly.

This assembly can also be used for WPF projects. To do this, it must be referenced (linked) in the WPF
editor (for example: Microsoft Expression Blend). To do this, select the assembly in the zenon file
selection dialog:

v \E DemoApplication

) I
0
=), Add Project Reference.. *

From this point in time, the WPF user controls of the assembly in the tool box can be selected under
Custom user controls and used in the WPF project.

See also, in relation to this, the following chapter: Guidelines for developers.

78

USED REFERENCED ASSEMBLIES IN ZENON

To use an assembly in zenon, this must be provided as a file.
Collective files in .cdwpf format administer these independently; no further configuration is necessary.
Assemblies must be added to the Files folder for .xaml files:

» Clickon Files on the project tree

» Select Other

» Select Add file... in the context menu
» The configuration dialog opens

» Insert the desired assembly
When displaying a WPF file in the WPF element (Editor and Runtime), the assemblies from this folder

are loaded. It is thus also ensured that that when the Runtime files are transferred using Remote
Transport, all referenced assemblies are present on the target computer.

A collective file (.cdwpf) can exist alongside an XAML file with the same name. All assemblies (*.dll) from
all collective files and the Other folder are copied to the work folder. Only the highest file version is
used if there are several assemblies with the same name.

& Attention

Assemblies are only removed after loading when the application is ended. This means:

If a WPF file with a referenced assembly in zenon is displayed, then this assembly is
loaded is in the memory until zenon is ended, even if the screen is closed again. If you
would like to remove an assembly from the Files/Other folder, the Editor must first
be restarted, so that the assembly is removed.

MULTI-PROJECT ADMINISTRATION

With multi-project administration, the same assembly must be used in all projects. If an assembly is replaced
by another version in a project, it must also be replaced in all other projects that are loaded in the Editor or in
Runtime.

6.1.4 Workflows

The WPF/XAML technology makes new workflows in process visualization possible. The separation of
design and functionality ensures a clear distinction of roles between the project engineer and designers;
design tasks can be easily fulfilled by using pre-existing designs, which no longer need to be modified by
the project engineer.

The following people are involved in the workflow to create WPF elements in zenon:

» Designer

79

o illustrates elements

e takes care of the graphics for MS Expression Design
» MS Expression Blend operator

e Animates elements

e Creates variables for the animation of WPF elements in zenon, which project engineer can
access

» Project engineer
e Integrates elements into zenon:

e stores logic and functionality

We make a distinction:
» Workflow with Microsoft Expression Blend (on page 80)

» Workflow with Adobe lllustrator (on page 80)

Workflow with Microsoft Expression Blend

When using Microsoft Expression Blend, a WPF element is created in four stages:
1. [lllustration of elements in MS Expression Blend (on page 81)
2. Open element in MS Expression Design and export as WPF
3. Animation in MS Expression Blend (on page 81)
4

Integration into zenon (on page 145)

You can find an example for creating a WPF elements with Microsoft Expression Blend in the Create
button as XAML file with Microsoft Expression Blend (on page 81) chapter.

Workflow with Adobe Illustrator

Based on traditional design processes with Adobe Illustrator the following workflow is available:
1. [lllustration of elements in Adobe lllustrator (on page 86)
2. Import of .ai files and preparation in MS Expression Design (on page 87)
3. WPF export from MS Expression Design (on page 87)
4. Animation in MS Expression Blend (on page 89)
5

Integration into zenon (on page 139)

You can find an example for creation in the Workflow with Adobe lllustrator (on page 85) chapter.

80

6.2 Guidelines for designers

This section informs you how to correctly create WPF files in Microsoft Expression Blend and Adobe
Illustrator. The tutorials on Creating a button element (on page 81) and a bar graph element (on page
85) show you how fully functional WPF files for zenon can be created from pre-existing graphics in a few
steps.

The following tools were used for this:
» Adobe lllustrator CS3 (Al)
» Microsoft Expression Design 4 (ED)
» Microsoft Expression Blend 4 (EB)

» zenon

¥ Information

If referenced objects (assemblies) are used in WPF, note the instructions in the
Referenced objects (on page 78) chapter.

6.2.1 Workflow with Microsoft Expression Blend

With Microsoft Expression Blend, a WPF element:
» isillustrated
» is converted into WPF format using MS Expression Design

» animated
The following example shows the illustration and conversion of a button element into an XAML file.

Note: A test version of "Microsoft Expression Blend" can be downloaded from the Microsoft website.

Create button as an XAML file with Microsoft Expression Blend

CREATE BUTTON

1. Start Expression Blend

81

2.

select the New Project option

r bl

Projects

ﬁ New Project...
E Open Project...

V! Run at startup Close

S 4

Select WPF as project type

give it a path and name of your choice (MyBlendProject, for example)

gé WPF Application

ff§ wer control Library

'PF Databound Application

A project for creating custom controls that can be reused across
other WPF applications.

MName
Location endProject!, Browse...
Language

Version

Cancel

The Language and Version settings can be ignored, because no functionality is to be
programmed.

After the dialog has been confirmed with OK, Microsoft Blend creates a new project with the

chosen settings. Expression Blend adds an empty XAML file which already contains a class
reference.

Delete the CS file that belongs to the XAML file using the context menu.

82

7. Rename the XAML file MainControl.xaml to MyButton.xaml.

8. The development size of the file is set at 640 x 480 pixels as standard and must still be changed:
a) switch to XAML view
b) correct the size to 100 x 100 pixels

c) Delete the class reference x:Class="MyBlendProject.MyButton"

MyButton.xaml =

1 <UserControl

2 wmlns="http://schemas.microsoft. com/winfx/2806/xaml/presentation”

3 xmlns:x="http://schemas.microsoft.com/winfx/2066/xaml"”

4 xmlns:d="http://schemas.microsoft.com/expression/blend/2668"

5 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2666"
6 mc:Ignorable="d"

7 »:Name="UserControl”)

3 d:DesignwWidth="108" d:DesignHeight="J£!*U

18 <@Grid x:Name="LayocutRoot" />

12 < /UserControl:

9. switch to Design view

10. add a button via the toolbar
11. define the properties

e Width: 50

e Height: 50

83

e Margins: 25

v Layout
Width 50
Height 50
Row 0 RowSpan 1
Column 0 ColumnSpan 1

Zindex 0

HorizontalAlignment |[= =

VerticalAlignment [T - In
Margin + 25

t+ 25

12. Save the changes and open the file in Internet Explorer to check it. You will see that the button is
displayed in a size of 50 x 50 pixels.

MAKE BUTTON SCALABLE
If you integrate this status into zenon, the button will always have the exact size of 50 x 50 pixels.
Because the button can be implemented as a scalable button, switch to Expression Blend again:
1. select the button in the tree view
2. select the Group Into->Viewbox button in the context menu
3. the button is inserted into a Viewbox
4. Define the properties of the viewbox
e Width: Auto
e Height: Auto

84

5. save the file

Cut
Copy
Paste
Delete

Rename

Order 3
Align 3
3

Auto Size

Group Into 3 Grid

StackPanel
PFin Active Container DockPanel

SIEEE ZTE I Data bind Content to Data... Canvas

Edit Text ScrollViewer

Bord
UserControl Make Into Control... arder

WrapPanel
Make Into UserControl... rapFane

UniformGrid

Edit Additional Templates 3
youtRoot

) [Button] "Button™

6. If you now open the file in Internet Explorer, the button is automatically scaled when the IE
window size is changed. This file will now also automatically adapt to changes in the size of the
WPF element in zenon.

CHANGE NAME

Before you can integrate the file into zenon, you must give the WPF element a name. The WPF elements
are not named in Expression Blend as standard, and are labeled with square brackets and their type.
zenon content is assigned to WPF content via the name of the WPF elements:

» intree view, change the name
e of the button on MyButton

o of the ViewBox to MyViewBox

This button can now be integrated in zenon (on page 145) as an XAML file.

6.2.2 Workflow with Adobe Illustrator

When Adobe lllustrator is used, a WPF element:
» isillustrated in Adobe Illustrator
» isconverted into a WPF in MS Expression Design

» isanimated in MS Expression Blend

The following example shows the illustration and conversion of a bar graph element into an XAML file.

85

Bar graph illustration

A bar graph is created in Adobe Illustrator.

1. Al: Starting element for bar graph

Illustrated in Adobe lllustrator CS3.

2. Al: Path view of bar graph in Adobe Illustrator
b

All effects must be converted (Object -> Convert appearance)

All lines are transformed into paths (Object -> Path -> Contour line)

Do not use filters such as shading, blurring etc.

NOTES ON COMPATIBILITY

Illustrations that were created with Adobe lllustrator are in principle suitable for WPF export. However,
not all lllustrator effects can become corresponding effects in Expression Design/Blend. Note:

86

Effect

Clipping masks

Filters and effects

Text fields

Transparencies and group
transparencies

Multiply levels

Indicating instruments and
standard positions

WPF export

Description

Clipping masks created in Adobe lllustrator are not correctly interpreted
by Expression Design. These are usually shown in Blend as areas of black
color.

We recommend creating illustrations without clipping masks.

Not all Adobe Illustrator filters are transferred into Expression Design
accordingly: Thus blurring filters, shading filters and corner effects from
Illustrator do not work in Expression Design.

Solution:

> Most effects can be converted so that they can be read correctly by
Expression Design using the Object -> Convert appearance
command in Adobe Illustrator.

» Corner effects from Adobe lllustrator are correctly interpreted by MS
Design if they are converted to Al in paths.

To be able to link text fields with code, these must be created separately
in Expression Blend. "Labels" are required for dynamic texts; simple
"text fields" are sufficient for static information.

There is no possibility to create text labels in MS Design. These must be
directly created in MS Blend.

There can be difficulties in Adobe lllustrator with the correct
interpretation of transparency settings, in particular from group
transparency settings.

However MS Expression Blend and MS Expression Design do offer the
possibility to create new transparency settings.

These level settings in Adobe lllustrator are not always correctly
displayed by MS Expression Blend.

However, there is the possibility to "Multiply levels" directly in
Expression Design.

To prepare the graphics optimally for animation, the indicator and slider
must always be set to the starting position, usually 0 or 12:00
o'clock.

Thus the position parameters for rotations etc. are also correct in Blend
and an animation can be implemented without conversion of position
data.

WPF files are required for animation in Microsoft Expression Blend. We recommend Microsoft
Expression Design for this export, because it provides good results and most lllustrator effects are

correctly interpreted.

87

Note: There is a free plug-in for the direct export of WPF files from Adobe lllustrator available on the
internet. This plug-in provides a quick, uncomplicated way of exporting from lllustrator, however it is
less suited to the current application because it lead to graphical losses. Even color deviations from the
original document are possible.

Files in .ai format can regularly be imported into Expression Design; the paths are retained in the
process.

Attention: Some common lllustrator effects cannot be displayed by Expression Design correctly however
(see lllustration (on page 86) chapter).

We export the pre-created bar graph element in 5 stages:

1. ED:Import

e Import the prepared lllustrator file (on page 86) in Microsoft Expression Design via File ->
Import

2. ED: Optimization

Stop Alpha 100%

% oo stroke) v

e If the starting file is not correctly displayed in MS Expression Design, it can still be
subsequently edited and optimized here

3. ED:Select

e Highlight the element for WPF export with the direct selection arrow in MS Expression
Design; in this case it is the whole clock

88

4. ED: Start export

e Start the export via File -> Export
e the dialog for configuring the export settings opens

5. ED: Export settings

e Enter the following export settings:
a) Format: XAML Silverlight 4 / WPF Canvas

Always name objects: Activate with tick

Place the grouped object in an XAML layout container: Activate with tick
b) Text: Editable text block

c) Lineeffects: Rasterize all

The exported file has .xaml file suffix. It is prepared and animated (on page 89) in MS Expression Blend
in the next stage.

Animation in Blend

With MS Expression Blend:
» static XAML files from MS Expression Design are animated
» Variables for controlling effects that can be addressed by zenon are created
In thirteen steps, we go from a static XAML to an animated element, that can be embedded in zenon:

1. EB:create project

89

5.

a) Open Microsoft Expression Blend

b) Create a new project

c) Select the Project type of WPF- >WPF Control Library
d) Give it a name (in our tutorial: My_Project)

e) Select a location where it is to be saved

f) Select a language (in our tutorial: C#)

g) Select Framework Version 3.5

EB: delete MainControl.xaml.cs

a) Navigate to MainControl.xaml.cs

b) Delete this file using the Delete command in the context menu

EB: Open exported XAML file
B

a) Open the context menu for My_Project (right mouse button)
b) Select Add existing element...

c) Select the XAML file exported from Microsoft Expression Design, in order to open this in
Microsoft Expression Blend

EB: Open MainControl.xaml

a) Open the automatically created MainControl.xaml
b) Inthe Objects and Time axes area, navigate to the UserControl entry

EB: Adapt XAML code

90

a) Click on UserControl with the right mouse button
b) Select Display XAML in the contextual menu.

c) Delete lines 7 and 9 in the XAML code:

x:Class="My Project.MainControl"

d:DesignWidth="640" d:DesignHeight="480"

EB: check XAML code

e The XAML code should now look like this:
<UserControl

xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc: Ignorable="4d"
x :Name="UserControl">

<Grid x:Name="LayoutRoot"/>

</UserControl>

EB: Copy elements

a) Open the XAML file imported from Expression Design
b) Mark all elements

c) Select Delete in the context menu

d) Change back to the automatically created XAML file

EB: Insert element

a) Click on Layout Root with the right mouse button

b) Select Insert

91

10.

11.

12.

13.

EB: Adapt layout type

a) Click on Layout root -> Change layout type -> Viewbox with the right mouse button
b) The structure should now look like this: UserControl -> LayoutRoot -> Grid -> Elements
c) Give a name for LayoutRoot and Grid by double-clicking on the names

EB: Texts and values

Dynamic and static texts are labeled with text fields

Values (numbers) are issued with Labels

EB: Insert labels

e Labels replace numbers that are to be subsequently linked using INT variables (must be
carried out for all number elements)

EB: Set property

e Todisplay 100%, set the bar graph element's MaxHeight property to 341 (the maximum
height of the indicator element is 340)

EB: prepare for use in zenon

a) Delete all name labels (names may only be given for elements that are to be addressed via
zenon)

92

b) Save the XAML file with any desired name
c) Integrate the XAML file into zenon (on page 139)

A tip for checking: If the XAML file is displayed with no problems in Microsoft Internet Explorer and the
window size of Internet Explorer adapts to it, it will also be correctly used in zenon.

6.3 Engineering in zenon

In order to be able to use WPF user controls in zenon, version 3.5 (or higher, depending on the .NET
framework version used in the user control) of the Microsoft framework must be used on both the
Editor computer and the Runtime computer.

CONDITIONS FOR THE WPF DISPLAY IN ZENON

The dynamization is currently available for simple variable types (numerical data types as well as string).
Arrays and structures cannot be dynamized.

Therefore the following WPF functions can be implemented in zenon:

» Element properties that correspond to simple data types, such as SString, Int, Double,
Bool etc.

» Element properties of the "Object" type, which can be set with simple data types

» Element events can be used with functions; the parameters of the events are not however
available in and cannot be evaluated in zenon

» Element transformation, for which a RenderTransform is present for the element in the XAML
file

Attention: if the content is outside of the area of the WPF element during transformation, this is
not labeled

Notes on dBase: No shade can be displayed in zenon for WPF elements.
& Attention

If the Runtime files were created for a project for a version before 6.50, existing WP F
elements are not included into Runtime screens.

6.3.1 CDWPF files (collective files)

A CDWPF file (with the suffix *.cdwpf) is an renamed ZIP file that contains the following components:

93

>

>

>

XAML file (to reference the user control assembly)
DLL file (the actual WPF user control, optional)

Preview graphics (for preview, optional)

Rules for the use of collective files:

>

>

6.3.2

The files (XAML, DLL, preview graphics) can be in the CDWPF file directly or in a joint folder.
The name of the collective file should correspond to the names of the XAML file.
Only one XAML file may be contained.

The preview graphic should be small and no more than 64 pixels high.
Name of the preview file: preview.png or the name of the XAML file with the suffix png.

Any number of assemblies can be used. The distinction is made on the basis of the file version.
Collective files do not need to contain an assembly.
All subfolders are examined and only taken into account with *.dll, *.xaml or *.png files.

If a collective file (*.cdwpf) is replaced by a file with a different version, all corresponding COWPF
files in all symbols and images in all projects must be adapted.

create WPF element

To create a WPF element

1.

2
3
4.
5
6

In the elements toolbar, select the symbol for WPF element or the Elements entry in the menu
Select the start point in the main window.

Pull open the element with the mouse.

In properties, select Representation the property XAML file in the group.

The file selection dialog opens.

Select the desired file
Files of the following formats are valid:

e *xaml: Extensible Application Markup Language
e *.cdwpf: WPF collective file, also shows preview image

(The file must already be present in the Project Manager under Files/graphics or created in the
dialog.)

Configure the links (on page 95).

94

¥ Information

If referenced assemblies are used, note the instructions in the Referenced assemblies (on
page 78) chapter.

6.3.3 Configuration of the linking

To configure a WPF element
1. In properties, select WPF links the property Configuration in the group.

2. The dialog with three tabs opens with a preview of the XAML file and the elements present in
the file

DIALOG CONFIGURATION

Configuration @
WPF element
wor denert Lo]
Avalable elements Previ
valable el eview —]
LayoutRoot -
=1 MyViewBex —l
MyButton ettt
Action bnk
Properties Events | Transformations
Linked | Name Linkage " Type of ink | WPF info =
[T Content ink Varabie Buton 1
=] IsEnabled Authorization available Authorizatio... True
(m] DataContext <nothing lin...
(m] ContentStringFormat <nothing lin...
(] CommandTarget <nething lin...
[m] Uid <nething lin...
(] MaxHeight <nothing lin... +unendlich
O Tag <nathing lin...
(] ToolTip <nothing lin...
] CommandParameter <nething lin...
(m] ToolTipService.VerticalOffset <nothing lin... 0
O MaxWidth <nething lin... +unendlich
[0 ContetMenuSenvice Horizont.. <nothing lin... 0
[m] Typography.AnnotationAltern... <nothing lin... 0
[ConteahenSanics Usdicalel | |_cnothinalin 0]

Parameters

Available elements

Preview

Properties (on page 97)

Events (on page 103)
Transformations (on page 104)
Name

Connection

Link type

WPF info

Linked

¥ Information

Description

Shows the named file elements in a tree structure. The
selected element can be linked with process data.

WQPF is assigned to process data based on the element
name. Therefore elements are only shown if they and the
attendant elements have a name. Allocations are
configured and shown in the Properties, Events,
Transformations tabs.

Hint: If the corresponding elements are not displayed,
check in the XAML file to see if this has a name (for
example: <Grid Name="GridName">).

The selected element is shown flashing in the preview.

Configuration and display of properties (variables,
authorizations, interlockings, linked values).

Configuration and display of events (functions).
Configuration and display of transformations.
Name of the property.

Selection of link.

Type of link (variable, authorization, function)

Shows the current value for properties in WPF content. For
the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

Only logical objects can be displayed in the configuration dialog. Visual objects are not
displayed. You can read about backgrounds and how visual objects can be animated in

the Allocation of zenon object to WPF content.

EDIT HYPERLINKS

All configured hyperlinks can be edited from the properties of the element. Click on the element and
open the property group WPF links. Hyperlinks can be further configured here, without having to open

the dialog.

Limitations:

» The linking type cannot be changed here.

» New linkings can only be created via the configuration dialog.

96

» Insertion of a WPF elements into a symbol: WPF linkings cannot be exported.

Properties

The properties enable the linking of:
» Variables (on page 99)
» Values (on page 100)

» Authorizations and interlockings (on page 101)

Configuration @
WPF element
o denent Lo]
;)
walable elements Preview —]
LayoutRoot -
= MyViewBox
MyButton L tee |
Action bnk
Properties Evenl.sl Transformations
Linked | Name Linkage # Type of fink | WPF info -
L iontent L ¥anchleBBUon INSG—
=] IsEnabled Authorization available Authorizatio... True
(m] DataContext <nothing lin...
[0 ContentStringFormat <nothing lin...
(] CommandTarget <nething lin...
O ud <nothing lin...
O MaxHeight <nothing lin... +unendlich
O Tag <nathing lin...
(] ToelTip <nothing lin...
O CommandParameter <nathing lin...
(m] ToolTipService.VerticalOffset <nothing lin... 0
O MaxWidth <nething lin... +unendlich
[0 ContetMenuSenvice Horizont.. <nothing lin... 0
(m] Typography.AnnotationAltern... <nothing lin... 0
[ContexthenSanices Vadicall | |_<nathinalin__ 0 [

97

Parameters
Name

Connection

Link type

WPF info

Linked

CREATE LINK

To create a link:

Description
Name of the property.
Linked variable, authorization or linked value.

Clicking in the column opens the respective selection
dialog, depending on the entry in the Link type column.

Selection of linking.

Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select the desired link from the drop-down list.

The following are available:

e <not linked> (deletes an existing link)

e Authorization/Interlocking
° Constant value
e Variable

4. Click in the Link cell

5. The dialog for configuring the desired link opens

Q

Information

Properties of WPF and zenon can be different. If, for example the visibility property is
linked, there are three values available in .NET:

0 - visible
1 - invisible

2- collapsed

These values must be displayed via the linked zenon variable.

98

Link variable

To link a variable with a WPF property:
1. Highlight the line with the property that is to be linked
2. Clickin the Link type cell
3. Select from the variable drop down list
4. Click in the Link cell
5

The dialog for configuring the variables opens

This dialog also applies for the selection of variables with transformations (on page 104). The
configuration also makes it possible to convert from zenon into WPF units.

Configuration @
Linked variable ;JOK
D Cancel
Range of values of the WPF element

[~ Conwvert range of values

Minimum Maximum

Parameters Description

Linked variables Selection of the variable to be linked. A click on the ...
button opens the selection dialog.

Value range of WPF element Data to convert variable values into WPF values.
Convert value range Active: WPF unit conversion is switched on.
Effect on Runtime: The current zenon value (incl.

zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

For example: The value of a variable varies from
100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

» for Transformations, the RotateTransform.Angle
property is linked to the variables

» Adjust value activated

» a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Minimum Defines the lowest WPF value.
Maximum Defines the highest WPF value.

OK Accepts settings and ends the dialog.
Cancel Discards settings and ends the dialog.
Help Opens online help.

Link values

Linked values can either be a String or a numerical value of the type Double. When selecting the screen,
the selected value is sent in WPF content after loading the WPF content.

To link a value with a WPF property:
1. Highlight the line with the property that is to be linked
2. Click in the Link type cell
3. Select Value linkings from the drop-down list
4

Click in the Link cell

100

5. The dialog for configuration of value linking opens

Configuration @
Link constant value
Linked value
Use string Cancel
Numeric value)
Help
Unit
<Base unit> -
Parameters Description
Linked value: Entry of a numerical value or string value.
Use string

Active: A string value is used instead of a numerical value.

The language of string values can be switched. The text is
translated in Runtime when the screen is called up and sent in
WPF content. If the language is switched whilst the screen is
opened, the string value is retranslated and sent.

String value/numerical value Depending on what is selected for the Use string property, a
numerical value or a string value is entered into this field. For
numerical values, a unit of measurement can also be selected.

Unit: Selection of a unit of measurement from the drop down list. You must
have configured this in unit switching beforehand.

The unit of measurement is allocated with the numerical value. If
the units are switched in Runtime, the value is converted to the
new unit of measurement and sent to WPF content.

oK Accepts settings and ends the dialog.
Cancel Discards settings and ends the dialog.
Help Opens online help.

Link authorization or interlocking

Authorizations cannot be granted for the whole WPF element. The element is allocated a user level.
Authorizations are granted within the user level for individual controls. If an authorization is active, the
value 1 is written to the element.

To link an authorization or interlocking with a WPF property:

1. Highlight the line with the property that is to be linked

101

Click in the Link type cell

Click in the Link cell

2.
3.
4.
5.

WPF element
Zenon

Select Authorization/interlocking from the drop down menu

The dialog for configuring the authorizations opens

Link authorizationfinterlocking |

Linked status

uthorization available -

Link authorization/interlocking

Setting the authorizations.

Linked status

Selection of an authorization that is linked to a WPF control from
the drop down list. For example, visibility and operability of a
WPF button can depend on a user's status.

Link authorizationfinterlocking |

Linked status

uthorization available

Authorization available

Authorization does not exist
Mot interlocked

Interlocked
Can be operated
Cannot be operated

Authorization available

If the user has sufficient rights to operate the WPF element, a value of 1
is written to the property.

Authorization does not
exist

If the user does not have sufficient rights to operate the WPF element, a
value of 1 is written to the property.

Not interlocked

If the element is not locked, the value 1 is written to the property.

Interlocked

If the element is locked, the value 1 is written to the property.

Can be operated

If authorization is present and the element is not locked, then a value of
1 is written to the property.

Cannot be operated

If authorization is not present or the element is not locked, then a value
of 1 is written to the property.

WPF element

Zenon
Events
Events make it possible to link zenon functions to a WPF element.
| Properties | Events | Transformations | User authorization/nteriocking |
WPF event Linked function o
ContextMenuClosing Function 1 :l
ContextMenuCpening Function 2
DataContextChanged Function 3
DragEnter
DraglLeave
DragOver
Drop
FocusableChanged
GiveFeedbadk
GotFocus il
Name Name of the property.
Connection Linked function. Clicking in the cell opens the
configuration dialog.
Link type Selection of linking. Clicking in the cell opens the selection
dialog.
WPF info Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).
Linked Shows if a property is currently being used.
Not contained by default in the view, but can be selected
using Context menu->Column selection.

LINK FUNCTIONS

To create a link:

1. Highlight the line with the property that is to be linked

2. Clickin the Link type cell

3. Select from the drop down list function
4. Click in the Link cell
5

The dialog for configuring the function opens

Configuration @
Link function
Linked function ILI
< no function linked = D Cancel
Help
Parameters Description
Linked function Selection of the function to be linked. Clicking on the ...

button opens the dialog for Function selection.

oK Accepts selection and closes dialog.

Cancel Discards changes and closes dialog.

Help Opens online help.
Transformation

The WPF element does not support rotation. If, for example, the WPF element is in a symbol and the
symbol is rotated, the WPF element does not rotate with it. Therefore there is a different mechanism for
Transformation with WPF to turn elements or to otherwise transform them. These transformations are
configured in the Transformation tab.

104

WPF element
Zenon

Attention: If the content is outside of the WPF element area, this part of the contents is lost or it is not
shown.

ﬁ

WPF element

Available elements Preview Cancel

= LayoutRoot
& yrenox

Button

proparte vt | Tsfmatons s auporzaonerc

WPF transformation Linked variable I

RotateTransform. Angle WIZ_VAR_10
RotateTransform, CenterX Alarms not acknowledged
RotateTransform. CenterY

ScaleTransform, CenterX

ScaleTransform, Centery

SealeTransform, ScaleX.

ScaleTransform. ScaleY

SkewTransform, Anglex

SkewTransform, Angle’

SkewTransform. CenterX

Parameters Description
Name Name of the property.
Connection Selection of the linked variables.

Transformations are displayed in XAML as transformation objects with their own
properties. If an element supports a transformation, then the possible properties
of the transformation object are displayed in list view. (more on this in: Integrate
button as WPF XAML in zenon (on page 145)

For example, if the linked variable is set at the value of 10, then this value is
written as a WPF target and the WPF element is rotated by 10°.

Link type Selection of transformation link type.

WPF info Shows the current value for properties in WPF content. For the user, it is directly
visible what type of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected using Context
menu->Column selection.

LINK TRANSFORMATIONS

To link a transformation with a WPF property:
1. Highlight the line with the property that is to be linked
2. Click in the Link type cell
3. Select from the Transformation drop down list
4. Click in the Link cell
5

The dialog for configuring the variables opens

The configuration also makes it possible to convert from zenon into WPF units.

Configuration @
Link variable
Linked variable I—IOK
D Cancel
Range of values of the WPF element

Convert range of values

Minimum Maximum

106

Parameters

Linked variables

Value range of WPF element

Convert value range

Minimum
Maximum
OK
Cancel

Help

6.3.4 Validity of XAML Files

Description

Selection of the variable to be linked. A click on the ...
button opens the selection dialog.

Data to convert variable values into WPF values.

Active: WPF unit conversion is switched on.

Effect on Runtime: The current zenon value (incl.
zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

For example: The value of a variable varies from
100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

» for Transformations, the RotateTransform.Angle
property is linked to the variables

» Adjust value activated

» a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Defines the lowest WPF value.
Defines the highest WPF value.
Accepts settings and ends the dialog.
Discards settings and ends the dialog.

Opens online help.

XAMIL files are valid subject to certain requirements:

» Correct name spaces
» No class references

» Scalability

CORRECT NAME SPACE

The WPF element can only display WPF content, i.e.:

107

Only XAML files with the correct WPF namespace can be displayed by the WPF element. Files that use a
Silverlight namespace cannot be loaded or displayed. However, in most cases it is suffice to change the
Silverlight namespace to the WPF namespace.

WPF-Namespaces:
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

NO USE OF CLASS REFERENCES

Because the XAML files can be loaded dynamically, it is not possible to use XAML files that contain
references to classes ("class" key in header). Functions that have been programmed in
independently-created CH#- files cannot be used.

In order to use WPF user controls with code behind, the process as described in the Creating a simple
WPF user control with code behind funciton must be carried out.

SCALABILITY

If the content of a WPF element is adjusted to the size of the WPF element, then the controls of the WPF
element are interlaced in a control that offers this functionality, such as a view box for example. In
addition, it must be ensured that the height and width for this elements are configured as automatic.

CHECKING AN XAML FILE TO SEE IF IT IS CORRECT

To check if an XAML file has the correct format:
» Open XAML file in Internet Explorer

e If it can be opened without additional plug-ins (Java or similar), then it can be assumed with
a high degree of certainty that this file can be loaded or displayed by zenon

e if problems occur during loading, these are then shown in Internet Explorer and the lines in
which problems arise can be clearly seen

The scaling can also be tested in this manner: If the file has been created correctly, the content will
adjust to the size of the Internet Explorer window.

ERROR MESSAGE

If an invalid file is used in zenon, then an error message is displayed in the output window when loading
the file in the WPF element.

For example:

108

"error when loading
xaml-Datei:C:\ProgramData\COPA-DATA\SQL\781b1352-59d0-437e-a173-08563c3142e9\
FILES\zenon\custom\media\UserControll.xaml

The attribute "Class" cannot be found in XML namespace
"http://schemas.microsoft.com/winfx/2006/xaml". Line 7 Position 2."

6.3.5 Pre-built elements

zenon is already shipped with several WPF elements. More are available for download in the web shop.

All WPF elements have properties which determine the graphical design of the respective element
(Dependency Properties). Setting the values via an XAML file or linking the property via zenon can
directly change the look in the Runtime. The tables in the description of the individual elements contain
the respective Dependency Properties, depending on the control.

Available elements:
» Analog clock (on page 110)
» Vertical bar graph (on page 110)
» Comtrade Viewer (on page 111)
» Energy class diagram (on page 122)
» Progress bar (on page 111)
» Pareto diagram (on page 123)
» Sankey diagram (on page 130)
» Round display (on page 127)
» Temperature control (on page 132)
» Universal slider (on page 133)

» Waterfall diagram (on page 134)

REPLACING ASSEMBLY WITH A NEWER VERSION

Per project only one assembly for a WPF element can be used in the zenon Editor as well as in the
Runtime. If two versions of an assembly are available in a project, then the first loaded file is used. A
user enquiry is made as to which version should be used. No further actions are needed for the
maintenance of the versions used up until now. If a newer version is chosen, all corresponding COWPF
files in all symbols and images in all projects must be adapted.

Note for Multi-Project Administration: If an assembly in a project is replaced by a new version, it must
also be replaced in all other projects that are loaded in the Editor or in Runtime.

109

WPF element
Zenon

Analog clock - AnalogClockControl

ElementStyle

Shape/type of element.

Enum:

) SmallNumbe
rs

> BigNumbers

> No
ElementBackgroundBrush Color of element background. Brush
ElementGlasReflection Activate the glass effect on the element. Visibility
Offset Value in hours (h) which displays the time lag to the Intle
system clock.
OriginText Text which is displayed in the clock (e.g. location). String

Bar graph vertical - VerticalBargraphControl

CurrentValue Current value which should be displayed. Double
MinValue Minimum value of the scale. Double
MaxValue Maximum value of the scale. Double
MajorTicksCount Number of main ticks on the scale. Integer
MinorTicksCount Number of sub ticks on the scale. Integer
MajorTickColor Color of main ticks on the scale. Color
MinorTickColor Color of sub ticks on the scale. Color
ElementBorderBrush Color of the element border. Brush
ElementBackgroundBrush | Color of element background. Brush
ElementGlasReflection Activate the glass effect on the element. Visibility
ElementFontFamily Element font. Font
ScaleFontSize Font size of the scale. Double
ScaleFontColor Font color of the scale. Color
IndicatorBrush Bar graph fill color. Brush
BargraphSeparation Number of bar graph dividion. Integer
BargraphSeparationColor | Color of the scale division. Color

Progress bar - ProgressBarControl

Property

CurrentValue

MinValue

MaxValue
ProgressbarDivisionCount
Visibility Text

TextSize

TextColor
ProgressBarBoxedColor

ProgressBarMarginDistance

ProgressBarlnactiveBrush
ProgressBarActiveBrush

ProgressBarPadding

ElementBorderBrush

ElementBackgroundBrush

COMTRADE-Viewer

Function

Current value which should be displayed.
Minimum value of the value area.
Maximum value of the value area.
Number of divisions of the progress bar.
Visibility of the value display.

Font size of the value display.

Color of the value display.

Color of the border of the progress bar.

Distance of the progress bar box from the element edge (left,
top, right, down).

Indicator color not active.
Indicator color active.

Distance of the progress bar from the progress bar box (left,
top, right, down).

Color of the element border.

Color of element background.

Value
Double
Double
Double
Integer
Boolean
Double
Color
Color

Double

Brush
Brush

Double

Brush

Brush

The COMTRADE-Viewer WPF element is available to partners of COPA-DATA and is available to these via

the Partner Portal.

It is for the graphical analysis of digital error and result logging of a COMTRADE file.

111

¢

Information

The control supports IEEE C37.111 (IEEE Standard Common Format for Transient
Data Exchange (COMTRADE) for Power Systems) standards-compliant files. ASCII or
binary files in accordance with the 1999 or 2013 edition can be visualized.

Older files or files without a year identification are not supported. This is displayed
with a warning dialog in Runtime.

uopeinbyua) Jamain IAVYINGD &

L]

F5A - 100

C5V-Export

i) WFREQ

50000 100000 150000 200000 250000

Ipz] - Beginning event: 03,07 2003 D8:06:51

Possibilities of the COMTRADE-Viewer WPF control in zenon Runtime:

» Selection of a file in the COMTRADE file format

» Exports selected objects as an CSV file.

» Visualization of the selected COMTRADE file:
Note: The display colors can be configured in the zenon Editor.

Current (sinus wave display)

Voltage (sinus wave display)

Digital signals (binary bar chart display)
Display of values at a selected cursor position.

If an element that represents neither current or voltage is selected, (such as frequency), this
is visualized in both analog areas again (current and voltage).

» Navigation:

112

e Zoom in and zoom out using the mouse wheel, scroll bar and Multi-Touch gestures

e Enlargement of the area
Selection of the area by clicking the mouse

e Move the display area using the right mouse button, scroll bar or Multi-Touch gestures.

! Hint

To be able to transport COMTRADE files to the zenon Runtime computer, you can
also use the file transfer of the 1IEC 61850 driver or the FTP function block of zenon
Logic.

You can find further information about this in the driver documentation of the IEC
61850 driver or in the zenon Logic documentation.

LICENSING

The COMTRADE-Viewer can only be configured in the zenon Editor with a valid Energy Edition license. If
there is no valid license, the WPF is displayed as grayed out in the Editor. A valid Energy Edition license is
also required for display in Runtime.

Mo Energy Edition license found!

Display during Runtime

The COMTRADE WPF element offers two views in Runtime:
» Configuration view
e Selection of a COMTRADE configuration file
e Selection of the elements to be displayed
» Graph view
e Zoom in and zoom out
e Display of values at a selected cursor position.

e Export of the selected elements as an CSV file

113

¥ Information

The switch between the views is integrated in the WPF element. Additional project
configuration of a screen switching function is not necessary.

Runtime view - configuration page

If a screen with a configured COMTRADE-Viewer WPF element is called up, the display of the respective
configuration page is empty.

Note: This also applies if, in zenon Runtime, there is a switch from one screen to another screen with
the screen switching function.

uoRenbyuo) 1BMSIA IAVYLINDD ~

COMTRADE VIEWER CONFIGURATION

The COMTRADE Viewer Configuration switching, arranged vertically on the side, switches the display of
the configuration to graphic view and vice versa.

SELECT FILE

The Open... button opens the file selection dialog to select a file.

There is a pre-selection for display in the file selection:

114

» Indoing so, file pairs of *.cfg- and *.dat files are detected.
Note: Optional *.hdr or *.inf files are not taken into account.

» Only the corresponding * . dat files are displayed.
» Allattendant files (*.dat, *.cfg) are loaded by clicking on the desired file and the OK button.
» One file can be loaded.

» After loading the file, the content of the file is shown in the Analog Channels and Digital Channels
columns.
The labels and units of the elements originate from the COMTRADE configuration and cannot be
changed.

ANALOG CHANNELS

Parameters Description

[Liste der verfigbaren Kanale] Selection of the elements to be visualized.

Multiple selection by clicking on the desired entry in the
list. Selected elements are shown with a colored
background. Another mouse click undoes the selection of

the entry.
Select All Selects all elements from the list.
Deselect All Deactivates the existing selection of elements.
DIGITAL CHANNELS
Parameters Description
[Liste der verfigbaren Kanédle] Selection of the elements to be visualized

Multiple selection by clicking on the desired entry in the
list. Selected elements are shown with a colored
background. Another mouse click undoes the selection of

the entry.
Select All Selects all elements from the list.
Deselect All Deactivates the existing selection of elements.

SHOW SELECTION

To show your selection in the graphic view, click on the Apply button.

Note: Clicking on the vertically-arranged COMTRADE Viewer Configuration switching only changes the
view. An amended selection of the channels is not taken into account in the process.

115

WPF element ﬂ

Zzenon

Runtime view - visualization of COMTRADE data

The selected channels are visualized in the graph view of the COMTRADE-Viewer WPF element. The
coloring can be configured in the zenon Editor.

EXPORT OF THE SELECTED DATA

The selected analog and digital channels can be exported to a CSV file with the CSV-Export button.

GRAPH VIEW

The graph view of the COMTRADE-Viewers is divided into three sections:

» Current amperage
Upper area

» Voltage
Mid area

» Digital channels
Lower area

W iaia) MR WA 9 1Ga) WFREQ

30000 100000 150000 200000
[ws] - Beginning event: 03.07 2003 08:06:51
00 vy BVERY) BVEK) B S BVS2ied BVIMEMD) B FREQ

mﬂ: .r"\. .r"\.l .r"\. ,r-"\l ‘ M"\I M \‘-.I /W \ f\ r\ f\ .-'m\‘ fm\.‘ /\/\
! AWl AWA! / / AWANLY 1 \ N NN A / N A]

uopeinbyua) Jamain IAVYINGD &
Al

Y

']

50000 100000 150000 200000
1us] - Beginning event: 03.07 2003 08:06:51

50000 100000 150000 200000
I] - Beginring event: 03,07 2003 D&:06:51

AXIS LABELING

» Horizontal axis
The horizontal axis represents the complete time period as illustrated in the COMTRADE file
(*.dat).

The scaling of this time axis depends on the enlargement level. The higher the enlargement
selected, the more detailed the time display.

» Vertical axis
The vertical axis represents the values.

e The scaling of the value axis depends on the enlargement level. The greater the
enlargement selected, the more detailed the display of values.

e The labeling of the analog channels is shown vertically next to the values and corresponds to
the measuring unit as defined in the COMTRADE file (*.cfqg).

e The digital channels are displayed in the sequence as defined in the COMTRADE file
(*.cfq).
The Channel identifier of the COMTRADE file serves as an identifier.

KEY

1A(A) W IB(A) WICA) T 1G(A)

The color key of the graphs is shown at the head of the graph.

» The labeling of the digital channels corresponds to the channel description as defined in the
COMTRADE file (* . c£g).

» The colors for each channel are assigned automatically with the configured color palette.

» The time is displayed in a footer under the graph. The start time is displayed as a text.

NAVIGATION AND ZOOM

Navigation (scroll and zoom) is always applied to all three areas of the graphic display.
» You can move the display within the horizontal time line with the scroll bar.
» Zoominand zoom out

e You can zoom at the current position of the mouse pointer in the graphics view or reduce
the enlargement.

e The selected area is displayed by selecting a display area with the mouse button held down.
Note: The display of the values is always amended to the selected area. As a result, this can
lead to a flattening of the curve in the enlarged graphic view.

e Double clicking on the scroll bar resets the enlargement.

117

ANALYSIS

200
150
100 -
50

-50

/\
WYY
100 m \/l \/f‘
7983

-150 -
7988
-200

The precise values at the position of the mouse pointer are visualized with a display in value blocks. A
crosshair offers additional visual support with the exact determination of the reading position.

Configurable control properties - color display

ENGINEERING IN THE EDITOR

The element with the name COMTRADE.CDWPF can be configured and placed in each zenon screen

type.
The project configuration of Width [pixels] and Height [pixels] of the element depend on the proportions.
This prevents the COMTRADE-Viewer being displayed as distorted in Runtime.

Note: When configuring the project, ensure that there is sufficient size to guarantee a clear overview.

GRAPHICAL AMENDMENTS

You configure the graphic design in the properties of the WPF element.
You can find further information in the configuration of the linking (on page 95) chapter in this manual.

Possible color values:

» Hexadecimal color values
#RRGGBB

Example color values: #000000 = black , #FFFFFF = white, #FF0000 = red

» Colorvalues by name
Reference: https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx
(https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx)

118

https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx

WPF element
zenon

15 Hint

The properties for the COMTRADE-Viewer WPF element have a "z" as a starting color. Use
name filtering for a clear display when configuring the linking.

CONFIGURATION PAGE

Text and background color of the configuration page.

Analog Channels

zConfiguratinPageTextColor Text color of the configuration page String

zConfigurationPageBackgroundColor | Background color of the configuration | String

page
BUTTONS
Text and background color of the button.
Open...
zButtonTextColor Text color of the button String
zButtonBackgroundColor Background color of the button String
CHART

Text color of the axis labeling or key and background color.

T T T
50000 60000 70000

WPF element
zenon

String

zChartTextColor Text color of the axis labeling.
zChartBackgroundColor Background color of the axis labeling String
LABEL

Text and background color of the display of a selected cursor position.

WPF element

Zzenon

zChartLabelTextColor

Text color of the value display

String

zChartLabelBackgroundColor

Background color of the value display

String

CHART

Color palette of the graph view and the attendant keys.

zChartPalette

Color palette of the colors for graphs
and keys.

Referencing with color palette name
(see overview).

Default: if no color palette is
configured, the color palette of the
computer's operating system is used.

String

POSSIBLE COLOR PALETTES - OVERVIEW

Arctic B[]
Autumn HEC TN
Cold D]
Flower HENETNEEN
Forest ERNEENENT
Grayscale IENENTEN
Ground EEEEETE
Lilac [[[[[[]
Natural HN D EEEE
Pastel NN ENEN

Rainbow EEENT WHE
Spring [EEEEH
Summer W WO EEE
Warm L []
Windowsg MM EEEN

WPF element ﬂ

Zzenon

Energy class diagram

The energy class diagram, WPF element is available to partners of COPA-DATA and is available to these
via the Partner Portal.

< 18.00 kw

18.00 - 25.00 kKW ﬂ

35.00 - 50.00 kW

I
o

o

m

> 50.00 kw

A reaction matrix must be used to model an energy class diagram. This reaction matrix must be linked to
the variable whose value is envisaged for display and distribution in energy classes. The name of the
variable must be transferred to the "zVariableName" property.

REACTION MATRIX FOR ENERGY CLASS DIAGRAM

Function
| <o function linked >

Call via button in screen Alarm Message List

Additional attributes
Limit value color [JHashing

[New status | Delete [Test] Up

Status

M1 I m2 & M3 I ma = ms | G 5| m7 [ms
Ehrersa & revision E rrocress [E|mimecuT = mvaLo E o= = Fm_m Erv_mr
B AT _va

Value AMLCEL

15 8 7 0 [Jin Alarm Message List
FFEFFFFEFF FEFFFEFFE +| To acknowledge

To delete Comment required
Print Send admowledgement to CEL

Limit value text:
Limit Value [[Jin chronological Event List

Alarm/Event Group
0 - <Not used>

State number for counter in the mathematics driver Alarm Event Class
= v 0 - <Not used>

The linked reaction matrix must correspond to the following schematic:

» The first status must be an area, or a "less than" definition

» As many different areas as desired can then be defined.

» The last status must be an area or a "greater than" definition.

The following is applicable for project configuration:

1. If the first status is an area and the value of the variable comes under this area, the first status in
the diagram is shown nevertheless. The same is applicable for the last status the other way
round.

2. The colors that the WPF diagram uses for the classes are the limit value colors that were defined
in the reaction matrix.

3. The letters for the classes are set in alphabetical order starting with "A".
Property Description Value

zenonFontID ID for a font from the first font list (font size is not Integer
taken into account)

zenonNumberOfDecimalPlaces Number of displayed decimal points Integer

zenonVariableName Name of the variable to be displayed. String

Note: Additional VSTA programming is necessary for the display of the energy class diagram in the
zenon web client. You can find details on this in the display of WPF elements in the zenon web client (on
page 135).

Pareto diagram

The Pareto diagram, WPF element is available to partners of COPA-DATA and is available to these via the
Partner Portal.

An example of a Pareto diagram in Runtime is shown below:

100%

25%

Speed Losses
Minor Stops
Breakdown
Cleaning
Unplanned Break
Quality Losses
Changeover

Unplanned Maintenance

123

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

124

Property

zenonBarColorl

zenonBarColor2

zenonBarColor3

zenonBarColor4

zenonBarColor5

zenonBarColor6

zenonBarColor7

zenonBarColor8

zenonBarColor9

zenonBarColor10

zenonColorPercentageL ine

zenonLineVisibility

zenonVariablel Label
zenonVariablel Value
zenonVariable2_Label
zenonVariable2_Value
zenonVariable3_Label
zenonVariable3_Value
zenonVariable4 Label
zenonVariable4 Value
zenonVariable5_Label
zenonVariable5_ Value
zenonVariable6_Label
zenonVariable6_Value

zenonVariable7_Label

Function

Color of the first Bar

Color of the second Bar

Color of the third Bar

Color of the fourth Bar

Color of element fifth Bar

Color of element sixth Bar

Color of element seventh Bar

Color of element eighth Bar

Color of element ninth Bar

Color of element tenth Bar

Color of the percentage line (relative sum
frequency).

Visibility of the percentage line (relative sum
frequency).

Labeling for the 1st Bar
Value of the 1st Bar
Labeling for the 2nd Bar
Value of the 2nd Bar
Labeling for the 3rd Bar
Value of the 3rd Bar
Labeling for the 4th Bar
Value of the 4th Bar
Labeling for the 5th Bar
Value of the 5th Bar
Labeling for the 6th Bar
Value of the 6th Bar

Labeling for the 7th Bar

Value

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Color
(String)

Boolean

String
Double
String
Double
String
Double
String
Double
String
Double
String
Double

String

125

zenonVariable7_Value
zenonVariable8 Label
zenonVariable8 Value
zenonVariable9 Label
zenonVariable9 Value
zenonVariable10 L abel

zenonVariablel0 Value

Value of the 7th Bar
Labeling for the 8th Bar
Value of the 8th Bar
Labeling for the 9th Bar
Value of the 9th Bar
Labeling for the 10th Bar

Value of the 10th Bar

The following events can be used and linked to zenon functions:

Event

zenonBarl1Click

zenonBar2Click

zenonBar3Click

zenonBar4cClick

zenonBar5Click

zenonBar6Click

zenonBar7Click

zenonBar8Click

zenonBar9Click

zenonBar10Click

Function

Function that is executed when the 1st bar is
clicked on.

Function that is executed when the 2nd bar is
clicked on.

Function that is executed when the 3rd bar is
clicked on.

Function that is executed when the 4th bar is
clicked on.

Function that is executed when the 5th bar is
clicked on.

Function that is executed when the 6th bar is
clicked on.

Function that is executed when the 7th bar is
clicked on.

Function that is executed when the 8th bar is
clicked on.

Function that is executed when the 9th bar is
clicked on.

Function that is executed when the 10th bar is
clicked on.

Double
String
Double
String
Double
String

Double

Value

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

126

Circular gauge control

Property
CurrentValue

IsReversed

ElementFontFamily

MinValue
MaxValue
ScaleRadius

ScaleStartAngle

ScalelLabelRotationMode

ScaleSweepAngle

ScaleLabelFontSize

ScaleLabelColor

ScaleLabelRadius

ScaleValuePrecision

PointerStyle

MajorTickColor
MinorTickColor
MajorTickSize
MinorTickSize
MajorTicksCount
MajorTicksShape

Function

Current value which should be displayed.
Scale orientation - clockwise or anti-clockwise.
Element font.

Minimum value of the scale.

Maximum value of the scale.
Radius of the scale.

Angle at which the scale starts.

Alignment of the scale caption.

Angel area which defines the size of the scale.
Font size of the scale caption.

Font color of the scale caption.

Radius on which the scale caption is orientated.

Accuracy of the scale caption.

Shape of the pointer displaying the value.

Color of main ticks on the scale.
Color of sub ticks on the scale.
Size of main ticks on the scale.
Size of sub ticks on the scale.
Number of main ticks on the scale.

Shape/type of main ticks on the scale.

Value
Double
Boolean
Font
Double
Double
Double
Double
Enum:

> None
> Automatic

) SurroundI
n

) SurroundO
ut

Double
Double

Color

Double
Integer
Enum:

) Arrow

> Rectangle

» TriangleC
ap

) Pentagon
» Triangle
Color

Color

Size

Size
Integer
Enum:

» Rectangle

127

WPF element
zenon

» Trapezoid

» Triangle

MinorTicksShape

MinorTicksCount
PointerSize
PointerCapRadius
PointerBorderBrush

PointerCapStyle

PointerCapBorderBrush
PointerBrush
GaugeBorderBrush
GaugeBackgroundBrush
PointerCapColorBrush
GaugeMiddlePlate
PointerOffset
RangeRadius
RangeThickness
RangeStartValue
RangelEndValue
Range2EndValue
Range3EndValue
Range4EndValue
Range5EndValue
Range6EndValue
RangelColorBrush
Range2ColorBrush
Range3ColorBrush
Range4ColorBrush
Range5ColorBrush
Range6ColorBrush

Shape/type of sub ticks on the scale.

Number of sub ticks on the scale.
Size of the pointer.

Size of the pointer fastening point.
Color of pointer border.

Shape/type of pointer fastening point.

Color of pointer fastening point.

Color of pointer.

Color of the element border.

Color of element background.

Color of pointer fastening point.

Radius of the element background middle plate.
Offset of the pointer (displacement).

Radius of the total range display.

Thickness of the total range display.

Start value of the total range display.

End value of the 1st area and start value of the 2nd range.
End value of the 2nd area and start value of the 3rd range.

End value of the 3rd area and start value of the 4th range.

End value of the 4th area and start value of the 5th range.
End value of the 5th area and start value of the 6th range.
End value of the 6th range.

Color of the first range.

Color of the second range.

Color of the third range.

Color of the fourth range.

Color of element fifth range.

Color of element sixth range.

Enum:

> Rectangle
> Trapezoid
> Triangle
Integer
Size

Double
Brush

Enum:

> BackCap
> FrontCap
) Screw
Brush

Brush

Brush

Brush

Brush
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Brush

Brush

Brush

Brush

Brush

Brush

129

ScaleOuterBorderBrush Color of the scale border. Brush
ScaleBackgroundBrush Color of scale background. Brush
ValueTextFrameStyle Shape/type of value display. Enum:

) LargeFram
e

) SmallFram

e
> None
ValueTextContent Content of the value display. Enum:
b Text

) TextValue

> Value
ValueTextSize Font size of the value display. Double
ValueTextColor Font size of the value display. Color
IsGlasReflection Activate the glass effect on the element. Boolean
GaugeOffsett Lowering the rotation point of the whole element. Double

Sankey diagram

The Sankey diagram, WPF element is available to partners of COPA-DATA and is available to these via
the Partner Portal.

The Sankey wizard must be used to model a Sankey diagram. The wizard creates an XML file that is then
evaluated by the WPF element. To do this, the zSankeyName property must be given the name of the
XML file. The XML file must be in the Other folder of a project. This is saved there by the wizard.

An example of a Sankey diagram in Runtime is shown below:

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

130

Property Function Value

FontSize Font size of the texts. Integer
zBackgroundColor Background color of the diagram. Color
(String)
zFontColor Color of the texts. Color
(String)
zFontFamily Font of all texts. Font
(String)
zLossDetectionActive Automatic loss detection activated/deactivated. If Boolean

true, then losses are automatically shown at a
node points as flows.

zNoDataText Text that is displayed if there are no values to String
display and zPrevireActive is false.

zNoValidXMLText Text that is displayed if no valid XML file with String
entered name has been found and zPreviewActive
is false.

zNumberOfDecimalPlaces Denotes how many decimal places are to be Integer
displayed.

zPreviewActive Display of a preview activated/deactivated. Boolean

The preview can be displayed if

There is no data present (the modeled diagram is
filled with default values) or

the XML file was not found or

this does not contain a valid definition (an example
Sankey diagram is displayed).

zRefreshRate Rate at which the diagram is refreshed in ms. Integer

zSankeyName Name of the XML file with the modeling of the String
diagram.

zShowRelativeValues Display of the values in absolute false or relative Boolean

values true.

Note: Additional VSTA programming is necessary for the display of the Sankey class diagram in the
zenon web client. You can find details on this in the display of WPF elements in the zenon web client (on
page 135).

131

Temperature indicator - TemperaturelndicatorControl

Property
CurrentValue
MinValue
MaxValue
MajorTicksCount
MinorTicksCount
TickNegativColor

TickPositivColor

MinorTickColor
ElementBorderBrush
ElementBackgroundBrush
ElementGlasReflection
ElementFontFamily
IndicatorColor
IndicatorBorderColor
MajorTickSize
MinorTickSize

ScaleLetteringDistance

IndicatorScaleDistance
ScaleFontSize
ScaleFontColor

Unit

ElementStyle

Function

Current value which should be displayed.
Minimum value of the scale.

Maximum value of the scale.

Number of main ticks on the scale.
Number of sub ticks on the scale.

Color of the negative main tick (gradient to
TickPositivColor).

Color of the positive main tick (gradient to
TickNegativColor).

Color of the sub ticks.

Color of the element border.

Color of element background.

Activate the glass effect on the element.
Element font.

Color of the indicator fill color.

Color of the indicator border.

Size of main ticks on the scale.

Size of sub ticks on the scale.

Distance of the scale caption (vertical), each x. main tick
should be captioned.

Distance between indicator and scale (horizontal).
Font size of the scale.

Font color of the scale.

Unit.

Shape/type of element.

Value
Double
Double
Double
Integer
Integer

Color

Color

Color
Brush
Brush
Visibility
Font

Color
Color

Size

Size

Integer

Double
Double
Color
String
Enum:

» SmallFram

e
> Unit
> None

132

Universal slider - UniversalReglerControl

Property
CurrentValue
ElementFontFamily
MinValue
MaxValue

Radius

ScaleRadius

ScaleStartAngle

ScalelLabelRotationMode

ScaleSweepAngle
ScaleLabelFontSize
ScaleLabelColor
ScaleLabelRadius
ScaleValuePrecision

ElementStyle

MajorTickColor
MinorTickColor
MajorTickSize
MinorTickSize
MajorTicksCount
MajorTicksShape

Function

Current value which should be displayed.
Element font.

Minimum value of the scale.

Maximum value of the scale.

Radius of the scale.
Angle at which the scale starts.

Alignment of the scale caption.

Angel area which defines the size of the scale.
Font size of the scale caption.

Font color of the scale caption.

Radius on which the scale caption is orientated.

Accuracy of the scale caption.

Display type of the element

Color of main ticks on the scale.
Color of sub ticks on the scale.
Size of main ticks on the scale.
Size of sub ticks on the scale.
Number of main ticks on the scale.

Shape/type of main ticks on the scale.

Value

Double

Font

Double
Double
Double
Double
Double

Enum:

> None

> Automatic
) SurroundIn

) SurroundOu
t

Double
Double

Color

Double
Integer
Enum:

» Knob

> Plate

> None
Color

Color

Size

Size

Integer
Enum:

> Rectangle
» Trapezoid

> Triangle

133

MinorTicksShape

Shape/type of sub ticks on the scale.

Enum:
> Rectangle
> Trapezoid

» Triangle

MinorTicksCount Number of sub ticks on the scale. Integer
BackgroundBorderBrush Color of the element border. Brush
BackgroundBrush Color of element background. Brush
PointerCapColorBrush Color of pointer fastening point. Brush
GaugeMiddlePlate Radius of the element background middle plate. Double
ValueFontSize Font size of the value display. Double
ValueFontColor Font size of the value display. Color
IsGlasReflection Activate the glass effect on the element. Boolean
KnobBrush Color of the knob. Brush
IndicatorBrush Color of the indicator. Brush
IndicatorBackgroundBrush Background color of the inactive indicator. Brush
KnobSize Diameter of the knob. Double
KnoblndicatorSize Indicator size of the knob. Size
ElementSize Size of the element. Size
VisibilityKnob Activating of the knob. Boolean
ValuePosition Position of the value display. Double
ValueVisibility Activating the value display. Boolean

Waterfall diagram

The waterfall diagram, WPF element is available to partners of COPA-DATA and is available to these via
the Partner Portal.

The meaning and waterfall chart wizard must be used to model a waterfall diagram. A waterfall can be
modeled with this wizard. The information is saved directly for the variables concerned in the Analyzer
--> Parameters for waterfall diagram.

134

An example of a waterfall diagram in Runtime is shown below:

Cleaning 0:00:08 03.64%

Changeover C00:00 00.00 %

Unpl. Maintenance 0:00:08 04.25 %

Unplanned Break 0:00:00 00,00 %
Breakdown [0:00:42 1839%

operaing Time | 00252 7372%
Minor Stops [0:0053 2277%

Speed Losses [0:01:33 4024 %

Net operating Time [0:00:25 10.72%
Quality Losses 0:00:00 00.16 %

Valuable Operating - 0:00:24 10.56 %

Note: This screenshot is only available in English.

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

zenonRefreshRate Time between the refreshes of the Integer
diagram in ms.

zenonWaterfallldentifier Name of the waterfall diagram. String
zenonZSystemModel Equipment group of the variables String
used.

Note: Additional VSTA programming is necessary for the display of the waterfall diagram in the zenon
web client. You can find details on this in the display of WPF elements in the zenon web client (on page
135).

6.3.6 Display of WPF elements in the zenon web client

In order to also be able to also use the pre-made WPF elements "energy class diagram”, "Sankey
diagram" and "waterfall chart” for the display in a zenon web client, amendments are necessary in the
project:

» Engineering in the zenon Editor (on page 136)

» Adapt VSTA code (on page 136)

135

Engineering in the zenon Editor

Carry out the following project configuration steps in the zenon Editor, in order to also be able to display
certain WPF elements in the zenon web client:

PLACE WPF IN THE ZENON SCREEN:

» Place the WPF element in a zenon screen.

» Give it a unique name in the Element name property.
You can find this property in the General properties group.
Note: A warning dialog appears if the name for an element has already been issued in another
screen.

» Use the element name issued here in the VSTA code.

VSTA code (complex)

In order to add the programmer code for the display of WPF elements in the zenon web client, carry out
the following steps:

1. Inthe zenon Editor, switch to the programmer interfaces node.

2. Select the VSTA node and select the Open VSTA Editor with project add-in... with a right mouse
click

The dialog to create a VSTA project is opened.
Select the C# entry in the Create new VSTA project dialog.

Create (copy) the code below.

o v &~ W

Enter the name of the WPF element in the code.

Note: When opening the VSTA editor, note whether the content of the following code is already present
in the project configuration. For the display of the WPF element in the web client, compare the existing
code and undertake the necessary additions. Please note the comments in relation to this in the model
code.

VSTA CODE

//As member:
zenOn.IDynPictures zScreens = null;

string[] WPFElements ={"WPF_Control", "WPFWebclient 1", "WPFWebclient 2" }; //Names of the
WPF screen elements that appear in the zenon project and that need access to the API (as

many/few as you want)

136

//Add the following three lines of code in the project archive function:
void ThisProject Active()
{
zScreens = this.DynPictures();
zScreens.Open += new zenOn.DDynPicturesEvents OpenEventHandler (zScreens_ Open) ;
zScreens.Close += new zenOn.DDynPicturesEvents_CloseEventHandler(zScreens_Close);
}
//Add the following two lines of code in the project inactive function:
void ThisProject Inactive()
{
zScreens.Open -= new zenOn.DDynPicturesEvents OpenEventHandler (zScreens_Open) ;

zScreens.Close -= new zenOn.DDynPicturesEvents CloseEventHandler (zScreens Close);

//Final release and garbage collection of any API-Objects.

FreeObjects () ;

//Add two new event handlers:
void zScreens Open (zenOn.IDynPicture obDynPicture)

{

foreach (string element in WPFElements)

{

if (obDynPicture.Elements().Item(element) != null)

{
obDynPicture.Elements().Item(element).set_WPFProperty("ELEMENT",

"zenonVariableLink", this.Variables().Item(0));

}

}

void zScreens Close(zenOn.IDynPicture obDynPicture)

{

foreach (string element in WPFElements)
{
if (obDynPicture.Elements().Item(element) != null)
{
zenOn.IElement zWPFElement= obDynPicture.Elements().Item(element);
zWPFElement.set WPFProperty ("ELEMENT", "zenonTrigger", true);

zWPFElement = null;

137

VSTA code (simplified)

If only one WPF element is used in a zenon screen, the following more streamlined code can be used as
an alternative. To do this, the names of the WPF element, and the screen in which the element is used,
must be entered. This code is then recommended if, for each project, only one of the pre-made WPF

elements is used.

VSTA CODE

zenOn.IDynPicture zScreen = zero;

string wpfElement = "WPF_Control"; //Name of the WPF element in the screen
string wpfPicture = "@Details_Overview Online"; //Name of the zenon screen

//Add to the project active function:

void ThisProject Active()

{
zScreen = this.DynPictures().Item(wpfPicture);
zScreen.Open += new zenOn.OpenEventHandler (zScreen Open) ;

zScreen.Close += new zenOn.CloseEventHandler (zScreen Close);

//Add to the project inactive function:
void ThisProject Inactive()

{
zScreen.Open -= new zenOn.OpenEventHandler (zScreen Open) ;

zScreen.Close -= new zenOn.CloseEventHandler (zScreen Close) ;

//Final release and garbage collection of any API-Objects.

FreeObjects () ;

void zScreen Open ()

{

if (zScreen.Elements().Item(wpfElement) != null)

{

138

zScreen.Elements () .Item(wpfElement) .set WPFProperty ("ELEMENT",

"zenonVariableLink", this.Variables().Item(0));

}

void zScreen Close()

{

if (zScreen.Elements().Item(wpfElement) != null)

{
zenOn.IElement zWPFElement = zScreen.Elements().Item(wpfElement);
zZWPFElement.set WPFProperty ("ELEMENT", "zenonTrigger", true);

zWPFElement = null;

6.3.7 Examples: Integration of WPF in zenon

You can see how XAML files are created and integrated as WPF elements in zenon from the following
examples:

» Integrate button as WPF XAML in zenon (on page 145)
» Integrate bar graph as WPF XAML in zenon (on page 139)

» Integrate DataGrid Control in zenon (on page 151)

Integrate bar graph as WPF XAML in zenon

Example structure:
» Creating a bar graph (on page 85) in Adobe lllustrator and converting it to WPF
» Integrate into zenon
» Linking with variables

» Adapting the bar graph WPF element

139

CREATE BAR GRAPH

The first step is to generate a bar graph as described in the Workflow with Adobe lllustrator (on page
85) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the Files/graphics
folder.

INTEGRATE BAR GRAPH

Note: A zenon project with the following content is used for the following description:
» Anempty screen as a start screen
» Four variables from the internal driver for
e Scaleo
e Scale central
e Scalehigh
e Current value

» Avariable from the mathematics driver for displaying the current value (255)

To integrate the bar graph:

1. open the empty screen

2. place a WPF element (on page 94) in the screen
3. select XAML file in the properties window
4

Select the desired XAML file (for example bar graph_vertical.xaml) and close the dialog

140

ADJUST BAR GRAPH

Before configuration, the scale of the XAML file is adapted if necessary:

counting Value

To do this:

e Create a new mathematics variable that calculates the new value in relation to the scaling,
for example:

e Variable: 0-1000

141

WPF element
Zenon

e Mathematic variable {value created in xaml file}*Variable/1000

Properties: Variable: calculation - Project: DOKU * O X

E]
g
2
| »

|
|

;
§

1

:
;
:

[E=]

Limits
Value calculati

Calculaton active < no variable linked >

ju]

Decimals 0
Formula 3507%01/100
Hysteresis

&)

&)

Value adjustment linear

&)

Value adjustrment non-linear —

&)

Value range PLC

]ﬁ'Proper‘ties: Variable: calculation - Project: DOKU E ngeﬂ hele

The XAML file is then configured.

CONFIGURE BAR GRAPH

1. Click on the WPF element and select the Configuration property

2. The configuration dialog shows a preview of the selected XAML file.

3.

WPF element

Configuration
VP element |

WPF element
Avaiable elements
= COPA_DATA
- Bargraph
{-min
i mid
- max

Action bnk.

Imﬂl namuonsl
Name: Lnkage

Tiweoflnk | WPFinfe M me| -

| P B reere 6 aerioe 5
ActualHeight | <nothing linked> 529307402582.. [
ActualWidth <nothing linked> 52 [m]
AllowDrop <nothing linked> False [m]
BorderThickness <nothing linked> 0,0,0,0 [m]
ClipToBounds <nothing linked> False m]
Content Variable 128 (]
ContentStringFormat <nathing linked> O
ContextMenuService.HasDro... <nothing linked> False a
ContextMenuService. Horizon,.. <nothing linked> 0 [m}
ContextMenuServicelsEnabled <nothing linked> True [m]
ContexthMenuService.Placem... <nothing linked> MousePoint [m]
ContextMenuService. Placem... <nathing linked> Empty a
ContestMenuService. ShowD... <nothing linked> False [m]
ContextMenuService.Vertical... <nothing linked> 0 [m]

Natal notet thinn linkeds n a

=
[o |
[coal]

Zzenon

Select the minimum value, the average value and the maximum value and link each of these to
the corresponding variable in the Content property

WPF element ﬂ

Zzenon

4. Select the slider and link the Value property to the mathematics variables (in our example:

»

Configuration
WPF clement |
WPF element
Available elements
= COPA_DATA
=} Bargraph
- mid
- max
Action ink
Propertes Events | Transiormations |
Name Linkage * Type of Ink | WPF info | Links
| FlowDirection <nothing linked> LeftToRight (m]
| Focusable <nothing linked> True]
| FontSize <nothing linked> 12]
| FontStretch <naothing linked> Normal (m]
| FontStyle <naothing linked> Normal m]
| FontWeight <nothing linked> MNormal]
| ForceCursor <nothing linked> = False m]
| Grid.Column <nothing linked> | 0 (]
| Grid.ColumnSpan <nething linked> | 1 (]
| Grid.Row <nothing linked> | 0 m]
| Grid.RowSpan <nothing linked> 1 m]
HasAnimatedProperties <nothing linked> = False m]
) Maths Vanisble n. def, (=)
| Hnrzontal&linnment <nnthinn linked> Rinht | (m}
4 nr L3
calculation)

1

5. Check the project planning in Runtime:

counting Value _

Integrate button as WPF XAML in zenon

Example structure:
» Creating a button (on page 81) in Microsoft Expression Blend
» Integrate into zenon
» Link to a variable and a function
» adjust the button to the size of the element

» Create button

As a first step, create a button as described in the Create button as XAML file with Microsoft Expression
Blend (on page 81) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the
Files/graphics folder.

INTEGRATE BUTTON

Note: A zenon project with the following content is used for the following description:
» Anempty screen as a start screen
» aninternal variable int of type Int
» afunction Funktion_0 of typeSend value to hardware with:
e Direct to hardware option activated

e Setwassetto 45

To integrate the button:
1. open the empty screen
2. place a WPF element (on page 94) in the screen
3. select XAML file in the properties window
4. select the XAML file (e.g. MyButton.xaml and close the dialog
5

select the Configuration property

145

CONFIGURE THE BUTTON

The configuration dialog shows a preview of the selected XAML file. All elements named in the XAML file
are listed in the tree:

Configuration [
WPF element
WPF glement \LI
Available elements Preview m
LayoutRoot -
8 =

Button

Action lnk
Properties Events | Transformations
Linked | Name Linkage # Type of ink | WPF info -
[m] . ActuzlHeight <nothing lin... 30
[m] ActualWidth <nething lin... 50
[m] AllewDrop <nothing lin... False
(m] BorderThickness <nething lin.. 1111
(] ClickMode <nething lin... Release
[m] ClipToBounds <nothing lin... False
(m] Command <nothing lim...
m] CommandParameter <nething lin...
O CommandTarget <nothing lin...
[T Content int Variable Button |
O ContentStringFormat <nothing lin...
O ContextMenuService. HasDrop... <nething lin... False
O ContetMenuService Horizont... <nething lin... 0
(m] ContedtMenuServicesEnabled <nothing lin... True
[CentecthlenuSenics Placsoment | |_cncthinalin_ WMaussDoint s
1. select the WPF button, which is in LayoutRoot->MyViewBox->MyButton
2. Look in the Properties EntryContent tab; this contains the button's text
3. Click the Link type column
4. Select Variable from the drop down list
5. Click in the Link column
6. the variable selection dialog is opened
7. select the int variable to link this variable with the Content property

EVENTS

To also assign events:

146

1. select the events tab

Configuration
WPF element
Available elements Preview
LayoutRoot
=- M.'y\hemﬂox -~
.

:Pmnerlie-; Events | Transformations | User authorization/Interlocking |

WPF event Linked function
Click Function 0
ContextMenuClosing

ContextMenuOpening

DataContextChanged

DragEnter

DraglLeave

DragQver

Drop

FocusableChanged

GiveFeedback

i §

2. look for the 'Click' entry, this event is triggered by the WPF element, as soon as the button is

clicked
Click in the Link type column
Select Function from the drop down list

Click in the Link column

3
4
5
6. the function selection dialog is opened
7. select Function_0

8. Confirm the changes with OK

9. Insert a numerical value element into the screen

10. Link this numerical value element to the int variables too.

11. Compile the Runtime files and start Runtime.

147

The WPF element is displayed in Runtime, the button text is 0. As soon as you click on the button, the
click event is triggered and the set value function is carried out. The value 45 is sent directly to the
hardware and both numerical value and button display the value 45

45 e

Define a set value of 30 via the numerical value element; this value is then also assumed by the WPF
element.

AUTHORIZATION

Similar to a numerical value, a WPF element can be locked according to authorizations (lock symbol) or
switched to be operable. Set the user authorization level to 1 for the WPF element and create a user
called Test with authorization level 1. In addition, set up the functions Login with dialog and Logout .

You link these two functions with 2 new text buttons on the screen.

In the WPF element configuration dialog, select the MyButton WPF button and select the Properties: tab

Konfiguration @
WPF-Element
WPF-Element X |
jorhandene Elemente Vorsch,
Varhandene Elemen Vorschau - |
LayoutRoot
= MyViewBox F Hife |
MyButton
Alcbonsverknupfungen
Sgenschaften Ereignisse | Transformationen
Name Veskruipfung L] Verknupfungsart | WP F-info Verknipft
InputMethod.lsinputhethodE... «<nichts verknupft> False O
InputMethed lslnputMethods... <nichts verkniipft> False O
InputMethod. PreferredimeCo... <nichts verknipft> DoMotCare (]
InputMethod.PreferredimeSen.. <nichts verkndpft> DoNotCare m]
InputMethod. PreferredlmeState «nichts verkndpft> DoMNotCare O
IsArrangeValid <nichts verkndpft> True O
IsCancel <nichts verknipft> False]
IsDefault <nichts verknipft> False O
IsDefaulted <nichts verkndpft> False O
[IsEnabled [
IsFocus <nichts verknipft> False O
IsHitTestVisible <nichts verknapft> True O
lslnitialized <nichts verknipft> True (]
TelnpsthdethndFnahled <nichts verkniinfts | Falze [
4 11 '

148

1. Select the IsEnabled element
2. Click in the Link type column
3. Select Authorizations/interlocking from the drop down list
4. Click in the Link column
5. Inthe drop-down list, select the Authorized option
Configuration @
Link authorizationfinterlocking |
Linked status
agmsr.?ohg‘l;ddoes not exist Help

Interlocked
Can be operated
Cannot be operated

6. Close the dialog with OK

Compile the Runtime file and note that Authorizations to be Transferred must also be selected. After
Runtime has been started, the WPF button is displayed as deactivated on the screen and cannot be
operated. If you now log in as the user Test, the button is activated and can be operated. The button is
locked again as soon as you log out.

.El

n [|

TRANSFORMATION

The XAML files must still be adapted to use transformations:
1. switch to the Expression Blend program

2. select MyButton, so that the properties of the element are visible in the events window

¥ Transform
RenderTransform

B 5 & z B ®
0]
2

o .

| Apply relative transform

3. Under Transform at RenderTransform select the Apply relative transform option

149

As a result of this, a block is inserted into the XAML file, which save the transformation settings

in runtime.

<Button.RenderTransform:
<TransformGroup>
<ScaleTransform ScaleX="1" ScaleY="1"/>
<SkewTransform AnglexX="@" Anglev="8"/>
<RotateTransform Angle="a"/>
<TranslateTransform X="8" ¥Y="8"/>
</TransformGroup>
</Button.RenderTransform:

Save the file and replace the old version in zenon with this new file.
Open the WPF element configuration dialog again:
a) select the MyButton button

b) select the Transformations tab

Configuration
WPF element
T
Available elements Preview Cancel
LayoutRoot
=] My Hi
M.y\hemﬂox — - I o

Button

:Pmnerlie-i lEvenis| Transformations | User authorization/Interlocking |

WPF transformation Linked variable -
RotateTransform. Angle nt
RotateTransform.CenterX

RotateTransform.CenterY
ScaleTransform, Center) 3
ScaleTransform. CenterY
ScaleTransform. ScaleX
ScaleTransform, ScaleY
SkewTransform. AngleX
SkewTransform, AngleY
SkewTransform. Center)

c) select the RotateTransform.Angle element

d) Click in the Link type column

e) Select Transformations from the drop down list
f) Click in the Link column

g) the variable selection dialog is opened

h) select the int variable to link this variable with the RotateTransform.Angle property

150

Compile the Runtime files and start Runtime. Log in as the Test user and click on the button. The button
has the value 45 and the WPF element rotates by 45°.

Zj\ 45

Login 1 ‘ Logout 1

Integrate DataGrid Control in zenon

To create DataGrid control for zenon, you need:

» Visual Studio (Visual Studio 2015 in this example)

CREATE WPF USER CONTROL

1. in Visual Studio, create a new Solution and a WPF User Control Library project in .NET
Framework version 4 or higher therein.

Info: If the corresponding project template does not appear in the list of available templates,
this can be added by means of the search (field at the top right of the dialog).

151

New Project ?

P Recent NET Framework 4.5 = Sort by: Default v & i= User Control X -

4 |nstalled - i
g WPF User Control Library Visual C# Type: Visual C#
4 Templates Windows Presentation Foundation user

- VB -
4 Visual G LY WPF User Control Library Visual Basic control library
af

P Windows
Web

I Office/SharePoint
Android
Cloud
Extensibility

b i0S
LightSwitch
Mobile Apps
Reporting
Sitverlight
Test
WCF
Workflow

Visual Basic

Visual C++
Visual F#
SQL Server

b lwaSerint -

P Online

Name: DataGridControlLibrary

Location: Di\sources\ =

Solution name: DataGridControlLibrary [¥] Create directory for solution
"] Add to source control

| 0K | | Cancel

In our example, the project is given the name DataGridControlLibrary.
Create a new data connection in the Server Explorer.

In our example, the database Northwind is used, which is provided by Microsoft as an example
database that can be downloaded for free.

Te set up the database connection:

a) Right-click on Data Connections.

b) Select Add connection....

c) SelectMicrosoft SQL Server (SQLClient) as Data source.

d) Select the corresponding server and database name.

152

After adding the connection, the Server Explorer window should look a little like this:

Server Explorer
¢ |lwEi ok
4 gW Data Connections
4 | dbserver\zenon_2012.northwind.dbo
Pl Tables
ER Categories
R Contacts
FR CustomerCustomerDemo
BB CustomerDemographics
FR Customers
EH Employees
EH EmployeeTerritories
R Order Details
R Orders
ER Products
B Region
B Shippers
B Suppliers
R Territories
Views

e A A

Stored Procedures
Functions
Synocnyms

Types

v v v v w7

Assemblies

A new DataSet is created in the next step.

CREATING A DATASET

Right-click on the project
Select Add - New Item... in the context menu
Create a new DataSet with the name DataSetl1.

Double click on the DataSet in order to open it in the Designer.

LA A

Drag the tables that you need (Customers and Orders in this example) to the DataSet design
window.

PR AR ARl Source Control Explorer

Server Explorer
¢ s
4 ¥ Data Connections

4 E dbserver\zenon_2012.northwind.dbo

ok

EH Suppliers
R Territories
Views

shu Fill,GetData ()

The XAML file is modified in the next step.

‘ gblcest . % CustomerlD re—cel ¥ OrderlD A
E m CE Etg&;IES CompanyMame CustomerlD
ontacts
b EH CustomerCustomerDemo ContactName EmployeelD
I EH CustomerDemographics ContactTitle OrderDate
I EH Customers Address RequiredDate
b EH Employees City ShippedDate
I BB EmployeeTerritories Region ShipVia
b FEH Order Details PostalCode Freight
b FEH Orders Country ShipName
b EH Products Phone ShipAddress
I FH Region Fax ShipCity
I ER Shippers] CustomersTableAdapter ShipRegion v
I
I

& OrdersTableAdapter @
shu Fill,GetData ()

153

CONFIGURATION OF THE XAML FILE

1.

If not already there, add the Namespace as a reference to the class in the XAML file:

<UserControl x:Class="DataGridControllibrary.UserControll™
wmlns="http://schemas.microsoft. com/winfx/2806/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2066/xaml"”
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2666"
xmlns:d="http://schemas.microsoft.com/expression/blend/2668"
wmlns:local="clr-namespace:DataGridControllibrary”|
mc:Ignorable="d"
d:DesignHeight="3@8@" d:DesignWidth="3@8">

Define the resources and the DataGrid that is to be used in the WPF:
<UserControl.Resources>
<local:DataSet1 x:Key="Dataset1"/>

<CollectionViewSource x:Key="customersvViewSource" Source="{Binding Path=Customers,
Source={StaticResource DataSet1}}"/>

</UserControl.Resources>
<Grid DataContext="{StaticResource CustomersViewSource}">

<DataGrid Name="pataGridl" DisplayMemberPath="companyName"
IltemsSource="{Binding}" SelectedValuePath="customerID"
HorizontalAlignment="stretch" VerticalAlighment="stretch"/>

</Grid>

Open the code-behind file (UserControl1.xaml.cs) and insert the following lines in the
constructor:

public UserControl1()
{
InitializeComponent();
DataSetl ds = ((Dataset1)(FindResource("DataSet1")));

DataSet1TableAdapters.customersTableAdapter ta = new
DataSet1TableAdapters.CustomersTableAdapter();

ta.Fill(ds.Customers);

CollectionViewSource CustomersViewSource =
((collectionviewSource)(this.FindResource("CustomersViewSource")));

CustomersViewSource.View.MoveCurrentToFirst();
}
In doing so, the following happens:
e The DataSet is obtained
e Anew TableAdapter is created

e The DataSet is filled

154

e The information is provided to the DataGrid control

The solution can now be built.

BUILD

Now build the solution. The corresponding DLL (DataGridControlLibrary.dll) is created in the output
folder of the project.

Now you have a DLL with the necessary functionality available.

However zenon can only display XAML files that cannot be linked to the code behind file, which is why
an additional XAML file is needed that references the DLL that has just been created.

To do this:
1. Create a further project, again as a WPF User Control Library
2. It was called DataGridControl in our example.

3. Insert a reference to the project that has just been built into this new project.

Reference Manager - DataGridControl

b Assemblies o
4 Projects Name Path Namm
Solution DataGridContralLibrary D:\sources\DataGridControlLibrary'.Dat yEyes

P Shared Projects
b COM

P Browse

4. The XAML files (UserControl1.xaml) looks as follows:

<UserControl x:Class="DataGridControl.UserControll”
wmlns="http://schemas.microsoft. com/winfx/2806/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2066/xaml"”
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2666"
xmlns:d="http://schemas.microsoft.com/expression/blend/2668"
xmlns:local="clr-namespace:DataGridControl”
mc:Ignorable="d"
d:DesignHeight="3@8@" d:DesignWidth="3@8">

<Grid:

</farid>
</UserControl>

5. Because all necessary content is contained in the DLL that has been created and no code-behind
is necessary, delete the following lines:

x:Class="DataGridControl.UserControll"
xmins:local="clr-namespace:DataGridControl"

6. Also delete (for the positioning) the following lines:
mc:lgnorable="4d"

d:DesignHeight="300" d:DesignWidth="300"

155

7. Delete the code-behind file (UserControl1.xaml.cs) in this project.
8. Define what is to be displayed in the XAML file.
To do this, modify the XAML file as follows:
<UserControl xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
XmIns:Xx="http://schemas.microsoft.com/winfx/2006/xaml"
XmlIns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:dataGridLibrary="clr-namespace:DataGridControlLibrary;assembly=DataGridCo
ntrolLibrary">

<Grid x:Name="Grid1">

<dataGridLibrary:UserControll Name="DataGridControl" HorizontalAlignment="Left"
VerticalAlignment="Top"/>

</Grid>
</UserControl>

The

linexmlns: dataGridLibrary="clr-namespace:DataGridControlLibrary;assembly=DataGrid
ControlLibrary" defines the namespace dataGridLibrary and stipulates that this should use
the assembly that has been created.

9. Assign a name for the grid.

10. Insert the control dataGridLibrary:UserControl1 from our library and give it a name, because
zenon can only modify objects that have a name.

11. Build the solution.

In the next step, how the DLL and XAML file are added to zenon is explained.

STEPS IN ZENON

1. Open the zenon Editor

2. GotoFile -> Graphics.

156

3. Select Add file... in the context menu

ﬂ; User administration

7 SAP intedace

i) Fles =
E‘ Lol Add file...
% HMt Folder new...
3 Te Rename folder...
&2 on Delete folder
o O

I\ History Editor profile 3

@ Project

sbal symbol il Help = |

n 1

tree | ‘%E Network topology

4. Select the XAML file at the save location (UserControl1.xaml from the DataGridControl project)
and add this:

FEMNECE R —RNEETE W S T M)

Status File name | Type Size Preview
- T Filter texd T|Fiter T |Fiter. ¥ Filter texd T
UserControll xaml xaml 0KB

5. Insert the DLL with the functionality for the XAML file.
To do this:
a) Select, in the context menu, File -> OtherAdd file....

b) Select the file DataGridControlLibrary.dll of the first project (DataGridControlLibrary).

T = T S T =)

Status File name Type # Size
:'f'f-v :'f'f- V:'i v:'f v
DataGridControlLibrary.dll dil 36 KB

6. Createa zenon screen.
7. Add a WPF element and select the previously-incorporated XAML file.

You should now see the following in the zenon Editor:

¥ Bud0- 651 WPF_DATAGRID_TEST X -
TR E AAXEE TS -
Status | Nawe A | Sceenty
Bad0 poeo] CustomerlD CompanyName Contact ContactTitle
ALFK Alfreds Futtericste Maria Anders Sales Rapresentat *
ANATR Ana Tryjiio Emparedados y helados | Ana Trujillo Owner 2
ANTON _ |Antonio Moreno Taqueria Antonio Moreno | Owner
AROUT Around the Hom Thomas Hardy | Sales Representat
SERGS Berghunds snabbicop Cheisting Berghund | Order Administrat
BLAUS Biauer See Deliatessen Fanna Moos Sales Representat
BLONP Biondel pére et fils Frécénque Cteaux | Marketing Manag
80LD Blido Comidas preparadas Martin Sommer | Owner
BONAP _ [Bon spp Lawrence Lebihan | Onner
BOTTM Bottonm-Dollar Markets Elizadeth Lincoln | Accounting Mana
BSBEV Victoria Ashworth | Sales Representat
CACTU Patricio Simpson_| Sales Agent
CENTC omercial Moctezuma Francisco Chang _| Marketing Mansg
CHOPS Chop-suey Chinese Yana Wara Owner X
‘)
« i
1total /1 fitered / 1 selected -
[« 0 '

8. Start zenon Runtime in order to also test the control there.

157

A Attention

Assemblies are only removed after loading when the application is ended. This means:

If a WPF file with a referenced assembly in zenon is displayed, then this assembly is
loaded is in the memory until zenon is ended, even if the screen is closed again. If you
would like to remove an assembly from the Files/Other folder, the Editor must first
be restarted, so that the assembly is removed.

6.3.8

ENTRIES IN LOG FILES

Entry

Xaml file found in %s
with different name,
using default!

no preview image
found in %s

Xaml file in %s not
found or not unique!

Could not remove old
assembly %s

Could not copy new
assembly %s

file exception in %s

Generic exception in
%s

Error handling

Level

Warning

Warning

Error

Warning

Error

Error

Error

Meaning

The name of the collective file and the name of the XAML file
contained therein do not correspond. To avoid internal conflicts, the
file with the name of the collective file and the suffix .xaml is used.

The collective file does not contain a valid preview graphic
(preview.png or [names of the XAML file].png). Thus no
preview can be displayed.

The collective file does not contain an XAML file or several files with
the suffix .xaml. It cannot be used.

There is an assembly that is to be replaced with a newer version, but
cannot be deleted.

A new version is available for an assembly in the work folder, but it
cannot be copied there. Possible reason: The old example is still
loaded, for example. The old version continues to be used, the new
version cannot be used,

A file error occurred when accessing a collective file.

A general error occurred when accessing a collective file.

158

	1. Welcome to COPA-DATA help
	2. Controls
	3. General
	3.1 Access zenon API
	3.2 Methods
	3.2.1 CanUseVariables
	3.2.2 MaxVariables
	3.2.3 VariableTypes
	3.2.4 zenonExit
	3.2.5 zenonExitEd
	3.2.6 zenonInit
	3.2.7 zenonInitEd

	4. ActiveX
	4.1 Develop ActiveX elements
	4.1.1 Methods
	CanUseVariables
	MaxVariables
	VariableTypes
	zenonExit
	zenonExitEd
	zenonInit
	zenonInitEd

	4.2 Example LatchedSwitch (C++)
	4.2.1 Interface
	4.2.2 Control
	4.2.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.2.4 Operation and display
	Write set value
	Drawing

	4.2.5 zenon Interface

	4.3 Example CD_SliderCtrl (C++)
	4.3.1 Interface
	4.3.2 Control
	4.3.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.3.4 Operation and display
	Drawing
	Write set value

	4.3.5 zenon Interface

	4.4 Example :NET control as ActiveX (C#)
	4.4.1 Create Windows Form Control
	4.4.2 Change .NET User Control to dual control
	4.4.3 Work via VBA with ActiveX in the Editor
	4.4.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5. .NET user controls
	5.1 Different use .NET Control in Control Container or ActiveX
	5.2 Example .NET control container
	5.2.1 General
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnExit()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5.2.2 Create .NET user control
	5.2.3 add a CD_DotNetControlContainer and a .NET User Control
	5.2.4 Accessing the user control via VSTA or VBA

	5.3 Example :NET control as ActiveX (C#)
	5.3.1 Create Windows Form Control
	5.3.2 Change .NET User Control to dual control
	5.3.3 Work via VBA with ActiveX in the Editor
	5.3.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	6. WPF element
	6.1 Basics
	6.1.1 WPF in process visualization
	6.1.2 Transfer of values from zenon to WPF
	6.1.3 Referenced assemblies
	6.1.4 Workflows
	Workflow with Microsoft Expression Blend
	Workflow with Adobe Illustrator

	6.2 Guidelines for designers
	6.2.1 Workflow with Microsoft Expression Blend
	Create button as an XAML file with Microsoft Expression Blend

	6.2.2 Workflow with Adobe Illustrator
	Bar graph illustration
	WPF export
	Animation in Blend

	6.3 Engineering in zenon
	6.3.1 CDWPF files (collective files)
	6.3.2 create WPF element
	6.3.3 Configuration of the linking
	Properties
	Link variable
	Link values
	Link authorization or interlocking

	Events
	Transformation

	6.3.4 Validity of XAML Files
	6.3.5 Pre-built elements
	Analog clock - AnalogClockControl
	Bar graph vertical - VerticalBargraphControl
	Progress bar - ProgressBarControl
	COMTRADE-Viewer
	Display during Runtime
	Runtime view - configuration page
	Runtime view - visualization of COMTRADE data
	Configurable control properties - color display

	Energy class diagram
	Pareto diagram
	Circular gauge control
	Sankey diagram
	Temperature indicator - TemperatureIndicatorControl
	Universal slider - UniversalReglerControl
	Waterfall diagram

	6.3.6 Display of WPF elements in the zenon web client
	Engineering in the zenon Editor
	VSTA code (complex)
	VSTA code (simplified)

	6.3.7 Examples: Integration of WPF in zenon
	Integrate bar graph as WPF XAML in zenon
	Integrate button as WPF XAML in zenon
	Integrate DataGrid Control in zenon

	6.3.8 Error handling

