~/ COPADATA

zenon manual

Programming Interfaces

COPADATA

©2017 Ing. Punzenberger COPA-DATA GmbH
All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

Contents

1. Welcome to COPA-DATA hElP ...ccevreuueniiiiiiiiiiiiiiiiiiiiinnneeessiss e rsssaessss s rersssaesssssssnessssnasssssssnne 6
2. Programming INterfaces........ccciiieeeiiiiieeieiiieeeiciireanerrernnnesseenssesseenssessesnssessennssessennssessennssessennnnnns 6
R V[TS 9
3.1 L To T g Lo 1V [T I PSPPSRI 10

3.2 TIMUNOIOGY -eeeeuttiitieeiee ettt ettt ettt ettt ettt e s bt sae e e s et e e s ae e e sa b e e e ae e e s abeeeae e e sube e bb e e sabeenabeesabeeeaneesubeeenbeesabeeenneenn 10

33 [0 011 L o] o 1T T TP UPPRT RPN 12

B @1 Y- Y - T [o TSRS 12
34.1 2 1Y (ol PP PUPPRRTP 13

3.4.2 TYPES OF EXEENSIONS ..ottt sttt be e s b e e bt e s bt e sane e bt e e saneeneas 17

3.4.3 Content Of add-IN PACKAEGES.......cuiee ittt et e e et e e e e etre e e s atee e e s tbeeeesaeeesnreeaans 19

3.4.4 Y 0T 1 o] D117 o J OSSN 20

345 MiCrosoft VisUal STUAIOoeueiuiiiiiiiiiiiieiee e 22

3.4.6 SoUrCe COAE MANAZEMENT.......uuiiiiiiee e ettt e e e e e st e e e e e e serbtr e e e e e e sesaatraeeeeseessantaareeeseesannsraseaeens 24

3.4.7 Add-in analysis and packaging utility (AddINULIlIty)ccoueeeeiiiiieeeee e 24

3.4.8 Actioninthe event of reloading......cccceei i 25

349 ([T = A IO P TP POPTR P PP PP 26

3.5 Use of add-ins in EAitor and RUNTIMEc..cooiiiiiiiiiicccce e e e 26
35.1 Activate add-iNS iN ZENONcceeiiiiiiiiiii e s 28

3.5.2 Action during iNStAllationeicciiir e e enaeeas 28

353 Add-ins Node in the ProjeCt Man@gEruueeiiiiiiiiiiiiiee et e et e e e e e e abrar e e e e e e s snbraaeaaaas 29

354 Use i the ZeNON EdITOr ...cooueiiiiiiiieeet e s 30

355 USe N ZENON RUNTIME ...oiiiiiiiiiiiiieeit e e 35

3.6 SWItCh/CONVEISION TrOM VSTA . iiiiieiiiieeeeeetitt et et s ettt et e e e s e s eabe ittt eessessabeaeeeeesessasbesesesssesssbrsareeessssnnnnnes 37

L S |/ Tl o TN - N 38
4.1 VBA toolbar and context menu detail VIEWc.ceoiiiiiiiiiiiiiiii e 39

4.2 VBA ON B4-Dit SYSTEIMS ettt e e e e et e e e e e e e e st a e e e e e eeeetbaaaeeaeeeseantataeeeaaesensntaeseaaesannns 42

4.3 2T T o3P OTPRROPRTON 43
43.1 ODBJECE PROPERTIES. ... etetieiitt ettt ettt ettt sttt s ittt e st e e sttt e e s sabb e e s s ate e e sabbeeesnabaeessasaaeessraaenas 43

4.3.2 (0] o [=Tor a1\ 1 24 1 2 [0 15 1T P PP ORI 44

4.3.3 OBJECE EVENTS ...ttt ettt sttt e sa ettt e b e b e n e eane s e e smeesmeenneeneenneens 44

4.4

4.5

4.6

4.7

4.8

434 VBA ObjECt STrUCTUIE IN ZENOMNeiiiiiiiiieteee ettt sttt st st esbeesanee s 44
4.3.5 HOW t0 USE VBA MACIOS ...viiiiiiiiiiiiiiiciiiiiciin it sra e s sara e anns 46
4.3.6 How to insert an ActiveX element in ZENON?ccoeviriiriiiieieeeeee e 47
4.3.7 Access from an external Programcoeiirieriieiirie ettt sttt 49
4.3.8 Functionality of onling Variablescccuuei i 50
4.3.9 LISt OF STAtUS DTS ...eeieeiieiieieeee e st 52
4.3.10 Lasso for selecting dynamic elements in the RUNTIMEccooviiiiiiiiiiniin e 54
MACTOS TN TNE EAITON..c.uiitieiiiieiiece ettt sb e b et ettt sbe e b e b e b e eabesaeesaeenaee 55
441 TOOI DA MACIO [IST..eeiiiiiieiiieiiee ettt ettt st s e st saeesbeenbeeneeeae 56
4.4.2 (7013 o T o= Yol o Y- U USSRt 57
FUNCLIONS 1N ZENON ittt e eba e e srbe e e s sbaeessanes 58
45.1 EXECULE VBA MQACKO iiiiiiiiiiiiiiiiiiiiiieeieeeeete ettt et et et et et e teteteterererererereserereresererereseresesererererererererenens 59
Developing WiIzard iN VBAottt ettt b et et e sttt e sae e s bt e bee s ebe e e sabe e s bt e e saneenees 60
4.6.1 USING @ WIZAI ...viiiieeieiecciieee ettt e e e e e st e e e e e s e st baa e e e e e e s sensbaaaeeeeeesaensssneeeeessnnnsnnes 61
4.6.2 SErUCTUNE OF @ WIZATT . eeieeeeiie ettt e st e e s e e e s bae e e e snbeeesensaeeesnseaeens 61
4.6.3 INTEEIAtION IN VBA ..ttt e e s s ettt e e s s e aa b e e e e eessesnsbatbeeeesssnnsnnnaeeeas 62
4.6.4 DEVEIOPING @ WIZATA ...eeiiiiiiiee ittt e e e e e et e e e e s e s e bar e e e e e eesnstaaeeeaeeessnssaneaeens 62
4.6.5 UPating WIiZardScciii ittt e et e e e e e st aa e e e e e e e s abbaaeeeeeesennsataeeeeeesennnenes 68
Frequently asked QUESTIONSuuiiiiii e e e et e e e e e e st e e e e e e e sanbaaaeeaeeeeranraaaeeeens 69
4.7.1 Why does the button Stay PresSSea?.... ..t s e e e sae e s enaeeas 69
4.7.2 Macro is not performed with the first Click.........cccciiiiiiiieii e 69
4.7.3 Macros no longer work in the RUNTIME?cuuiiiiiie s e e e 69
4.7.4 WiIindoWSs CE aNd VBAooiiiiii ettt ettt et saeen e 70
T T g o 1= PSPPSRI 70
4.8.1 MouseEvents and ActiveX Control initialization.........ccoceeeieiiiiiiiiniiie e 70
4.8.2 Display variable information ... 71
4.8.3 Read and write variable Valuesccociriiiiinieiceceee e 72
4.8.4 Read and write variables and implement online variablesccccoccciiiieiiieicciiiieee e, 73
4.8.5 Use dialog MUIIPIE tIMES ...uviiii et e e e e e e eata e e e e e e e eaannaes 75
4.8.6 Alarm — Events and ActiveX Control handlingc.oeeeciiiiiciee e 77
A.8.7 ACCESS L0 @IAIMS ..ttt st b e e nne e e be e e nree e 79
4.8.8 Set switch (working with process variables)ccceiieciiiiiiiiiie e 81
... 84
2T 1 ok PP 85
5.1.1 Setting up the VSTA enVIrONMENT ...ttt e e e e e taa e e e e e e e eabraaeeeaas 85

5.1.2 Access to the object Model in ZENON.......oouiiiiiiiie e e 86

5.1.3 FUNCLIONS TN ZENON....eeiiiiiiiiiiiii e e 88
5.1.4 Debugging @ VSTA @dd-iN ...ccccuiiiiiiieeeciee ettt e et e e e tre e e st e e e s atreeesanaaeeenseeeesnsaeeeennes 89
5.15 EVENTS IN VSTA L.ttt s e s e e s e b e e s enr e e e snbe e e s sraeesaanes 90
5.1.6 Creating a backup Of VSTA PrOJECES.....uiiii i ceiee ettt et e e s e e e st e e e e nae e e snreaeens 90
5.2 Creating @ VSTA PrOJECT ..oouiiiiiiiiie ettt st e s s et e e s ba e e e s sab e e e senae e e snaeeeeas 91
5.2.1 VSTA Projects iN the EaIOr.......ii et eee e et e et e e s etae e e s tbe e e e ataeesenneeas 91
522 VSTA Projects in RUNTIME ..coouiiiiiiiii ettt s e s s e e s 92
5.2.3 Developing WIizards iN VSTA ...ttt e e et e e e tae e e stb e e e estbeeeestaeessbeeaeantaeeeennes 93
5.3 EXAMIPIES ettt sttt s bt e e h et e sar e e h bt sa bt e eat e e sa b e e eaneesabeeeabeesabeeenree s 94
53.1 Creating variables in the zenon ditorc.co e 94
5.3.2 Writing project information in the zenon output WindOW........cccciiiiiiriiiiiieenieceeeee e 97
5.3.3 Reading in of variables in zenon via regular eXpressionscccceevcveeeecciieeeecieeeccreeeeeivee s 99
Process CONtrol ENGINE (PCE).....ccuueuuieiiemunieireenneeerenseeereeasseseesnsesseenssssessnsssssssssssssssnssessssnnsessennnes 103
6.1 ThE PCE EItOr . .uiiiiiieiieiiieee ettt ettt sttt a e s b e s bt e b et e san e e snee e smneesnaeessneeneas 103
6.1.1 THhe TaSKMANAEEL eeiiiiiiiieee et e e e e s e e e e e s e sttt e e e e e s e s sbataeeeseesensstaeeaeeesenssnnes 104
6.1.2 The @AITING Ar@@...iiei i e e e e e s e st e e e e e e e s sbateeeeeeeseansstaeeaeaesennrenes 104
6.1.3 The OULPUL WINAOW ...eiiiiiiiiiiiiieiteetc ettt ettt sttt e e st st e e sat e e sabeesaneesabeesnnee s 104
6.1.4 The Mmenus Of the PCE EAItOrcccueiiiiiiiiiiieit ettt s 105
6.1.5 Theicon bar of the PCE EItOr.......cocuiiiiiiiiieiieie ettt 107
5.2 COUISE OF @CHIONS . ..e ittt ettt ettt h e bt e b e b et e s et e sabesheesbeesbe e bt e bt et e eabeeabenbe e beenbean 108
6.2.1 CrEatiNG @ TASK .eiiieeiie et e e e e et e e e aaa e e e s raeeeenateeeennraeas 108
6.2.2 S 0 =T oY= olo Yo [P PUPPNt 110
6.2.3 FUNCEION SHOW PCE ...ttt st st sttt sabe e s bt e sbeeeneesane 112
6.2.4 Yol A 1Y =a0 = TS 113
LSRG T V] 2 Yol g T o] AR 1Y d e o [¥ o1 4 o] TS PUUPNE 114
6.3.1 D 1= I AV o 1T PPNt 114
6.3.2 VaTTADIES ...ttt e 115
6.3.3 Lo T] = P 118
6.3.4 (0] 01=1 1) o] ¢ T T TSP 118
6.3.5 Conditional STATEMENTScoiuiiiiiieiie et 120
6.3.6 [oToT o1 TaY = N a1 10T =4 o T o Yo [T S 122
LT T A BV o 1Yo il oY o Yot =T [f Y-S 127
6.3.8 [@foTe 11 7= @] o 1VZ=T o1 To] o -SSP E PPN 129

1. Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel
(https://Iwww.copadata.com/tutorial_menu). The tutorials are grouped according to topics and
give an initial insight into working with different zenon modules. All tutorials are available in
English.

GENERAL HELP
If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. Programming Interfaces

Different interfaces to integrate your own programs or to automate planning are available in zenon:

» Macro List (on page 38) (VBA)

https://www.copadata.com/tutorial_menu
mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

» VSTA (on page 84)
» Add-In Framework (on page 26) (Add-Ins)

» Process Control Engine (PCE)
Starting from version 7.20, PCE will not be supported anymore and it will not be shown in the
module tree of zenon anymore. While converting projects from versions lower than 7.20, which
contain PCE tasks, the node PCE will be shown for these projects again. PCE will not further be
developed or further documented.

Recommendation: Please use zenon Logic instead of PCE
3 License information

Part of the standard license of the Editor and Runtime.

CONTEXT MENU

Menu item Action
Open VBA Editor Opens the VBA editor
Open the VSTA Editor with Opens the VSTA editor.

Projectaddin

Help Opens online help.

Y Information

you can find information on the creation and implementation of controls (ActiveX, .NET,
WPF) in the Controls manual.

You can find information on engineering and use of the SAP interface in the SAP interface
chapter.

OPEN EDITORS

VBA-EDITOR FOR THE MACRO LIST
VBA starts the same development environment for Workspace and Project.
To open the VBA Editor:

1. Inthe zenon Editor, navigate to the Programming interface node.

2. Expand the view of this node by clicking on [+].
The view of the node is expanded.

3. Right-click on Macro list

4.

Select the entry Open VBA Editor in the context menu.

Alternative: press the short cut Ctrl+F11

VSTA EDITOR

VSTA provides separate development environments for Workspace and project. You can only use one of
them at a time. At the start every other VSTA development environment which is open will be close.

To open the VSTA Editor for the workspace:

1.

Press the short cut A1t+F10.

The code for the workspace and all loaded projects is displayed.

To open the VSTA Editor for the currently loaded project:

1.
2.

Navigate to the Programming interfaces node

Expand the view of this node by clicking on [+].
The view of the node is expanded.

Right-click on VSTA

In the context menu, select Open VSTA editor with ProjectAddin.
The editor is opened for the currently-loaded project.

APl FROM VERSION 7.10:

For the use of zenon programming interfaces, the following is applicable from zenon 7.10:

>

>

VSTA/.NET: .NET Framework 3.5 must be installed.

VBA: If, in the VBA code, Windows API or other imported DLL functions are accessed, these calls
must be adapted to the 64-bit environment. In general, the following applies: A VBA file created
with a 32-bit version cannot be used without changes in a 64-bit version of VBA.

A Attention

Errors in applications such as ActiveX, PCE, VBA, VSTA, WPF and external applications
that access zenon via the API can also influence the stability of Runtime.

3. Add-Ins

Add-Ins provide possibilities to expand the functionality of zenon in the Editor and in Runtime with

different development environments.
The following are available to you to create Add-Ins:

» Microsoft Visual Studio (on page 22)
» SharpDevelop (included in the installation package) (on page 20)

Add-Ins can be created with each .NET programming language. IDE support is available for the
programming languages C# and Visual Basic.NET.

Note:

» Alllists and interfaces support IEnumerable.
Reference: https://msdn.microsoft.com/de-de/library/9eekhtaO(v=vs.110).aspx
(https://msdn.microsoft.com/de-de/library/9eekhtaO(v=vs.110).aspx)

» LINQ (Language Integrated Query) can be used.
Reference: https://msdn.microsoft.com/en-us/library/mt693024.aspx
(https://msdn.microsoft.com/en-us/library/mt693024.aspx)

& Attention

For Add-Ins, the .NET Naming Guidelines are used.

The object names previously used for VSTA and VBA are amended for this. In VSTA and
VBA, the previous names remain the same for compatibility reasons. For Add-Ins, naming
according to the .NET Naming Guidelines has been used.

You can find an overview of the respective object names in the
API_Naming_Conversion.xlsx Excel table. You can find this in the zenon installation

path in the \HELP\AddiIns folder.

FUNCTIONALITY

Add-Ins allow you to do the following, among other things:
» Provide project configuration aids (such as wizards)

» To enhance the project in Runtime with additional functionality

You can find Add-Ins:
» For the Editor in the Extras menu under the following entries:
o Manage Editor Add-Ins
o Start Editor Wizards

o Manage Editor services...

https://msdn.microsoft.com/de-de/library/9eekhta0(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/mt693024.aspx

» For Runtime in the Programming interfaces - Add-Ins node

TOOLS AND SUPPORT

You can get tools and support at:

» Visual Studio developer tools: marketplace.visualstudio.com
(https://marketplace.visualstudio.com)

» COPA-DATA user forum: forum.copadata.com (https://forum.copadata.com/)

3.1 Prior knowledge

As with the creation of other software components, certain prior knowledge is also necessary for the
development of Add-Ins for zenon.

This includes

» Programming knowledge in C# or VB.NET (depending on the requirement / complexity of the
Add-Ins to be developed)

» Good zenon knowledge

The following is also recommended

» Experience in using professional development environments (such as Microsoft Visual Studio)

» The use of a version management system for the developments (TFS, SVN, GIT)

3.2 Terminology

Specialist terms and their meaning in relation to Add-Ins.

10

https://marketplace.visualstudio.com/
https://forum.copadata.com/

Term

Add-In

Add-In Assembly

Add-In Package

Extension

Project Add-In Management

Service Extension

Wizard Extension

Meaning

A collection of Extensions. Is represented by the add-in package.
An Add-In can contain several Extensions.

The compiled library (*.dll), that contains Extensions.

A ZIP file (*.scadaAddIn), that contains metadata and libraries
with their dependencies.

An Add-In Package contains an Add-ln Assembly.

Extensions are classes that can be derived from an interface
with one or more methods. They are entry points in the Add-In
Package.

Each class that represents an Extension is marked with a .NET
attribute.

There are two types of Extensions (on page 17), one for the
Editor and one for Runtime

» Wizard Extensions (Wizards)

» Service Extensions (Services)

Integrated development environment. Abbreviation for Integrated
Development Environment.

Components for zenon Editor and Runtime that manage the Project
Add-In Packages.

Implementation of an Extension that represents a Service.
Services:

» Runsin the background

» Is started automatically or manually

» Remains in the memory until it is stopped
Implementation of an Extension that represents a wizard.
Wizards:

» Are for solving a certain task

» Are removed again after closing

Note: Specialist terms are only used in English in the documentation for Add-Ins.

11

3.3 Limitations

The following limitations are applicable for Add-Ins:
» The zenon Web Client supports the execution of Add-Ins, however without IDE support.

The local debugging of Add-Ins is not possible in the zenon Web Client for this reason; debugging
using remote debugging tools is supported.

» The execution of Add-Ins is not supported in the HTML web engine.

3.4 Create add-in

GENERAL INFORMATION

Add-Ins are identified by means of the Add-In ID. It is used for installation and import.

An Add-In ID consists of an optional Namespace and a local ID, namespace.localld. The Local ID
identifies an Add-In; the Namespace assigns an Add-In to an organization. Both pieces of information
areestablished by the NET attribute Mono.AddIn.AddInAttribute. In order for the name for an Add-In
Package to also remain unique beyond organization boundaries, the Namespace of the Add-In project is
used as part of the ID.

Example of a complete Add-In ID: com.organisation.importwizard.

The issue of Namespaces is optional.

Recommendation: Use Namespaces. This is how you ensure the global uniqueness beyond
organizational boundaries. It is best to use the URL of your own organization in reverse order.

For example: For www.example.com use com.example as a Namespace.

Namespaces can be further divided within an organization, for example by teams, departments or
projects.

The following are available to you to create Add-Ins:
» Microsoft Visual Studio (on page 22)

» SharpDevelop (included in the installation package) (on page 20)

Add-Ins can be created with each .NET programming language. IDE support is available for the
programming languages C# and Visual Basic.NET.

12

3.4.1 Basics

There are different Extensions available for the zenon Editor and zenon Runtime. Depending on the
application, a corresponding Extension can be selected.

A «components
Add-In 1 @
A ~compooents
zenon Editor @ -
K= m = m - e
IEd! zar ditens:
<==
' Exter
orgerviceBees A
'
A cemponants g]
A Add-In 2
A cmponans
zenon Runtime
A ~omzonents £)

Add-In3

All interfaces required for the development of Add-Ins are defined in the Scada.AddIn.Contracts
assembly.

An Add-In Package can contain one or more Extensions .

TYPES OF EXTENSIONS - INTERFACES

A distinction is made between the following Extensions :

EDITOR WIZARD EXTENSION - IEDITORWIZARDEXTENSION (ON PAGE 17)

» Execution is triggered by the user using the Extras -> Editor Wizards... dialog in the zenon
Editor.

» Implements the Run method in order to execute a Wizard Extension in the zenon Editor.

EDITOR SERVICE EXTENSION - IEDITORSERVICEEXTENSION (ON PAGE 17)

» Execution is carried out automatically when the Editor is started, depending on the
DefaultStartMode.

Note: For automatic start, the DefaultStartMode=DefaultStartupModes.Auto attribute must
be set in the Extension. The start mode can also be changed with the Manage Editor services
(on page 33) dialog.

» Administration is via the Extras -> Manage Editor services... dialog in the zenon Editor.

» Implements the Start and Stop methods to execute a Service Extension in the zenon Editor.

13

PROJECT WIZARD EXTENSION - IPROJECTWIZARDEXTENSION (ON PAGE 18)

» Execution is triggered by the user with the zenon Execute Project Wizard Extension function.

» Implements the Run method in order to execute a Wizard Extension in zenon Runtime.

PROJECT SERVICE EXTENSION - IPROJECTSERVICEEXTENSION (ON PAGE 18)

» Execution takes place automatically when starting the project in Runtime, depending on the
DefaultStartMode.

Note: For automatic start, the DefaultStartMode=DefaultStartupModes.Auto attribute must
be set in the Extension. The start mode can also be changed with the Manage Editor services
(on page 33) dialog.

» Administration is carried out using the zenon Show ""Manage Runtime services™ function.

» Implements the methods Start and Stop to execute a Service Extension in zenon Runtime.

EXTENSION ATTRIBUTES

The following metadata is defined using the .NET attribute with the name AddinExtension.

14

Add-Ins
Zenon

Name Display name in dialogs. X X X X

Info: Corresponds to the name
of the wizard or the service in
zenon.

Description Description of the display in X X X X
dialogs.

Info: Corresponds to the
description of the wizard or the
service in zenon.

Category Category for grouping in dialogs. | X -- X --

Info: Is used to categorize
wizards in the Editor Wizards...
dialog in the zenon Editor.

DefaultStartMode | Describes the standard starting - X - X
behavior of service add-in
extensions after installation.

» Manual: Extension must be
started manually by the
user.

» Auto: Is started if the
workspace in the Editor or
the project is loaded in
Runtime.

N/A: Manual is used.

Info: Corresponds to the start
type of the service in zenon.

Key:
» X:applicable

» - not applicable

ADD-IN ATTRIBUTES

An Add-In Assembly needs several .NET attributes, which are defined in the AddiIninfo.cs file.

The most important attributes and those necessary for use in zenon are:

Attribute name

Addin

AddinDependency

AddinName

AddinDescription

Key:
» X:applicable

» - not applicable

Obligatory

X

Description

ID and version of the
Add-In.

Info: The version
corresponds to the Version
column in the Add-In
administration dialog in the
zenon Editor.

Defines a dependency on
the zenon system.

This value is constant and is
needed in order for zenon
to use the Add-In

Name of the Add-In.

Info: Corresponds to the
Name column in the Add-In
administration dialog in the
zenon Editor.

Description of the Add-In.

Info: Corresponds to the
Description column in the
Add-In administration
dialog in the zenon Editor.

Examples

Example 1:

[assembly:
Addin("AddInldentifier",
“1_0"’
Namespace="com.example

")

Example 2:
[assembly:

Addin("MultitouchAddIn",
“1_0")]

Example 3:

[assembly:
Addin("ProjectCreation",
"1.0")]

[assembly:
AddinDependency("scada",
“1.0“)]

[assembly:
AddinName("Editor Add-In
Demo")]

[assembly:
AddinDescription("Demons
trates an Add-In with a
Wizard and a Service
extension.")]

16

3.4.2 Types of extensions

Wizard in the Editor - Editor wizard extension

Editor Wizard Extensions are used to implement wizards or other user-controlled API processes in the
Editor.

» Execution is triggered by the user using the Extras -> Editor Wizards... dialog in the zenon
Editor.

» Implements the Run method in order to execute a Wizard Extension in the zenon Editor.

EXAMPLE CODE (C#)

[AddInExtension ("Wizard Extension Name", "Description of Wizard Extension", "Category of
Wizard Extension")]

public class WizardExtension : IEditorWizardExtension
{

public void Run (IEditorApplication context, IBehavior behavior)

{

// Implement feature here...

Services in the Editor - Editor Service Extension

Editor Service Extensions are used to implement APl processes in the Editor automatically.

» Execution is carried out automatically when the Editor is started, depending on the
DefaultStartMode.

Note: For automatic start, the DefaultStartMode=DefaultStartupModes.Auto attribute must
be set in the Extension. The start mode can also be changed with the Manage Editor services
(on page 33) dialog.

» Administration is via the Extras -> Manage Editor services... dialog in the zenon Editor.

» Implements the Start and Stop methods to execute a Service Extension in the zenon Editor.

EXAMPLE CODE (C#)

[AddInExtension ("Service Extension Name", "Description of Service Extension", "Category
of Service Extension", DefaultStartMode=DefaultStartupModes.Auto)]

public class ServiceExtension : IEditorServiceExtension

17

public void Start (IEditorApplication context, IBehavior behavior)

{

// Startup code here

}

public void Stop ()

{

// Stop code here

Wizard in Runtime - project wizard extension

Project Wizard Extensions are used to implement wizards or other user-controlled API processes in
Runtime.

» Execution is triggered by the user with the zenon Execute Project Wizard Extension function.

» Implements the Run method in order to execute a Wizard Extension in zenon Runtime.

EXAMPLE CODE (C#)

[AddInExtension ("Wizard Extension Name", "Description of Wizard Extension", "Category of
Wizard Extension")]

public class WizardExtension : IProjectWizardExtension

{

public void Run (IProject context, IBehavior behavior)

{

// Implement feature here...

Service in Runtime - project service extension

Runtime Service Extensions are used to implement background tasks in Runtime.

» Execution takes place automatically when starting the project in Runtime, depending on the
DefaultStartMode.

18

Note: For automatic start, the Defaul tStartMode=DefaultStartupModes.Auto attribute must
be set in the Extension. The start mode can also be changed with the Manage Editor services
(on page 33) dialog.

» Administration is carried out using the zenon Show ""Manage Runtime services™ function.

» Implements the methods Start and Stop to execute a Service Extension in zenon Runtime.

EXAMPLE CODE (C#)

[AddInExtension ("Service Extension Name", "Description of Service Extension", "Category
of Service Extension", DefaultStartMode=DefaultStartupModes.Auto)]

public class ServiceExtension : IProjectServiceExtension

{

public void Start (IProject context, IBehavior behavior)

{

// Startup code here

}

public void Stop()

{

// Stop code here

3.4.3 Content of add-in packages

Add-In Packages are ZIP files with the filename extension .scadaAddIn. They contain binary data and
metadata. Binary files must be present and can be saved as their own ZIP file in the Add-In Package.
Packages can be created with the Add-In Utility (on page 24). The SharpDevelop and Microsoft Visual
Studio development environments are used to create the Packages automatically when compiling.

Recommendation: Do not change the files manually, always use the Add-In Utility.

CONTENT OF THE ADD-IN PACKAGE

The Add-In Package contains:
» Content.xml: XML metadata file with contents of the package.

» Binary.zip: ZIP file with the binary files.

19

XML-FILE

The content of an Add-In Package is listed in its own XML file (Content.xml).

BINARY FILES

Binary files are saved in their own ZIP file. This file must contain all components that are needed on
another system to execute the Add-In. Direct and indirect references to .NET Assemblies. In doing so,
only external Assemblies are included. Assemblies that are not part of the .NET Framework Class Library
or are installed during the zenon installation.

Attention: Ensure that you have all the licenses required for this.

Note: Dynamically-loaded .NET Assemblies are not included in the metadata of .NET Assemblies.

¥ Information

COPA-DATA accepts no liability and offers not technical support for external
Libraries.

3.4.4 SharpDevelop

SharpDevelop (also #develop) is an open-source development environment that is based on Microsoft's
.NET platform. SharpDevelop is supplied with zenon and is also installed during the installation of zenon.
Note: You can find the respective current version and the official documentation for SharpDevelop
online at: www.icsharpcode.net/opensource/sd/ (http://www.icsharpcode.net/opensource/sd/).

Create add-in package with SharpDevelop

To create an Add-In Package with SharpDevelop:
1. Start SharpDevelop by
e selecting the Extras -> Open add-in editor ... menu in the zenon Editor, or
e selecting, in the Startup Tool, under Tools, the SharpDevelop IDE linking

2. Select File -> New Solution and select, under C# -> SCADA Add-Ins or VB -> SCADA Add-Ins, a
corresponding template; create a new project based on this:

e Editor Service Extension (on page 17)
e Editor Wizard Extension (on page 17)

e Project Service Extension (on page 18)

20

http://www.icsharpcode.net/opensource/sd/

e Project Wizard Extension (on page 18)
Note: All examples used in this help chapter are based on C#.
Add your code, references, etc.

Compile the project.

The Add-In Package with the file suffix *.scadaAddin is created in the output window of the
project.

This is called, depending on the configuration . . .bin\Debug\ or .. .bin\Release\.

Import the add-in package in the Editor, see the following in relation to this:
e Installing and manging add-ins for the Editor (on page 30)

e Installing and manging add-ins for Runtime (on page 35)

Deploying and debugging add-ins

DEBUGGING IN THE EDITOR

To debug an Add-In in the Editor, proceed as follows:

1.
2.

N o v & W

Start the zenon Editor.

Start SharpDevelop by

e selecting the Extras -> Open add-in editor ... menu in the zenon Editor, or
e selecting, in the Startup Tool, under Tools, the SharpDevelop IDE linking
Open the project.

In the project settings in SharpDevelop, go to the Add-In tab.

Select Editor under Debug Target.

Start the debugging using F5 or Debug -> Run.

The Add-In project is compiled and deployed in the Editor.

Note: The Add-In is copied to the
$ProgramData$\COPA-DATA\zenon760\EditorAddInCache directory in the
process.

To remove it from the Editor again, proceed as outlined in the Installing and managing Add-Ins
for the Editor (on page 30) chapter.
If there is already an Add-In with the same ID, this is replaced.

Debug the Add-In.

21

DEBUGGING IN RUNTIME

To debug an Add-In in Runtime, proceed as follows:

1.

2
3
4.
5

o

3.4.5

Start the zenon Runtime.

Start SharpDevelop by selecting, in the Startup Tool under Tools, the SharpDevelop IDE link
Open the project.

In the project settings in SharpDevelop, go to the Add-In tab.

Select, under Debug Target, the corresponding project in Runtime in which you want to debug
the Add-In.

Start the debugging using 5 or Debug -> Run.
The Add-In project is compiled and temporarily deployed in the selected zenon project.

Attention: The Add-In is temporarily copied to the
...\RT\FILES\zenon\system\AddInCache\. .. directory in the process.

It is removed again after Runtime is closed.

To install an Add-In on a permanent basis, import it as described in the Installing and managing
Add-Ins for Runtime (on page 35).

Debug the Add-In.

¥ Information

As an alternative to the methods described, you can also debug your Add-Ins using
Debug -> Attach to Process. In doing so, connect from the corresponding Add-In
project in SharpDevelop to the process in the zenon Editor or Runtime.

Microsoft Visual Studio

Create add-in package with Visual Studio

To create an Add-In Package with Visual Studio:

1.
2.

Start Visual Studio.

Install the Visual Studio Developer Tools.
Note: This can be downloaded from the Visual Studio Marketplace
https://marketplace.visualstudio.com/.

Select File -> New Project and select, under Templates -> Visual C# -> SCADA Add-Ins or
Templates -> Visual Basic -> SCADA Add-Ins, a corresponding template; create a new project
based on this:

22

https://marketplace.visualstudio.com/

e Editor Service Extension (on page 17)

e Editor Wizard Extension (on page 17)

e Project Service Extension (on page 18)

e Project Wizard Extension (on page 18)

Note: All examples used in this help chapter are based on C#.
Add your code, references, etc.

Create the project.

The Add-In Package with the file suffix *.scadaAddln is automatically created in the output
folder of the project (. . .bin\Debug\ or . ..bin\Release\ depending on configuration).

Import the add-in package in the Editor, see the following in relation to this:
e Installing and manging add-ins for the Editor (on page 30)

e Installing and manging add-ins for Runtime (on page 35)

Deploying and debugging add-ins

DEBUGGING IN THE EDITOR

To debug an Add-In in the Editor, proceed as follows:

1.
2.
3.

Start the zenon Editor.
Start the debugging in Visual Studio using F5 or Debug -> Start Debugging.
The Add-In project is compiled and deployed in the Editor.

Note: The Add-In is copied to the
$ProgramData%$\COPA-DATA\zenon760\EditorAddInCache directory in the
process.

To remove it from the Editor again, proceed as described in the Installing and managing Add-Ins
for the Editor (on page 30) chapter.

Debug the Add-In.

Y Information

As an alternative to the method described, you can also debug your Add-Ins by means of
Debug -> Attach to Process. In doing so, connect from the corresponding Add-In
project in Visual Studio to the zenon Editor process.

Recommended debugger type (Debugger Type): Managed mit CLR 4.0

23

DEBUGGING IN RUNTIME

To debug an Add-In in Runtime, proceed as follows:

1. Compile the Add-In and import it as described in Installing and managing Add-Ins for Runtime
(on page 35).

Start the zenon Runtime.
In Visual Studio, select Debug -> Attach to Process
Select the zenon Runtime process (Zenrt32.exe) and click on Attach

Debug the Add-In.

vk wN

3.4.6 Source code management

To administer the source code, the use of a version control system - such as TFS, GIT or SVN - is
recommended.
& Attention

In contrast to VSTA and VBA, the Source Code of Add-Ins is not saved and administered in
the zenon project.

3.4.7 Add-in analysis and packaging utility (AddInUtility)

The AddInUtility tool is automatically called up when compiling Add-Ins and has the following tasks:
» Analysis of the dependencies

» Packaging of Add-Ins

A package contains the Add-In Assembly and an XML file with the extension *.scadaAddin, which
contains the metadata for the Add-In.

Command line tool AddInUtility.exe

The AddInUtility packages Add-Ins using the command line.

24

Syntax: AddinUtility.exe [-[shortTerm] or [/ or --][longTerm] [argument value]] ...

» Arguments are case sensitive

» Values are case sensitive if marked as such.

» Arguments can be stated in any desired order.

Argument

--action

(-a)

--path
(-p)

--targetDir
(-

Examples

Description

Action that is to be carried out.
Possible values:

» BuildPackage

> GetPackagelInfo

Mandatory information.

Path information.

Required information for:

» action =BuildPackage: Path to add-in assembly file.

» action = GetPackageInfo: Path to Add-In Package file.

Mandatory information.
Target folder.
Required information for:

» action=BuildPackage: Path to the folder in which the add-in
package is created.

Default: current folder

» Creates an Add-In Package (arguments written out in full):
AddInUtility.exe --action BuildPackage --path C:\Addin.dll --targetDir C:\Directory\

» Creates an Add-In Package (arguments in abbreviated form):
AddInUtility.exe -a BuildPackage -p C:\Addin.dll -t C:\Directory\

» Returns information about the given Add-In Package:
AddInUtility.exe -a GetPackagelnfo -p C:\Directory\Addin.scadaAddIn

3.4.8 Action in the event of reloading

zenon offers a reload function for projects that support hot plugging or the updating of amended
project files in runtime. According to the functions of the Add-Ins triggered, the sequence of activities

for VSTA and VBA is as follows:
1. Pre-reload VSTA

2. Stop of Service Extensions

25

3. Reload VBA
4. Start of Service Extensions

5. Post-reload VSTA

Add-Ins behave like VSTA and provide a Pre-reload-function and a Post-reload-function. These are used
after the VSTA Pre-reload and before reloading of VSTA and as a Wrapper for the VBA reload function.
Reloading is delayed until the execution of Wizard Extensions has been completed.
Recommendation: If you want to use the reload functionality, avoid Wizard-Extensions that block or
run for a long time.

When being loaded again, all running service expansions are restarted. Newly-installed service
expansions are started after the restart if the DefaultStartMode is set to automatic.

3.4.9 Isolation

All Add-Ins are executed in an isolated memory area (App-Domain). As a result, different versions of the
same Assemblies can be loaded at the same time.

3.5 Use of add-ins in Editor and Runtime

Add-Ins provide project configuration aids in the zenon Editor and supplement the functionalities of
zenon in Runtime.

You can find Add-Ins:
» For the Editor in the Extras menu under the following entries:
[Manage Editor Add-Ins
o Start Editor Wizards
o Manage Editor services...

» For Runtime in the Programming interfaces - Add-Ins node

ADD-INS FOR EDITOR AND RUNTIME

» Add-Ins for the Editor (on page 30):
Add-Ins are imported, installed and can be used in the Editor.
Administration (on page 30) is carried out by means of entries in the Extras menu.

» Add-Ins for Runtime (on page 35):
Add-Ins are imported; when starting Runtime, they are activated automatically and can then be
used.

26

The administration (on page 35) is carried out using the detail view of the programming
interface - Add-Ins node in the project tree.

Add-Ins are available as:

» Wizard: Is called up by the user and closed again after the task has been completed.
For details on the wizards supplied with zenon, read the Wizards manual.
» Service: Can be started automatically or manually and runs in the background.
Add-Ins can:
» Be supplied with zenon
» Be developed by integrators and provided to their customers
» Developed by customers themselves

FILTER AND SORT THE LIST OF ADD-INS AND SERVICES

To filter a list in the detail view or in a dialog:

1.
2.

3.

Click in the filter line of the desired curve.

Enter the filter criteria.
Placeholders can be used.

e ?:Placeholder for precisely one desired character.
e *:Placeholder for as many characters as desired.

Several filters can be combined.

Note: To remove all filters, click on the corresponding symbol in the tool bar.

To sort the list:

1.

Click on the column title of the column according to which sorting is to take place.
The binoculars symbol shows the column according to which sorting takes place.
The list is sorted according to the column.

An arrow shows whether the sorting is ascending or descending.

To change the sorting sequence, click on the column title again.

BACKING UP AND RESTORING

The following is applicable for the backup and restoring of Add-Ins:

>

When securing the workspace, Editor Add-Ins are not saved.

Note: Installed Add-Ins for the Editor are in the
$ProgramData$\COPA-DATA\zenon760\EditorAddInStore directory and can be
backed up manually if required.

27

» Add-In Packages of projects are also backed up when creating project and workspace backups
and are restored again when read back in.

HISTORY OF CHANGES

If the change history has been activated for the project, entries for the change history are generated in
the project when installing and uninstalling Add-In Packages.

3.5.1 Activate add-ins in zenon

The use of Add-Ins is activated in zenon6.ini. The following entry must be present for this:
[Addins]

ON=1

This entry is activated by default after the installation of zenon.

Note: If VBA/VSTA for zenon (on page 85) is deactivated, Add-Ins are also deactivated.

3.5.2 Action during installation

Add-Ins can be used in the Editor or in Runtime.
The following is applicable when installing Add-Ins:

1. New installation:
The selected Package is saved in the AddInStore folder.

e Folder for installation in the Editor (on page 30):
$ProgramData$\COPA-DATA\zenon760\EditorAddInStore

e Folder for installation in Runtime (on page 35):
.. .\RT\FILES\zenon\system\AddInStore\...

The Add-In ID is used as a file name and the .scadaAddin file suffix is added.

2. New installation with the same ID:
The pre-existing Add-In is replaced.

3. During installation, pre-existing files of other versions (higher or lower) are replaced.

28

¥ Information

The Add-In ID is unique for each Add-In and is defined using a .NET attribute in the
Addininfo.cs file.

Example (Add-In ID = AddInProject):
// Declares that this assembly is an add-in

[assembly: Addin ("AddInProject", "1.0")]

3.5.3 Add-ins node in the Project Manager

In the project tree of the Project Manager, it is possible to import add-ins under the Programming
interfaces node item. You can find details in the Project tree context menu (on page 29) chapter.

Project tree context menu

Right-click in the Add-Ins symbol in the Programming interfaces node in the project tree to open a
context menu:

Entry Description
Import Add-In... Opens the dialog to import an Add-In Package that is to be used in
Runtime.

Note: The package is only imported, not installed. Installation is
carried out in Runtime.

Editor profile Opens the drop-down list with predefined editor profiles.

Help Opens online help.

Detail view of context menu and toolbar

In the detail view of the Add-In node in the project tree, Add-Ins that are used in Runtime are displayed
and administered by means of a tool bar and a context menu.

2% T & e

Entries in the context menu and meaning of the symbols from left to right:

29

Symbol/Entry Description

Import Add-In Opens the dialog to import an Add-In Package that is to be used in
Runtime.
Note: The package is only imported, not installed. Installation is
carried out in Runtime.

Delete Uninstalls and deletes the selected Add-In after requesting
confirmation.

Remove all filters Removes all filters that are currently applied in the list of Add-In.
Properties Opens the Properties window.
Help Opens online help.

3.5.4 Use in the zenon Editor

Add-Ins for use in the zenon Editor are imported, installed and administered in the Editor.

Add-Ins for the Editor can contain the following:

» Editor Wizard Extensions (on page 17), which are started manually via the Extras -> Editor
Wizards menu item.

» Editor service extensions (on page 17) are started if the workspace is loaded and its start mode is
set to automatic. It is stopped as soon as the workspace is closed.

Installed Add-Ins for the Editor are saved under:
$ProgramData$\COPA-DATA\zenon760\EditorAddInStore

Installing and manging add-ins for the Editor

In the zenon Editor, Add-Ins can be imported, installed and administered.

Note: Only Add-Ins with Editor Extensions can be imported and installed. If no Editor Extensions are
found during import, a corresponding warning is shown.

IMPORTING AND INSTALLING ADD-INS

To import and install an Add-In:
1. Open the Extras menu.

2. Select the Manage Editor Add-Ins entry.
The dialog to manage Add-Ins is opened.

30

Click on the Import and Install symbol, select the entry in the context menu or press the
Insert key.

The dialog (on page 32) to select an Add-In is opened.
Select the desired Add-In.

Click on open.

The Add-In is imported and installed.

Click on Clese to close the dialog.

UNINSTALL AND DELETE ADD-IN

To uninstall and delete an Add-In:

1.
2.

Open the menu Tools.

Select the Manage Editor add-ins entry.
The dialog to manage Add-Ins is opened.

Select an Add-In.

Click on the Uninstall and delete symbol, select this entry in the context menu or press the
Delete key.

A dialog requesting confirmation is opened.
Confirm this when requested to do so.

The Add-In is uninstalled and deleted.

31

Add-Ins

Zenon

Manage Editor Add-Ins dialog

7t Manage Editor Add-Ins

22 T @

Mame # | Description Version Source code

Filter text r Fiter text | Fitertedt W Filter text r
0 total/0 filtered/0 selected |
=] e

Toolbar Contains symbols for:
» Importing, installing and deleting Add-Ins
» Removing the filter

» Help display

List of the Add-Ins Shows all installed Add-Ins.
Information on the following is shown:

» Name

» Description

» Version

» Whether source code is included.

Elements can be shown filtered and sorted.

Close Closes the dialog.

Help Opens online help.

TOOLBAR AND CONTEXT MENU

2 X T 9

Meaning of the entries in the context menu and the symbols, from left to right:

Symbol

Description

Import and install

Opens the dialog to select an Add-In. This can be imported and
installed.

Uninstall and delete

Uninstalls and deletes the selected Add-In after requesting
confirmation.

Remove all filters

Removes all filters that are currently applied in the list of Add-Ins.

Help

Opens online help.

Manage Editor services

Add-In Extensions that run in the Editor as services are managed using their own dialog.

To mange Editor services

1. Openthe menu Tools

2. Select the Manage Editor services... entry.

The dialog to manage the services is opened.

MANAGE EDITOR SERVICES DIALOG

. Manage Editor services

P M%’> T @
Description

Kl

Name

>

Service Name

Description of service

0 total/0 filtered/0 selected

33

Option Description

Toolbar Contains symbols for:
» Starting and stopping the services
» Setting the start type

» Removing the filter

» Help display
List of services Shows all installed Services. Information on the following is shown:
» Name

» Description

» Start type

» Status

Elements can be shown filtered and sorted.

Close Closes the dialog.

Help Opens online help.

TOOLBAR AND CONTEXT MENU

s R

Meaning of the entries in the context menu and the symbols, from left to right:

Symbol Description

Start service Starts the selected service.

Stop service Stops the selected service.

Start type manually Sets the start type for the selected service to manual.

Start type automatically Sets the start type for the selected service to automatic.

Remove all filters Removes all filters that are currently applied in the list of services.
Help Opens online help.

BEHAVIOR FOR START AND STOP
If the automatic start mode has been selected for a Workspace Service Add-In, it is loaded before

the Event OnWorkspaceStartup when the Editor is started. When the Editor is closed, it is stopped after
the event OnWorkspaceExit. The add-in can thus react to the zenon events.

34

3.5.5 Use in zenon Runtime

Add-ins for use in zenon Runtime are imported and administered in the Editor. They are automatically
installed when Runtime starts, in order to be able to be executed in Runtime. Each zenon project
manages its own add-ins.

» Add-Ins are copied to the following folder when creating the Runtime files for a project:
.. .\RT\FILES\zenon\system\AddInStore\...

» The Add-Ins are installed in the following folder when starting the Runtime:
.. .\RT\FILES\zenon\system\AddInCache\...

Furthermore, in doing so:

¢ Amended Add-In Packages are updated.
The sync is carried out using the change date of the Add-In Package.

e Add-Ins that are no longer present are deleted.

e Project Service Extensions (on page 18) with the start mode set to automatic are instanced
and started automatically.

e Project Wizard Extensions (on page 18) can be executed using the zenon Execute Project
Wizard Extension function.

! Hint

You can get to the Runtime folder most quickly by highlighting the project in the
Editor and pressing the key combination Ctr1+Al1t+R.

Installing and manging add-ins for Runtime

Add-Ins for Runtime are imported into the Editor and automatically installed when Runtime is started.
Import is carried out by means of the context menu or the tool bar in the detail view.

IMPORT ADD-IN

To import an Add-in :
1. Inthe Editor, open the detail view for Add-Ins in the project tree.

2. Click on the Import Add-In symbol, select this entry in the context menu or press the Insert
key.

The dialog to select an Add-In is opened.
3. Select the desired Add-In.

4. Click on Open.

35

The Add-in is imported.
Info:

e Only once the Runtime files have been created is the Add-In saved in the Runtime files.
Save folder: . . .\RT\FILES\zenon\system\AddInStore\...

e When starting or reloading Runtime, it is installed, modified or updated in the following
folder:

.. .\RT\FILES\zenon\system\AddInCache\...
During modification, the sync is carried out using the time stamp of the Add-In Package.

5. Click on Close to close the dialog.

Note: Only Add-Ins with Project Extensions can be imported and installed. If no Project Extensions are
found during import, a corresponding warning is shown.

INSTALLING AND UNISTALLING ADD-INS

Add-Ins are automatically installed or updated when Runtime is started.

Procedure:

» When Runtime is started, the Packages installed for the project are compared to those in the
Editor.

» Comparison is carried out using the time stamp.

» With different time stamps or new Packages, the Package is installed. A pre-existing Package
with the same name is overwritten.

» Ifthereis no longer a Package in the Editor that is present in Runtime, it is also removed from
Runtime.

DELETE ADD-IN

To delete an Add-In:
1. Inthe Editor, open the detail view for Add-Ins in the project tree.
2. Select an Add-In.
3. Click on the Delete symbol or press the Delete key
A dialog requesting confirmation is opened.
4. Confirm this when requested to do so.

The Add-In is deleted.
After the Runtime files have been compiled the next time, it is uninstalled when Runtime is
reloaded or restarted.

36

3.6 Switch/conversion from VSTA

EDITOR

To convert existing VSTA functionality from the Editor, proceed as follows.

FUNCTIONALITY FROM WIZARDS

Functionality that has been implemented using a VSTA wizard can only be implemented by means of
Editor Wizard Extensions (on page 17).

Copy your existing code to an Editor Wizard Extension and make changes to the code if necessary.

Use the Editor wizards... dialog to start the wizard.

FUNCTIONALITY FROM VSTA EVENTS

Functionality that is executed on an event-triggered basis (such as via .OnElementCreated, .OnPreBuild)
can now be implemented using Editor Service Extensions (on page 17).

To do this, copy the code to initialize the event handler to the Start method of the Editor Service
Extension. You copy the code for release into the Stop method.

Note: For automatic start, the befaul tStartMode=DefaultStartupModes.Auto attribute must be set
in the Extension. The start mode can also be changed with the Manage Editor services (on page 33)
dialog.

FUNCTIONALITY FROM VSTA MACROS.

Functionality that is executed using the Execute VBA/VSTA macro combobox can now be implemented
using Editor Wizard Extensions (on page 17).

To do this, copy the code from your existing VSTA macro in to the Run method of the Editor Wizard
Extension and make changes to the code if necessary.

Use the Editor wizards... dialog to execute the code.

RUNTIME

To convert existing VSTA functionality from Runtime, proceed as follows.

37

FUNCTIONALITY FROM VSTA MACROS.

Functionality that was executed by means of the Execute VSTA macro function can now be
implemented by means of Project Wizard Extensions (on page 18).

To do this, copy the code from your existing VSTA macro in to the Run method of the Project Wizard
Extension and make changes to the code if necessary.

To start the Project Wizard Extension, use the zenon Execute Project Wizard Extension function.

FUNCTIONALITY FROM VSTA EVENTS

Functionality that is executed on an event-triggered basis (such as via .DynPictures().Open,
.Alarm().AlarmComes) can now be implemented using Project Service Extensions (on page 18).

To do this, copy the code to initialize the event handler to the Start method of the Project Service
Extension. You copy the code for release into the Stop method.

Note: For automatic start, the befaultStartMode=DefaultStartupModes.Auto attribute must be set
in the Extension.

4. Macro list

You can use VBA and VSTA in order to extend zenon functionality. The usage of macros with zenon is
described.

CONTEXT MENU

Menu item Action

Open VBA Editor Opens the VBA Editor.

Export all VBE Opens the dialog for selecting the storage directory for the VBE export.
Import VBE Opens the dialog for selecting the VBE import file.

Editor profiles Opens the drop-down list with predefined editor profiles.

Help Opens online help.

38

¥ Information

If VBA macros are changed in the Editor,
» the Runtime files are compiled and transferred to the Runtime
» the Runtime is reloaded

» VSTA elements are also reloaded even if no changes were made in VSTA

VBA starts the same development environment for Workspace and Project.

To open the VBA Editor:
1. Inthe zenon Editor, navigate to the Programming interface node.

2. Expand the view of this node by clicking on [+].
The view of the node is expanded.

3. Right-click on Macro list
4. Select the entry Open VBA Editor in the context menu.

Alternative: press the short cut Ctrl+F11

4.1 VBA toolbar and context menu detail view

TOOLBAR

s o (5 Wm0

39

Macro list

Zzenon

New VBA macro

Creates a new macro and opens the macro Editor.

Open VBA Editor

Opens the VBA Editor.

Save

Saves macros.

Delete

Deletes the selected element.

Export all VBE

Opens the dialog for selecting the storage directory for the VBE export.

Import VBE Opens the dialog for selecting the VBE import file.
Rename Makes it possible to rename the selected macro.
Help Opens online help.

CONTEXT MENU MODULE

Open VBA Editor

Opens the VBA Editor.

Save

Saves macros.

Export all VBE

Opens the dialog for selecting the storage directory for the VBE export.

Import VBE

Opens the dialog for selecting the VBE import file.

Help

Opens online help.

CONTEXT MENU MODULE

New VBA macro

Creates a new macro and opens the VBA Editor.

Help

Opens online help.

CONTEXT MENU MACRO

Macro list

Zzenon

Edit Opens macro in the Editor for editing.

Alternative: Enter button or double click.

Delete Deletes macro.

Alternative: Del key

Rename Opens list elements for editing.

Alternative: F2 key.

Help Opens online help.

TOOLBAR EDITOR

Macros that were created with VBA can be administrated via toolbar-item Macro list.

Symbol
(from left to right)

Reload list of VBA/VSTA macros

Search Macro

Drop-down list Macros
Execute selected macro
execute allocated macro #<x>

Allocate macros

VBA
VSTA
ALL
AZ
ZA

Options for symbol bar

¥ Information

Function

Loads all Public Sub Name () macros that are included in
myWorkspace and in modules to the drop-down list of the
toolbar.

Search for macros via combobox input field or selection from
drop-down list. The drop-down list is adjusted to the widest
element when opened.

Contains all loaded macros for selection.
Executes the macro selected in the drop-down list.
Executes the macro allocated with the symbol.

Opens the allocation dialog for macros. Up to 5 macros can be
allocated with the symbols 1 to 5.

Filters for VBA-macros. Only VBA-macros are displayed.
Filters for VSTA-macros. Only VSTA-macros are displayed.
Cancels the current filter and all macros are displayed.
Sorts macros in ascending order from0-9 and A - Z.
Sorts macros in descending order from Z- A and 9 - 0.
Clicking on the arrow opens the submenu:

Active: Toolbar is displayed.

If the toolbar is not displayed, it can be activated using the Options
-> Toolbar menu.

Note: For free placed toolbar (undocked from the Editor) options
are not displayed. The toolbar can be closed by clicking on button X.

If the macro assighment dialog does not list all macros from myWorkspace, execute
the function Reload list of VBA macros in the toolbar.

4.2 VBA on 64-bit systems

zenon has supported 64-bit operating systems since version 7.10. VBA was thus converted to VBA
version 7.1. Therefore VBA is also available in zenon 64-bit. If, in the VBA code, Windows API or other

42

imported DLL functions are accessed, these calls must be adapted to 64-bit. In general, the following
applies: A VBA file created for a 32-bit version cannot be used without changes in a 64--bit version.

There are some defines/functions available in VBA in order to write 32-bit and 64-bit compatible code.
For example:

#1f Win64 then
Declare PtrSafe Function MyMathFunc Lib "User32" (ByVal N As LongLong) As LongLong
#else
Declare Function MyMathFunc Lib "User32" (ByVal N As Long) As Long
#end if
#1if VBA7 then
Declare PtrSafe Sub MessageBeep Lib "User32" (ByVal N AS Long)
#else
Declare Sub MessageBeep Lib "User32" (ByVal N AS Long)
#end if

You can also obtain some useful notes on the porting of VBA 32-bit code to VBA 64-bit from Microsoft:

» Microsoft Office 2010, notes on porting:
http://msdn.microsoft.com/en-us/library/ee691831.aspx
(http://msdn.microsoft.com/en-us/library/ee691831.aspx)

» 32-bit and 64-bit declares for API calls: http://www.jkp-ads.com/articles/apideclarations.as
(http://www.jkp-ads.com/articles/apideclarations.as)p

4.3 Basics

Describes the basics of the programming language VBA - Visual Basic for Applications

43.1 Object PROPERTIES

An object property is a certain attribute of the object. In case of a variable object this e.g. can be the
value, the name or the identification. In case of a circle the position or the color of the circle in the
screen. Each object has at least one property (usually more), each property has a certain value. While
the property name is a text, the property value is a value between 0 and e.g. 1000.

The special thing with properties is, that with changing the property value in a VBA program you can
change the behavior or the appearance of the object. If you e.g. change the property value of a variable
object, the currently selected variable gets this new value. You cannot cange the value of each property.
The property count of the variable object cannot be changed, because it represents the number of
created variables. You cannot add variables by changing the value of Count. So some properties are read
only, i.e. their values only can be read.

43

http://msdn.microsoft.com/en-us/library/ee691831.aspx
http://www.jkp-ads.com/articles/apideclarations.as

4.3.2 Object METHODS

Beside the properties each object can have methods. A method is not an attribute but a request to the
object to do something. So a form has the method show. What does it do? It requests the form to
appear on the screen. Accordingly the form disappears when using the method Unload.

The advantage of methods is, that the programmer does not have to know anything about the structure
of the object and most of all has no opportunity to chnage the internal data of the object.

Executing the method Show or Unload works as follows:
frmSollwert.Show OrUnload frmSollwert

If you want to open another form, the method stays the same, only the name of the form (object name)
changes.

frmChange.Show orUnload frmChange

So one and the same method can be used for different object types. But not every object must have
methods.

43.3 Object EVENTS

In 90% of working with objects you will use properties and methods, but there is a third kind of
attributes objects can have: Events. Some objects of the control system object hierarchy can react on
events. Events take place during the work with zenon on their own.

Example

Whenever a screen is opened, an open event is triggered in the according screen object.
As a programmer you can add commands to the event procedure (procedure to be
executed, when the event happens), which define, what should happen in this case. One
example for this is changing a variable. You can create an event, which reacts on value
changes of a variable.

434 VBA object structure in zenon

Basically there is a object list and objects again and again in the project structure.
Example:

Projects — Project

44

Variables — Variable
Elements — Element

You can find more about the object model:

» inthe VBA help
EQ zenOn VBA Help E]@

0 e &
Ausblenden Zurick Drucken Optionen

Inhalt]Index] Suchen] Beside the access via the index a variable also can be found with ["]
- = — its unigue name or the unigue channel Id.
+ @ Variable [a]
= (1 variables Properties:J
[7] checkinModule
[7] CheckoutModule
[Count Count Parent L
@ CreateArrayVar
[7 Createvar Methods:¢
[7] DeleteVar
% E:A“:tosa"e CheckInModule CheckOutModule CreateArrayVar
B Imelloor‘t CreateVar Deletevar DoAutoSave
[tem Export Import Item
[7] temPviD ItemPvID
@ Farent lgl
+ @& VarType
+ @ VarTypes = Samples:J [v]
- (] 11l J [>]
» inthe graphical overview which you can obtain from COPA-DATA complete as printed overview.
RtFunctions
count
| Parnt
| 1]
RtFunction
Nams
Parsnt
— T
Stat

» inthe VBA object browser

*% Objektkatalog (==

|zen0n [v] 4 7
| M
Klassen Elemente von ‘Project’
Active [A
= Alarm
2 Recipe =& ALCEngine
2 Recipes) [#® Archives
2 RecipeValue =% ArchivesED
21 Rema =% Build
2l Remas [v] =& Cel v

Class Project
Element von zenOn
Project Class

45

4.3.5 How to use VBA macros

In order to create a new macro in the window Project info on the property page Macro Browser select
a desired event, when the new macro should be executed.

Projektinfo

1 Init

& LeftChckOp_
- LeftClickDown
) LeftDClick
(L] RightClickUp
] RightClickDown
(] RightDClick
J SetFocus
(1 KilFocus
(] Draw

- & Scheduler
] EnableTime
] ExzecuteValue

Makro Browser -

Clicking on this event with the right mouse button opens a menu.

Select the menu entry "New macro..." Thus zenon generates a procedure:

Public Sub LeftClickUp Sollwert (obElem As Element)
End Sub

If a macro already exists, it can be edited, deleted or renamed by clicking it with the right mouse button.

& Attention

If you select menu item Rename macro, take care that you do not change the name of
the event e.g. LeftClickUp_..., - of the current name. Otherwise renaming will not be
executed. Additionally you have to change the name of the sub program to be executed
in the VBA Editor by hand, if you rename a macro.

After you have filled the procedure generated by zenon with the source code to be executed, the
created macro has to be linked to an element.

Doubleclicking the element opens the property dialog of the element.
On the property page Events the macro is linked to the element.

Clicking the element with the left mouse button executed the LeftClickDown event of the element and
the linked macro.

46

Inserting existing macros

In order to insert existing macros into another project do the following:

1.
2.

In the VBA Editor export all needed forms and modules and import them in the other project.

Event dependent macros, in ModulElement .bas, are not displayed in the macro browser at
the moment. So this macros have to be created in the macro browser.

The easiest way is to use the name of the existing macro.

e.g.:
LeftClickUp_ DateSet2
LeftClickUp_ DateSet4
LeftClickUp_ TimeSet
Draw_ Date2

Draw_ Date4

Draw_ Time

On creating the macros zenon generates procedures with the same name as the existing macros.
You have to delete these generated procedures.

Connect the macros as usual with a dynamic element.

4.3.6 How to insert an ActiveX element in zenon?

An ActiveX element is drawn into the screen like any other dynamic element; a dialog opens, where you
musz select an ActiveX element.

Configuration @
ActiveX

ActiveX elements

Controls CLSID i
(oomaorn.

ArgsEditCtrl Class {BSEATA17-28...
AudioMotes Class {391F459FE-AC...
BPCompEditor Contral {05677125-71B...
BPResultViewer Control {BETFE3013-5D...
BRScriptViewer Control {44 7D5AIDE. .. -

Variable assignment

Variable...] [Down] [Up

47

» After you have selected the element from the list, you can links variables to it. For this click the
button Variable and select a variable or create a new one.

» Inthe next step we give the ActiveX element an object name, so that we can access it in VBA.

» In our example we give it the object name Slide6_DW18, because it is an AcziveX element Slider
linked to the variable Doubleword18.

» Now the Slider element has to be activated and edited in the VBA Editor.

» For this we create a new macro as described in chapter "How to use VBA macros? (on page 46)".

The macro Init_Slider passes the element to be initialized to a sub program in the control system object
thisProject, whereby the allocation to the current project is defined.

Public SubInit Slider (obElem AsElement)
thisProject . Init Slider obElem
End Sub

Just like in the macro Init_Slider also Draw_SliderValue passes the element to the control system object
thisProject.

Public Sub Draw SliderValue (obElem As Element, ByVal hdc As OLE _ HANDLE)
thisProject.Draw Slider obElem

obElem.Draw hdc

End Sub

The code below is added in the control system object this Project.

Public Declarations

Public WithEvents obSlider As Slider
Public obSliderPV As Variable

Public Sub Init Slider (obElem As Element)
Set obSlider = obElem.ActiveX

'ActiveX exists

If obSlider Is Nothing Then

Exit Sub

End If

Set obSliderPV = obElem . ItemVariable (0)
'variable exists

If obSliderPV Is Nothing Then
Exit Sub

End If

obSlider.Max = obSliderPV.RangeMax
obSlider.Min = obSliderPV.RangeMin
obSlider.TickFrequency = 1000
obSlider.LargeChange = 25
obSlider.SmallChange = 1
obSlider.Value = obSliderPV.Value

End Sub

48

Public Sub Draw _ Slider (obElem As Element)

Dim vVar As Variant

Dim obDynPic As DynPicture

Set obSliderPV = obElem.ItemVariable (O

Set obDynPic = thisProject.DynPictures.
'variable exists

If obSliderPV Is Nothing Then

Exit Sub

End If

)
Item (BILD 1)

4.3.7 Access from an external program

In order to access zenon data from an external program such as e.g. Visual Basic the COM interface is
used. This COM interface is also used by VBA. So there are only a few small differences, that should be

cared of.

Visual Basic 6

In order to be able to access the COM interface it has to be implemented:

References - SET_GET . vbp

Available References: o

[Wisual Basic For Applications 3 Cancel
!__'7_} Wisual Basic runtime objects and procedures

Browse,.,
[EE-cnon R Chiekbhiblinthel:
[l Active DS 115 Mamespace Provider ll
[[] Active DS Type Library

[] Active Setup Control Library Pricity
[ActiveEx bype library

[] ActiveMavie control bype library il
[l Activey Conference Cantral

[[] Activer DLL to perform Migration of MS Repositary ¥

[]Agent 1.0 Type Library

i_|IAPE Database Setup Wizard | _|LI
4 »

—zenon-RT Objektbibliothek

gl

Help

Location: CilzenOnizenons10_Ohzenrt32.th
Language: Standard

With this type library you can access the application object of zenon (the Runtime).

As here there is no thisProject object, it has to be created to get access to the data.

Dim obProject As zenon.Project

Set obProject = zenon.Application.Projects.Item (PROJEKTNAME)

If the VB project should work with all zenon projects - should be project name independent - it can be

defined in the following way:

Set obProject = zenon.Application.Projects.Item(0)

49

After the project object (thisProject) has been created, e.g. the variables can be accessed for reading
and writing.

Read:

Value = obProject.Variables.Item(Variablenname) .Value

Write:

obProject.Variables.Item(Variablenname) .Value = Value

4.3.8 Functionality of online variables

You can imagine a VBA OnlineVariable as a container; this container contains control system variables,
which have to be added. If the value of one of the variables of the container changes, this is indicated
with an event.

Functionality of the event:

If the container is activated (Container.Define), all variables in the container are forced once, so that
the current value of the variables are known. So the procedure Container_VariableChange is executed
for each variable in the container. As soon as all variables then have been initialized, this event always
occurs, if one of the variables of the container changes its value.

So it is avoided, that a value is read, which is not the current value of the variable.

Define and create container

Definition:

Public WithEvents Container As OnlineVariable
With this line of code the container is defined.

Creating:

Set Container = thisProject . OnlineVariables . CreateOnlineVariables (Container name)

Put variables in the container

Container . Add Variablennamel
Container . Add Variablenname?2
Container . Add Variablenname3

Container . Add Variablenname4

Repeat this line, until all needed variables are added to the container.

50

Create event

Private Sub Container VariableChange (ByVal obVar As zenon.IVariable)

End Sub

This event is automatically created, when the container is selected in the left combobox at the top of
the VBA Editor. The procedure above then is added to the source code. With obvar the variable with the
changed value is passed on. When this event occurs, e.g. the current value of the variable
(ob-var.value) can be read. Refer to the object hierarchy in the VBA documentation to see the
properties and values of variables, which can be used.

Activate event
Container.Define

This command line activates the monitoring of the variables in the container. After executing the
command Define, the container is active.

Switching off the event

Container.Undefine

With this command the surveillance in the container is switched off. The event (VariableChange) is no
longer carried out.

Remove on closing

In order not to leave anything in the memory on closing the Runtime, the container has to be removed
at the latest on closing the Runtime.

thisProject . OnlineVariables . DeleteOnlineVariables (Container name)

Not before the container is deleted can another container with the same name be created.

51

4.3.9 List of status bits

Bit number Short term Long name zenon Logic label

0 M1 User status 1; for Command _VSB_ST_M1
Processing: Action type "Block";
Service Tracking
(Main.chm::/IEC850.chm::/117281.
htm) of the IEC 850 driver

1 M2 User status 2 _VSB_ST_M2
2 M3 User status 3 _VSB_ST_M3
M4 User status 4 _VSB_ST_M4
4 M5 User status 5 _VSB_ST_M5
5 M6 User status 6 _VSB_ST_M6
6 M7 User status 7 _VSB_ST_M7
7 M8 User status 8 _VSB_ST_MS8
8 NET_SEL Select in the network _VSB_SELEC
9 REVISION Revision _VSB_REV
10 PROGRESS In operation _VSB_DIREC
11 TIMEOUT Command "Timeout exceeded" _VSB_RTE
(command runtime exceeded)
12 MAN_VAL Manual value _VSB_MVALUE
13 M14 User status 14 _VSB_ST_14
14 M15 User status 15 _VSB_ST_15
15 M16 User status 16 _VSB_ST_16
16 Gl General query _VSB_GR
17 SPONT Spontaneous _VSB_SPONT
18 INVALID Invalid _VSB_|_BIT
19 T STD_E External standard time (standard _VSB_SUWI
time)

Caution: up to version 7.50, this
was the status bit T_CHG_A

20 OFF Switched off _VSB_N_UPD
21 T_EXTERN Real time - external time stamp _VSB_RT_E
22 T_INTERN Internal time stamp _VSB_RT_I
23 N_SORTAB Not sortable _VSB_NSORT
24 FM_TR Error message transformer value _VSB_DM_TR

52

main.chm::/IEC850.chm::/117281.htm
main.chm::/IEC850.chm::/117281.htm

25

26
27
28

29
30

31

32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

RM_TR

INFO
ALT_VAL
RES28

N_UPDATE
T_STD

RES31

COTO
coT1
coT2
COT3
COT4
coTs
N_CONF

TEST
WR_ACK
WR_SUC
NORM
N_NORM
BL_870
SB_870
NT_870
OV_870
SE_870
T_INVAL
CB_TRIP
CB_TR_|
OR_DRV

T_UNSYNC

Working message transformer
value

Information for the variable
Alternate value

Reserved for internal use (alarm
flashing)

Not updated (zenon network)
Internal standard time

Reserved for internal use (alarm
flashing)

Cause of transmission bit 1
Cause of transmission bit 2
Cause of transmission bit 3
Cause of transmission bit 4
Cause of transmission bit 5

Cause of transmission bit 6

Negative confirmation of command

by device (IEC 60870 [P/N])

Test bit (IEC870 [T])

Writing acknowledged

Writing successful

Normal status

Deviation normal status

IEC 60870 Status: blocked

IEC 60870 Status: substituted
IEC 60870 Status: not topical
IEC 60870 Status: overflow

IEC 60870 Status: select
External time stamp invalid
Breaker tripping detected

Breaker tripping detection inactive

Value out of the valid range (IEC
61850)

ClockNotSynchronized (IEC 61850)

_VSB_RM_TR

_VSB_INFO
_VSB_AVALUE
_VSB_RES28

_VSB_ACTUAL
_VSB_WINTER

_VSB_RES31

_VSB_TCBO
_VSB_TCB1
_VSB_TCB2
_VSB_TCB3
_VSB_TCB4
_VSB_TCB5
_VSB_PN_BIT

_VSB_T BIT
_VSB_WR_ACK
_VSB_WR_SUC
_VSB_NORM
_VSB_ABNORM
_VSB_BL_BIT
_VSB_SP_BIT
_VSB_NT_BIT
_VSB_OV_BIT
_VSB_SE_BIT
not defined
not defined
not defined

not defined

not defined

53

54 PR_NR Not recorded in the Process not defined

Recorder
55 RES55 reserved not defined
56 RES56 reserved not defined
57 RES57 reserved not defined
58 RES58 reserved not defined
59 RES59 reserved not defined
60 RES60 reserved not defined
61 RES61 reserved not defined
62 RES62 reserved not defined
63 RES63 reserved not defined

¥ Information

In formulas all status bits are available. For other use the availability can be limited.

You can read details on status processing in the Status processing chapter.

4.3.10 Lasso for selecting dynamic elements in the Runtime

Dynamic elements which are linked with a variable or function can be pre-selected with the lasso in the
Runtime and can be used for events.

With method SelElements the user can identify selected dynamic elements as selected in the Runtime.
These DynPicture.SelElements can then by used for events sich as drag&drop.

SELECTION VIA LASSO

To select elements with the lasso in the Runtime, you must:
» activate property Runtime lasso in the project settings
» activate property Runtime/selectable with lasso in the property of the dynamic element

» property Move Frame via mouse must be activated

There are several methods for selecting elements available in Runtime, depending on the settings for
touch operation:

» Touch operation deactivated or Windows 7 (Recognition property deactivated or Windows 7):

e Left mouse click + movement: New selection is created.

54

e Left mouse click + Ctrl key + movement: Selection is expanded.
» Native Windows 8 touch operation active (Recognition property on Windows 8):
e Left mouse click + movement: Screen is moved
. Left mouse click + Ctrl key + movement: Screen is moved.
e Left mouse click + Shift key + movement: New selection is created.

e Left mouse click + Ctrl key + Shift key + movement: Selection is expanded.

Rules:
» Only elements that are visible can be selected.
» If a buttonis selected and it is clicked on, the respective function is executed.

» If a button is clicked on with a mouse button and the mouse is moved before the mouse button
is released, the respective function is not executed.

» Cancel selection: Spanning a lasso which does not contain elements.

4.4 Macros in the Editor

Macros can be carried out with the help of a configurable Toolbar (on page 56) in the Editor. For this
macros are linked (on page 57) with buttons in toolbar VBA.

In addition macros can be run manually using the VBA Editor.

With the help of Wizards repeating engineering tasks can be run or whole projects can be created with
the click on a button. As examples a few wizards are already included in the shipped version of zenon.
These wizards can be enhanced and completed at will. They help when creating a project, at the import
and export, at creating variables and so on. You can find details in chapter Wizards.

EDITOR EVENTS
Editor events are part of the VBA workspace and make it possible to react to Events in the workspace
programming, e.g. for wizards or Remote Transport. For example:

» OnElementCreated

» OnElementDeleted

» OnElementDoubleClicked

» OnObjectCreated

>

All Events and information about them can be found in the help in chapter Object Model.

55

4.4.1 Tool bar macro list

Macros that were created with VBA can be administrated via toolbar-item Macro list.

%C{ -

Symbol

(from left to right)

Reload list of VBA/VSTA macros

Search Macro

Drop-down list Macros
Execute selected macro
execute allocated macro #<x>

Allocate macros

VBA
VSTA
ALL
AZ
ZA

Options for symbol bar

¥ Information

Q& vea vera | aL | Bl 21

Function

Loads all Public Sub Name () macros that are included in
myWorkspace and in modules to the drop-down list of the
toolbar.

Search for macros via combobox input field or selection from
drop-down list. The drop-down list is adjusted to the widest
element when opened.

Contains all loaded macros for selection.
Executes the macro selected in the drop-down list.
Executes the macro allocated with the symbol.

Opens the allocation dialog for macros. Up to 5 macros can be
allocated with the symbols 1 to 5.

Filters for VBA-macros. Only VBA-macros are displayed.
Filters for VSTA-macros. Only VSTA-macros are displayed.
Cancels the current filter and all macros are displayed.
Sorts macros in ascending order from0-9 and A - Z.
Sorts macros in descending order from Z- A and 9 - 0.
Clicking on the arrow opens the submenu:

Active: Toolbar is displayed.

If the toolbar is not displayed, it can be activated using the Options
-> Toolbar menu.

Note: For free placed toolbar (undocked from the Editor) options
are not displayed. The toolbar can be closed by clicking on button X.

If the macro assignment dialog does not list all macros from myworkspace, execute
the function Reload list of VBA macros in the toolbar.

56

Macro list

Zzenon

4.4.2 Linking macros

Macros can be called via a button in the toolbar. A maximum of five macros can be linked this way. Via
button Assign macros the dialog for assigning macros is opened.

Link macros
Macro #1
ShowWizard_Language E
Macro #2
ShowWizard_Docu B
Macro #3
ActivateStartupScreen B
Macro #4
Macro #5
[ook J[concel J[rep |
Macro # Macro number matches the number of the button in the
toolbar.
A click on button ... opens the dialog for selecting the
macro.
OK Creates links to the buttons and closes the dialog.
Cancel Discards all changes and closes the dialog.
Help Opens online help.
(Macro selection |
Existing macros

ActivateStartupScreen
CheckvBAReferences
Show\Wizard_Docu

Show\Wizard _Language

Macro list

Zzenon

Existing selection List of macros which can be linked.

No selection Deletes existing assignment for the button.
OK Assigns the selected macro to the button.
Cancel Discards all changes and closes the dialog.
Help Opens online help.

4.5 Functions in zenon

In dialog Function selection you can find the following functions under element VBA.

Open PCE editor Opens the editor of the optional module Process
Control Engine (PCE).

Open VBA Editor Opens the VBA editor

Execute VBA Macro Executes a selected VBA macro.

Attention: The VBA Event project inactive is
carried out by script AuTo_END_xxx. Therefore
zenon function Execute VBA macro is no longer
executed in scripts as VBA is not running at this
time.

Show VBA macro dialog Opens the VBA macro dialog.

45.1 Execute VBA macro

If you select function Execute VBA macro, the following dialog is displayed.

Macro browser @
Macro
Macro selection
Cancel
Help
Parameter
MNew
Delete
Up
Down

These settings are available.

Parameters Description

Macro selection Opens the dialog for selecting the macros (see also Macro selection (on page 60))

Hint: Only lists VBA macros that match the number of parameters defined at the

function Parameter (below).

Parameters Enter the desired value (string) for a parameter.

New Click on this button in order to apply the value at parameter in the list of available
parameter.

Delete Click on this button in order to delete the selected entry from the list of available

parameter. You can always only delete one entry at a time.

Up Click on this button in order to move the selected entry up one place. In the
parameter order the entry is moved one place to the front.

Down Click on this button in order to move the selected entry down one place. In the

parameter order the entry is moved one place to the back.

It is possible to add strings to macros which were created with parameters. These strings are transferred

in the Runtime as individual parameters when the macro is carried out.

Y Information

You must make sure that the number of parameters of the linked macro matches the

number of the created parameters.

59

Macro selection

After clicking button ..., the following dialog is displayed.

Macros @
Macro Scope
thizFraject
Ok
Edit
P [elete
= Cancel
["] Mo Break on Emors

Select the desired macro from the available macros and then click OK.

4.6

Developing wizard in VBA

Since version 6 it is possible to automate engineering projects with wizards. So frequently recurring
tasks can be sourced out to a wizard which executes the desired actions, e.g. creating a project, creating
frames and screens in a pre-defined standard.

Another field of application for wizards are automated changes in existing projects, e.g. changing
properties of dynamic elements in all screens of an existing project.

The basis for the wizards is Microsoft Visual Basic for Applications (VBA) and the object model of zenon.

At the moment the following wizards are available:

>

>

>

>

>

Project Wizard

Import Wizard

World View Wizard

Find VBA-Text Wizard

Wizard for keyword creation
Wizard for keyword translation

Wizard for creating variables

The wizards are available as VBA source code files on the installation medium. New wizards can be
implemented with the VBA environment.

60

4.6.1 Using a wizard

The menu entry Editor Wizards in the menu Tools opens the wizard selection. In this dialog, all available
wizards are shown according to their category.

If wizards do not contain a category, a Not linked entry is created automatically. In this category all not
linked wizards are displayed.

New &J
Wizards:

r

OK
Available wizards e
N, Wizards
- Language table
- Pictures & Templates
=13 Project

-~ Documentation-Wizard
Wl rroject-Wizard
/XML Import Wizard
-2 Variables
-0 VBA

Description

‘Wizard for creation of a project
> NOT FOR MULTIUSER-PROJECTS < (v.12)

By selecting a wizard and pressing the button OK the selected wizard is executed.

Y Information

Wizards do not support multi-user projects.

4.6.2 Structure of a wizard

A wizard is a UserForm stored in the application specific node of the application. Usually the UserForm
consists of a multi-page element displaying the single steps of the wizard.

With a button Next the next page of the multi-page element is displayed. All entries have to be stored
temporarily - the creation of objects, e.g. frames, screens, ... has to be done with Finishing the wizards.

61

¥ Information

UserForms to be used as wizards have to contain some public methods, which provide
the control system with information about the wizard. If this routines are missing in a
UserForm, it is not treated as a wizard.

4.6.3 Integration in VBA

The wizards are stored in the application specific node ZWorkspace. This object represents the currently
loaded workspace in the Editor and is only available in the zenon Editor.

All objects in this VBA project can access the current workspace with teh object MyWorkspace. It is
always linked to the currently active project, which can be accessed with the property ActiveDocument.

The contents of the object ZWorkspace are stored in the file ZenWorkspace . vba. Itis copied to the
installation directory with the first installation of version 6. This file is not overwritten by later updates.
You will find more information on updating wizards at the end of this tutorial.

4.6.4 Developing a wizard

This tutorial develops a wizard creating variables for a defined driver.

Start the VBA environment from the zenon Editor and change to folder ZWorkspace/Forms. This file
contains the basics for developing a wizard. Change the name of the UserForm.

If the folder mentioned above is not available, you can import it via Import the Import file command.

¥ Information

For developing a wizard knowledge about the object model of zenon and VBA are
required. These topics are not part of this tutorial.

62

Macro list

Zzenon

\ Wizard

Welcome Select the driver and enter the variable name
Please choose from the combo-box the driver for which the veriables should be created and enter
Driver aname for the vanables. The names of the variables will be enhanced by an incrementing number
g Please select & driver
| Inteme Vaniablen ~

Please enter the name for the veriables:
| Testvar

Click the right arrow to continue

T T | e

Variable creation wizard -

 Wizard

Welcome Configure variables
Please chooss the variabla type, the data type, the starting offset, amount 2nd the increment vadth
| Driver for the vanables to be created
Variable Select a data type
[B
Selact a varieble type:
I Intemal variable :]

Pleass enter the start offset, the amount and the step width

Starting offser 7
Amournt 1
Increment 1

Clck frish to create the variatles with the cptions you configured, Dependng on the
amaount of varaies, this may take some gme.

| « Elnish Cancel

Create the surface displayed above. Then switch to the code module of the UserForm and scroll to the
end of the file. There you will find the following methods.

» Public Function GetWizardName () As String

Returns the unique name of the wizard. Change the contents to Wizard for creating
variables

» DPublic Function GetWizardInfo () As String

Returns a short description displayed in the wizard selection. Change the contents to Wizard
for creating variables to a selected driver

» DPublic Function GetWizardCategory () As String

Returns the category of the wizard. In the wizard selection the wizards are displayed in a tree
structure of the categories. Change the contents to variables.

» Public Function IsZenOnWizard () As Boolean

Displaying the wizard in the wizard selection. If this method returns False, the wizard is not
displayed, e.g. because it is not yet finished. Change the return type to True.

64

These methods provide the information about the wizard, which is requested by the control system.
Keep in mind that the wizard is only displayed in the wizard selection if the method IsZenOnWizard
returns True.

Switch to the event Initialize of the UserForm and change the contents of the string array m_strCaption.
As oru wizard only consits of two steps, you can delete the other allocations.

Add the following definitions to the top area of the code module:

Private m obDriver As Driver
Private m obVarType As VarType

Private m nChannelType As Integer

Create a method for initializing the driver combobox. The task of this routine is to display all the loaded
drivers of the current project in a combobox.

cbDriver.Clear
Dim nIndex As Long
For nIndex = 0 To MyWorkspace.ActiveDocument.Drivers.Count - 1
Dim obDriver As Driver
Set obDriver = MyWorkspace.ActiveDocument.Drivers.Item(nIndex)
If (Not obDriver Is Nothing) Then
cbDriver.AddItem
obDriver.Name
End If
Next nIndex
If (cbDriver.ListCount > 0) Then
cbDriver.ListIndex = 0
End If

Additionally we need a routine displaying all defined variable types of the project in a combobox.

If (Not m obDriver Is Nothing) Then
cbvVarType.Clear
Dim nIndex As Long , nSelect As Integer
For nIndex = 0 To MyWorkspace.ActiveDocument.VarTypes.Count - 1
Dim obVarType As VarType
Set obVarType = MyWorkspace.ActiveDocument.VarTypes.Item(nIndex)
If (Not obVarType Is Nothing And obVarType.IsSimple = True) Then
cbVarType.AddItem
obVarType.Name
If (obVarType.Name = INT) Then
nSelect = nIndex
End If

65

End If

Next nIndex
cbVarType.ListIndex = nSelect
End If

On opening the wizard all existing variables are checked to find a free start offset for the the new
variables to be created. This is done with the following method.

Private Function FindHighestOffsetVar () As Long
On Error GoTo Error
Dim nIndex As Long , nOffset As Long

For nIndex = 0 To MyWorkspace.ActiveDocument.Variables.Count - 1

Dim obVar As Variable
Set obVar = MyWorkspace.ActiveDocument.Variables.Item(nIndex)
If (Not obVar Is Nothing) Then
If (obVar.Offset > nOffset) Then
nOffset = obVar.Offset
End If
End If
Next nIndex
FindHighestOffsetVar = nOffset
Exit Function
Error : MsgBox
Error occurs: + Err.Description + Source + Err.Source

End Function

Switch to the event Initialize of the UserForm and add the following lines to this method:
txtStart.Value = CStr (FindHighestOffsetvVar + 1)

InitializeDriver

The allocation to txtStart sets the proposed start offset for the variables to be created. The method
InitializeDriver fills the combobox with the existing drivers.

Create an event Change for the driver combobox and add the following code. After having selected a
driver the variable types are acquired. The selected driver object is stored in the variable m_obDriver for
later use.

Private Sub cbDriver Change ()
cmdNext.Enabled = True
Set m obDriver = MyWorkspace.ActiveDocument.Drivers.Item(cbDriver.Value)
If (Not m obDriver Is Nothing) Then
InitializeVarType
End If
End Sub

66

Create an event Change for the variable type combobox and add the following code. The selected
variable type is stored in the variable m_obVarType for later use.

Private Sub cbVarType Change ()
Set m obVarType = MyWorkspace.ActiveDocument.VarTypes.Item(cbVarType.Value)
End Sub

Now the only thing left is to create the event routine for creating the variables with the defined settings.
This is done with the button Finish.

Private Sub cmdFinish Click()

On Error GoTo Error

If (cbVarType.ListIndex = -1) Then

MsgBox 'Please select a variable type'
cbVarType.SetFocus

Exit Sub

End If

If (txtStart.Value = Or txtCount.Value = Or txtStep.Value =) Then
MsgBox 'Please enter Start-Offset', 'count of creating variables and the step'
txtStart.SetFocus

End If

If (m obVarType Is Nothing) Then

MsgBox 'Variable type + cbVarType.Name + doesnt exist!'
Exit Sub

End If

Dim nPrvMousePtr As Integer

nPrvMousePtr = MousePointer

MousePointer = fmMousePointerHourGlass

DoEvents

Dim strName As String

Dim nIndex As Long , nVarIndex As Integer

Dim nStartOff As Long , nStep As Integer

nVarIndex = 1

nStartOff = CLng (txtStart.Value)

nStep = CLng (txtStep.Value)

For nIndex = 0 To CLng (txtCount.Value - 1)

Dim obVar As Variable

strName = txtName.Value + + CStr (nIndex + 1)

'*** Guaranteeing uniqueness of the variable name

Dim bResult As Boolean

bResult = False

Do

Set obVar = MyWorkspace.ActiveDocument.Variables.Item(strName)
If (obVar Is Nothing) Then

bResult = True

67

Else

nVarIndex = nVarIndex + 1

strName = txtName.Value + + CStr (nVarIndex)
End If

Loop While

bResult = False

'**% Create variable

Set obVar = MyWorkspace.ActiveDocument.Variables.CreateVar (strName, m obDriver,
tpSPSMerker, m obVarType)

If (Not obVar Is Nothing) Then

obVar.Offset = nStartOff

nStartOff = nStartOff + nStep

End If

Next nIndex

MousePointer = nPrvMousePtr

Unload Me

Exit Sub

Error

MousePointer = nPrvMousePtr

MsgBox Error occurs: + Err.Description + Source + Err.Source
End Sub

On finishing the wizard it is checked, if the defined settings are valid. If this is not the case, a messages is
displayed and the user is demanded to correct the entries.

If the defined settings are valid, the variables are created. The variables are named with a name and an
index. If a variables with the same name already exists in the project, the next free index is acquired. In
our code example always a variable with the channel type PLC marker is created. With each cycle the
offset of the variable is increased.

4.6.5 Updating wizards

To update the wizards:
1. Inthe Extras menu, select the Update Editor Add-Ins entry.
A dialog for updating available wizards is opened
2. Select the desired wizards

3. Start the update by clicking Start update

If a wizard or a class already exists in the workspace, a warning is displayed.

68

A Attention

Already existing wizards are overwritten during the update. Individual changes made at
the wizard are lost.

4.7 Frequently asked questions

In this chapter a few frequently asked questions are answered. You can find additional solutions online
in the COPA-DATA User forum (http://www.copadata.com/forums/).

4.7.1 Why does the button stay pressed?

If a button is linked e.g. to a LeftClickUp event, in the end of the precedure the LeftClickUp has to be
executed.

Public Sub LeftClickUp Schalter (obElem As Element)
frmSchalter.Show

obElem.LeftClickUp
End Sub

4.7.2 Macro is not performed with the first click

The solution matches the one from the question: Why does the button stay pressed (on page 69):

If a button is linked e.g. to a LeftClickUp event, in the end of the precedure the LeftClickUp has to be
executed.

Public Sub LeftClickUp Schalter (obElem As Element)
frmSchalter.Show

obElem.LeftClickUp
End Sub
4.7.3 Macros no longer work in the Runtime?

This effect can occur, if the VBA Editor is opened in the Runtime and then Stop/Start is pressed to
stop/start VBA. In this case the objects (OnlineVariables, ScreenObjects, ...) become invalid, because
they lose the link in case of a new initialization.

69

http://www.copadata.com/forums/

4.7.4 Windows CE and VBA

In the Editor VBA can be used for wizards. It cannot be used in the Runtime. For detailed information
about the Editor refer to chapter How to create projects in CE.

4.8 Examples

Here you can find a few examples for VBA

4.8.1 MouseEvents and ActiveX Control initialization

Option Explicit

Public Sub Init ActiveX(obElem As Element)
'Initializing ActiveX...
thisProject.Init MSChart AX obElem

End Sub

Public Sub LeftClickUp_Samplel (obElem As Element)
'Initializing Userform...
frmSamplel.InitForm obElem
'Show Userform
frmSamplel.Show
End Sub

Public Sub LeftClickUp_Sample2 (obElem As Element)
'Initializing Userform...
frmSample2.InitForm obElem
'Show Userform
frmSample2.Show
End Sub

Public Sub LeftClickUp_ Sample3 (obElem As Element)

'Initializing Userform...

70

frmSample3.InitForm obElem
'Show Userform
frmSample3.Show

End Sub

Public Sub LeftClickUp_ Sample4 (obElem As Element)
Dim NewForm As New frmSampled
'Initializing NEW Userform...
NewForm.InitForm obElem
'Show NEW Userform
NewForm.Show (0)

End Sub

4.8.2 Display variable information

Show variable name for clicked element:

Variable Name:

Option Explicit

Dim obVar As Variable

'User defined Public Procedure for initializing Objects

Public Sub InitForm(obElem As Element)
'set the variable object like the linked variable of the element
Set obVar = obElem.ItemVariable (0)
'write variable name into the textbox
txtVarName.Text = obVar.Name

End Sub

Private Sub cmdExit Click()
'close Userform
Unload Me

End Sub

71

4.8.3 Read and write variable values

Read value from variable and write it back:

Read - Write Variable

Variable Name:

Option Explicit

Dim obVar As Variable

'User defined Public Procedure for initializing Objects

Public Sub InitForm(obElem As Element)
'set the variable object like the linked variable of the element
Set obVar = obElem.ItemVariable (0)
'write variable name into the textbox
txtVarName.Text = obVar.Name

End Sub

Private Sub cmdExit Click()
'close Userform
Unload Me

End Sub

Private Sub cmdRead Click()
'read value from variable and write into textbox
txtValue.Text = obVar.Value

End Sub

Private Sub cmdWrite_Click()
'write text as value to variable
obVar.Value = txtValue.Text
'or changing text to value before writing...
'obVar.Value = Val (txtValue.Text)

End Sub

72

4.8.4 Read and write variables and implement online variables

Read variable information, write values and implement online variables:

Read - Write Variable (+ OnlineVariable)

Variable Name: ...

Option Explicit

Dim obVar As Variable

Dim WithEvents zOnlineVariable As OnlineVariable

'User defined Public Procedure for initializing Objects

Public Sub InitForm(obElem As Element)
'set the variable object like the linked variable of the element
Set obVar = obElem.ItemVariable (0)
'write variable name into the textbox
txtVarName.Text = obVar.Name

'create an OnlineVariable container

Set zOnlineVariable = thisProject.OnlineVariables.CreateOnlineVariables ("OLV")

'add variables to the container (by name of the variable)
zOnlineVariable.Add obVar.Name

End Sub

Private Sub cmdExit Click()
'close Userform
Unload Me

End Sub

Private Sub cmdRead Click()

'read value from variable and write into textbox
txtValue.Text = obVar.Value

End Sub

Private Sub cmdWrite Click()

73

'write text as value to variable
obVar.Value = txtValue.Text
'or changing text to value before writing...
'obVar.Value = Val (txtValue.Text)

End Sub

Private Sub cmdOLV_Start Click()
'start the OnlineVariable - Define
'the VariableChange Event will be executed
zOnlineVariable.Define

End Sub

Private Sub cmdOLV_Stop_ Click()
'stop the OnlineVariable - UnDefine
'the VariableChange Event will be stopped
zOnlineVariable.Undefine

End Sub

Private Sub zOnlineVariable VariableChange (ByVal obVar As IVariable)
'write actual value into textbox
txtOLV.Text = obVar.Value

End Sub

Private Sub UserForm Terminate ()
'the VariableChange Event will be stopped if running
zOnlineVariable.Undefine
'delete OnlineVariable container
thisProject.OnlineVariables.DeleteOnlineVariables ("OLV")

End Sub

74

4.8.5 Use dialog multiple times

Userforms can be used multiple times.

TS OO VLT O VUL OOV SE ORI OO OTUUUOTTLOTOPELUOTOROTOPOPOPTPRO
Read - Write Variable (+ OnlineVariable) X

Variable Name: ...

Option Explicit
Dim obVar As Variable
Dim WithEvents zOnlineVariable As OnlineVariable

Dim strOLVName As String

Public Sub InitForm(obElem As Element)
'set the variable object like the linked variable of the element
Set obVar = obElem.ItemVariable (0)
'write variable name into the textbox
txtVarName.Text = obVar.Name
'create name for Online Container
strOLVName = "OLV_" & obElem.Name
'get existing online container
Set zOnlineVariable = thisProject.OnlineVariables.Item(strOLVName)
'check if online container exists
If zOnlineVariable Is Nothing Then
'create an OnlineVariable container

Set zOnlineVariable =

thisProject.OnlineVariables.CreateOnlineVariables (strOLVName)
'add variables to the container (by name of the variable)
zOnlineVariable.Add obVar.Name
End If
End Sub

Private Sub cmdExit Click()
Unload Me 'close Userform

End Sub

Private Sub cmdRead Click()

75

'read value from variable and write into textbox
txtValue.Text = obVar.Value

End Sub

Private Sub cmdWrite Click()
'write text as value to variable
obVar.Value = txtValue.Text
'or changing text to value before writing...
'obVar.Value = Val (txtValue.Text)

End Sub

Private Sub cmdOLV_Start Click()
'the VariableChange Event will be executed
zOnlineVariable.Define

End Sub

Private Sub cmdOLV_Stop Click()
'the VariableChange Event will be stopped
zOnlineVariable.Undefine

End Sub

Private Sub zOnlineVariable VariableChange (ByVal obVar As IVariable)
'write actual value into textbox
txtOLV.Text = obVar.Value

End Sub

Private Sub UserForm Terminate ()
'the VariableChange Event will be stopped if running
zOnlineVariable.Undefine
'delete OnlineVariable container
thisProject.OnlineVariables.DeleteOnlineVariables (strOLVName)

End Sub

4.8.6 Alarm — Events and ActiveX Control handling

Option Explicit

Dim WithEvents obChart As MSChart
Dim WithEvents zOLV As OnlineVariable

Dim WithEvents zAlarm As Alarm
'procedure is executed on startup of the zenon Runtime

Private Sub Project Active()
'init the alarm object for events
Set zAlarm = thisProject.Alarm
End Sub

'procedure is executed when an Alarm comes

Private Sub zAlarm AlarmComes (ByVal obItem As IAlarmItem)
Dim strInfo As String
'write specific information about the alarm into a StringVariable
strInfo = obItem.Text & " - " & obItem.Name
thisProject.Variables.Item("Var Comes") .Value = strInfo

End Sub

'procedure is executed when an Alarm has gone

Private Sub zAlarm AlarmGoes (ByVal obItem As IAlarmItem)
Dim strInfo As String
'write specific information about the alarm into a StringVariable
strInfo = obItem.Text & " - " & obItem.Name
thisProject.Variables.Item("Var Goes") .Value = strInfo

End Sub

'procedure is executed when an Alarm was acknowledged by a user
Private Sub zAlarm AlarmAcknowledged (ByVal obItem As IAlarmItem)
Dim strInfo As String
'write specific information about the alarm into a StringVariable
strInfo = obItem.Text & " - " & obItem.Name
thisProject.Variables.Item("Var Acknowledged") .Value = strInfo
End Sub

77

'procedure is executed on terminating the zenon Runtime
Private Sub Project Inactive()

'free the alarm object

Set zAlarm = Nothing

'delete OnlineVariable for Chart actualization...

thisProject.OnlineVariables.DeleteOnlineVariables "CHART"
End Sub

'procedure for MSChart ActiveX initialization...
Public Sub Init MSChart AX(YourAX As Element)
Set obChart = YourAX.AktiveX
obChart.RowCount = 3
obChart.ColumnCount = 1
Set zOLV = thisProject.OnlineVariables.Item("CHART")
'does existing OnlineVariable exist?
If zOLV Is Nothing Then
'if not, create it...
Set zOLV = thisProject.OnlineVariables.CreateOnlineVariables ("CHART")
zOLV.Add "Internal UINT 001"
zOLV.Add "Internal UINT 002"
zOLV.Add "Internal UINT 003"
End If
zOLV.Undefine 'if not stopped, refreshing not possible
'START watching variables...
zOLV.Define
End Sub

'event on Variable change - refresh chart...
Private Sub zOLV_VariableChange (ByVal obVar As IVariable)
'setting values to display in chart control
Select Case obVar.Name
Case "Internal UINT 001"
obChart.Row = 1
obChart.RowLabel = "Varl"
obChart.Data = obVar.Value
Case "Internal UINT 002"
obChart.Row = 2
obChart.RowLabel = "Var2"

obChart.Data = obVar.Value

78

Macro list

Zzenon

Case "Internal UINT 003"
obChart.Row = 3
obChart.RowLabel = "Var3"
obChart.Data = obVar.Value

End Select
End Sub

'event of the Chart AX...
Private Sub obChart DblClick()

MsgBox "You have DoubleClicked the ActiveX!"
End Sub

4.8.7 Access to alarms

>
2
El

SIMUL Bit lame Timacomes
TAG-Nr Tireoos
YBADEMO rojectnan T

1078067200 Timereactivated

DESCRIPTION:

In the form frmAlarm an alarm from the memory can be selected in a combobox. After the selection all
data of the alalm are written to the textboxes below (group, class, variable, ...).

We use an event independent macro to display frmAlarm, because we do not link it to an element.

Sub Alarm ()
frmAlarm.Show
End Sub

'The macro is executed with the function Execute macro.

'On opening the form it is initialized and so the following procedure is executed. This
procedure cares, that all alarms in the memory are written to the combobox in the form.

Private Sub UserForm _ Initialize ()

'fill combobox with all AlarmItems
Dim i As Integer
Dim obAlarmItems As AlarmItems

Dim obAlarm As Alarm

Set obAlarm = thisProject.Alarm
Set obAlarmItems = obAlarm.AlarmItems (*)

If obAlarmItems.Count = 0 Then
MsgBox (# Alarms = 0)

Exit Sub

End If

For i = 0 To obAlarmItems.Count - 1
cmbAlarmItems.AddItem obAlarmItems.Item (i1). Name
Next 1

txtAktiv.Text = obAlarm.Aktiv
cmbAlarmItems.Text = cmbAlarmItems.List (0)
End Sub

'Wenn nun ein Alarm aus der Combobox ausgewdahlt wird reagiert das Change - Ereigniss der
Combobox.

Private Sub cmbAlarmItems _ Change ()

'put actual properties from AlarmItem in textboxes
Dim obAlarmItems As AlarmlItems
Dim obAlar As Alarm

Set obAlarm = thisProject.Alarm

Set obAlarmItems = obAlarm.AlarmItems (*)

txtComputer.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex) .Computer
txtCountreactivated.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Countreactivated
txtName.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex). Name
txtProjectname.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Projectname
txtStatus.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Status
txtStatusreactivated.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex

) .Statusreactivated

txtTagname.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Tagname
txtTimecomes.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timecomes
txtTimegoes.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timegoes
txtTimequitted.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timequitted

txtTimereactivated.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).Timereactivated

txtUser.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex) .User
txtUsertext.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex) .Usertext
txtValue.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex) .Value

80

tbGroup.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).AlarmGroup
tbClass.Text = obAlarmItems.Item (cmbAlarmItems.ListIndex).AlarmClass
End Sub

4.8.8 Set switch (working with process variables)

tbHand oot tbAuto tbRev

@ Ok |4 Abbrechen ’
1
Hand /
cmdExit

Pumpensymbol
umpRnsImbo cmdOk

In this example we draw a pump consisting of a circle and a triangle. Define the triangle as a symbol. On
top draw a multibinary element and link it to three bit marker variables.

Additionally define, which color the triangle should get, if the values of the variables change.
First we combine the multibinary element with a macro, which opens a form frmSwitch.

In the form frmSwitch we will be able to change the values of the three bit marker variables.

¥ Information

Only one of the three variables may have the value 1. (i.e. if one variable is set to 1, the
other two have to be set to 0)

To be able to use this macro several times in project with different variables, you only may link bit
marker variables ti the multibinary element, which contail in their names, which status of the pump they
control.

for example:
Variable_Auto
Variable_Hand
Variable_Revi

81

¥ Information

The suffixes _Auto, _Hand and _Revi are fixly defined in the source code of the example.

With this five characters suffix of the variable names it is defined, which variable is set to 1 and which is
set to 0 on clicking a toggle button.

In the macro LeftClickUp_Switch a sub program FindVariable is called in the form frmSwitch, which gets
the clicked element obElem.

Public Sub LeftClickUp Schalter (obElem As Element)
frmSchalter.FindVariable obElem

position (pixel to points = (pixel * 0.75))
frmSchalter.Top = obElem.Bottom * 0.75
frmSchalter.Left = obElem.Left * 0.75
frmSchalter.Show

obElem.LeftClickUp

End Sub

Module global variable declaration:

Dim cmdLast As ToggleSchaltfliche
Dim strHand As String
Dim strAuto As String
Dim strRevi As String

In the sub program FindVariable all variables linked to the passed element are checked.

Depending on the suffix (_Auto, _Hand or _Revi) the variable names are assigned to the string variables
declared above.

Additionally the status of the variables is determined and depending on the value (1 or 0) the according
toggle button is pressed or not.

On opening the form frmSwitch the name of the currently pressed toggle button is written to a string
variable. For the case, that the user decides to cancel his action, the original values are reset.

Public Sub FindVariable (obElem As Element)

Dim i As Integer

Dim obVariable As Variable

For i = 0 To obElem . CountVariable - 1
Select Case Right $(obElem . ItemVariable (i). Name , 5)
Case Auto

strAuto = obElem . ItemVariable (i). Name

Case Hand

strHand = obElem . ItemVariable (i). Name

82

Case Revi

strRevi = obElem . ItemVariable (i). Name
End Select

Next i

Set obVariable = thisProject . Variables . Item (strHand)
If obVariable . Value = 1 Then

tbHand . Value = True

Set cmdlLast = tbHand

End If

Set obVariable = thisProject . Variables . Item (strAuto)
If obVariable . Value = 1 Then

tbAuto . Value = True

Set cmdLast = tbAuto

End If

Set obVariable = thisProject . Variables . Item (strRevi)
If obVariable . Value = 1 Then

tbRev . Value = True

Set cmdLast = tbRev

End If

If tbHand . Value = False And tbAuto . Value = False And tbRev . Value = False Then
tbOff . Value = True

Set cmdLast = tbOff

End If

End Sub

The self-created function VarExists only checks, whether the linked variables really exist. If this is not the
case, an error message is displayed. Variable doesn't exist.

Function VarExists ()

Dim obVariable As Variable
Set obVariable = thisProject . Variables . Item (strHand)

If obVariable Is Nothing Then
MsgBox (Variable doesnt extist)
VarExitsts = False

Exit Function

End If

Set obVariable = thisProject . Variables . Item (strAuto)
If obVariable Is Nothing Then

MsgBox (Variable doesnt extist)

VarExitsts = False

Exit Function

83

End If

Set obVariable = thisProject . Variables . Item (strRev)
If obVariable Is Nothing Then

MsgBox (Variable doesnt extist)

VarExitsts = False

Exit Function

End If

VarExists = True

End Function

If the user clicks Cancel, the value change is undone and the original status is reset.

Private Sub cmdExit _ Click ()
cmdLast.Value = True

Unload Me

End Sub

Private Sub cmdOk Click ()
Unload Me
End Sub

If one toggle button is pressed, no other toggle button may be pressed.

Private Sub tbAuto Change ()

If tbAuto . Value = False And tbHand.Value = False And tbRev . Value = False Then
tbOff . Value = True

End Sub

In the click event of every toggle button it is checked, whether it is pressed and whether the variable
exists. If both conditions are true, the values are sent to the linked variables.

5. VSTA

With Visual Studio Tools for Applications (VSTA), the functionality of zenon Runtime and the Editor
can be enhanced independently by means of .NET programming.

¥ Information

Note that in VSTA, only assemblies (DLLs) up to a maximum of .NET framework version
3.5 can be included.

VSTA is also, with a few restrictions, available on the zenon Web Client.

VSTA provides separate development environments for Workspace and project. You can only use one of
them at a time. At the start every other VSTA development environment which is open will be close.

84

To open the VSTA Editor for the workspace:
1. Presstheshortcuta1t+F10.

The code for the workspace and all loaded projects is displayed.
To open the VSTA Editor for the currently loaded project:

1. Navigate to the Programming interfaces node

2. Expand the view of this node by clicking on [+].
The view of the node is expanded.

3. Right-click on VSTA

In the context menu, select Open VSTA editor with ProjectAddin.
The editor is opened for the currently-loaded project.

¥ Information

If VBA macros are changed in the Editor,

» the Runtime files are compiled and transferred to the Runtime

» the Runtime is reloaded

» VSTA elements are also reloaded even if no changes were made in VSTA

5.1 Basics

VSTA is a Microsoft tool set that is based on .NET technology. It is necessary to have basic knowledge of
object-orientated programming, .NET and C#/Visual Basic.NET to understand it.

A Attention

Note in Runtime: Referenced dlls cannot be replaced if they are loaded. Runtime must be
ended in order for a reference file to be updated.

5.1.1 Setting up the VSTA environment

Support for VSTA is already activated as standard in zenon. When deactivating VBA support, the VSTA
environment is also not available any more.

The VSTA environment can be activated or deactivated manually with the following entry in zenon6.ini:

85

VSTA
Zzenon

[VSTA] [VSTA]

ON=1 ON=0

Support for VBA is activated or deactivated as follows:

[VBA] [VBA]

EIN=1 EIN=0

After this, the development environment for VSTA in zenon is available.

Y Information

VSTA allows the development of projects in the programming languages C# and Visual
Basic.NET. C# is envisaged as the standard language for VSTA projects in the Editor. The
language can be changed to Visual Basic.NET with the following entry:

[VSTA]
CSHARP=0

5.1.2 Access to the object model in zenon

The zenon that is also used in VBA can be accessed in VSTA. The object model offers the same
functionality in both development environments.

& Attention

Some changes to the object model have been made due to limitations in naming VSTA
objects. You can find these in the table below

Old property New property

IDriver.Name IDriver.Identification
IDriver.Driver IDriver.Name

Old event New event
IApplication.Close IApplication.OnClose
IZenWorkspace.Startup IZenWorkspace.OnStartup
IZenWorkspace.Exit IZenWorkspace.OnExit

Access is VSTA is enabled via the this object and the replaces the MyWorkspace object in VBA. The
following methods and objects are identical. In the following method, a template with the name
"TemplateName" is created in zenon.

public void Macrol ()
{

this.ActiveDocument.Templates () .Create ("TemplateName", true);

¥ Information

In contrast to VBA, capitalization and brackets after function names are important in
VSTA.

To access the methods in zenon, the project must be saved and compiled using via the following steps:
1. Click on File -> Save MyWorkspace.cs to save the project.

2. Click on File -> Build WorkspaceAddin to compile the project.

After this, the method is available as a macro in the VBA macro toolbar in the zenon editor. If the macro

assignment dialog does not list all macros from MyWorkspace, the function 'Reload list of VBA macros'
has to be executed from the toolbar.

Y Information

VSTA macros with parameters, e.g. Public void MacroWithParam(string
mString), are not supported and also not made available in the macro toolbar.

87

513 Functions in zenon

For VSTA, functions were created in zenon. These are in the VSTA node.

Select a function

Functions selection

5.7 Favorites

= Batch Control
i Historian
Message Control

VSTA

£} Display VSTA macro dialog
Q Execute VSTA macro

; £ Open VSTA editor

: -9 Windows

Quick help

VSTA

This group contains functions for the handling of VSTA
macros.

Mare in the online help.

Cance

Help

At the same time as existing VBA functions, similar functions were implemented for VSTA:

Function name

Open VSTA editor

Execute VSTA macro

Show VSTA macro dialog

Description

opens the VSTA editor in Runtime

A VSTA macro can be selected in the editor, which is started
when executing the function in Runtime.

Note: VSTA macros with parameters, e.g. Public void
MacroWithParam(string mString), are not supported.
They are neither offered at the engineering in the Editor nor at
the start of the function in the Runtime.

A dialog is shown in Runtime, in which existing VSTA macros
are shown and can be selected and executed

88

Execute VSTA macro

Dialog for configuration of the Execute VSTA macro function.

Macro selection

Existing macros

Mo selection

Parameters Description

Existing macros

List of VSTA macros Lists all existing VSTA macro.
Selection of a macro from the list by clicking on it.

Note: A double click executes the selected macro.

None selected Discards the selection and closes the dialog.
OK Executes selected macro and closes the dialog.
Cancel Discards the selection and closes the dialog.
Help Opens online help.

5.14 Debugging a VSTA add-in

It is possible to debug add-ins you have written yourself with the VSTA Editor. In doing so, note that
project add ins can only be debugged in zenon Runtime and workspace add-ins can only be debugged in
zenon Editor.

A debug session is started via the Debug - Start Debugging menu. You can place breakpoints in the same
way as the VBA editor, by left clicking in the gray breakpoint toolbar at the left margin next to the
respective cell.

89

¥ Information

When debugging Runtime add-ins consider:

The Runtime files changed in zenon must be newly created before debugging.

5.1.5 Events in VSTA

Because an add-in is terminated when compiling amended code, starting a debug session or ending a
debug session, corresponding events were implemented in VSTA. These enable, for example, an object
reference to be evaluated and approved and existing data to be saved.

Two events exist for each termination. The first event is started shortly before termination, the second

after the start of a new add-in session.

Event

OnPreVSTADebugStart

OnVSTADebugStart

OnPreVSTADebugStop

OnVSTADebugStopped

OnPreVSTAUpdate

OnPostVSTAUpdate

Description

Is triggered shortly before a debug session is started.
When starting, an active add-in is removed, references
must be approved and existing data must be saved if
necessary.

Is triggered shortly after a debug session is started.

Is triggered shortly before a debug session is stopped.
When stopping a debug session, an active add-in is
removed, references must be approved and existing data
must be saved if necessary.

Is triggered shortly after a debug session is stopped.

Is triggered before the add-in is removed if a new version
of the add-in was successfully created.

Is triggered when a new version of the add-in is loaded.

5.1.6 Creating a backup of VSTA projects

VSTA projects in Runtime are automatically zipped when creating the Runtime file and included in

workspa ce saves.

90

VSTA projects in the editor must be saved manually however.
You can find the VSTA Editor projects in the folder
C:\ProgramData\COPA-DATA*version*\VSTAWorkspace\.

5.2 Creating a VSTA project

Similar to VBA, there is the possibility in VSTA to create projects (enhancements) for both the Editor and
Runtime. In principle, projects in the editor are implemented in the C# programming language. For
Runtime and Editor, both C# and Visual Basic.NET are available.

¥ Information

Note that in VSTA, only assemblies (DLLs) up to a maximum of .NET framework version
3.5 can be included.

¥ Information

Only one project can be displayed at a time in the VSTA editor. In addition, only one
instance of the VSTA editors can be active. When starting the VSTA editor, any instance
that may already be running is closed.

5.2.1 VSTA projects in the editor

When creating a project for the zenon editor, a VSTA add-in for the workspace is loaded. To edit the
add-in, the VSTA editor must be opened via File - Open VSTA editor.... The user interface of the VSTA
editor is identical to Microsoft's Visual Studio development environment.

Y Information

VSTA editor help can be accessed via the Help / Contents menu. This help gives an
overview of the editor's functions, the features of the .NET framework and programming
in Visual Basic.NET and C#.

The VSTA add-in basically consists of the MyWorkspace class. This class can now be expanded with your
own methods. The class accommodates the following two methods by default:

Function Description

MyWorkspace_Startup Is executed automatically when starting zenon, after a
build has been created and when a debug session is

91

started.

MyWorkspace_Shutdown Is executed automatically when starting zenon, after a
build has been created and when a debug session is
started.

A Attention

The method names may only start with Macro (for example Macrol, MacroVSTA) may
not contain parameters and must be defined as Public . In addition, the class names
and other methods and events created by VSTA may not be changed.

To access the methods in zenon, the project must be saved and compiled using via the following steps:
1. Click on File -> Save MyWorkspace.cs to save the project.

2. Click on File -> Build WorkspaceAddin to compile the project.

After this, the method is available as a macro in the VBA macro toolbar in the zenon editor. If the macro
assignment dialog does not list all macros from MyWorkspace, the function 'Reload list of VBA macros'
has to be executed from the toolbar.

5.2.2 VSTA projects in Runtime

To create a VSTA project for Runtime, the VSTA environment must be started.
Proceed in the following way:

1. Open the node Programming interface in the project manager.
2. Open the VSTA context menu.
3. Click on Open VSTA editor...

Note: A selection dialog is shown when it is opened for the first time. You select the
programming language in this.

A project is created in the desired programming language.

Y Information

The programming language cannot be subsequently changed. This dialog is therefore
only shown when being opened for the first time.

In this project, a class named ThisProject is created by zenon, which accommodates the following
two methods:

92

Function Description

ThisProject_Startup Is executed automatically when Runtime is started

ThisProject_Shutdown Is executed automatically when Runtime is ended

The class can now be expanded with your own methods.

& Attention

The method names may only start with Macro (for example Macrol, MacroVSTA) may
not contain parameters and must be defined as Public . In addition, the class names
and other methods and events created by VSTA may not be changed.

There is access to all Runtime functionalities via the zenon object model. Editor-specific functions
cannot be used, as in VBA.

zenon Runtime is automatically started when the debugger is started. Further information can be found
in the chapter on debugging a VSTA add-in (on page 89).

¥ Information

VSTA editor help can be accessed via the Help / Contents menu. This help gives an
overview of the editor's functions, the features of the .NET framework and programming
in Visual Basic.NET and C#.

5.2.3 Developing wizards in VSTA

The VSTA environment, like VBA (on page 60), offers the possibility to develop your own wizards.

To be able to access a form in the zenon object model, a reference to this must be copied to the form.
To do this, a method is created in the MyWorkspace class. In the following example example, a form is
instanced with the name wizard and the method zZenonInstance with a reference to the zenon
object model is called as a parameter. The wizard form is shown by selecting showbDialog().

public void Macrol ()
{

Forml Wizard = new Forml () ;
Wizard.ZenonInstance (this.Application);

Wizard.ShowDialog() ;

}

A member variable must be created in the form code, which recognizes the zenon object model.

public zenOn.IApplication m Zenon=null;

93

Lastly, the zenonInstance method is created. This methods takes the object model reference and
places it in the m_zenon object.

public void ZenonInstance (zenOn.IApplication app)
{

m_Zenon = app;
}

Now, your own classes and methods can be developed in the form, which make use of the object model.
All methods, objects and attributes are available via the m_zenon object.

5.3 Examples

Here you find some examples of VSTA being used, both in Runtime and in the editor.

5.3.1 Creating variables in the zenon editor

In this example, a text file is opened and the contents of this are used to create variables in the zenon
editor. The text file contains any desired number of lines. Each line includes the name and data type of a
variable; these are separated by a comma (example: Variable1,BOOL).

The Macrol method first looks for the internal driver in the zenon editor. After this, the user is shown a
file selection dialog in which he must select the text file. The method then reads the text file and creates
the variables. The GetbataType method is then required to determine and assign the attendant data
type when creating the variables.

C# code

using System;

using System.Windows.Forms;
using System.IO;

using zenOn;

namespace WorkspaceAddin

{
[System.AddIn.AddIn ("MyWorkspace", Version = "1.0", Publisher = "", Descripti

on = uu)}

public partial class MyWorkspace

{

private void MyWorkspace Startup (object sender, EventArgs e)

{

94

}
private void MyWorkspace Shutdown (object sender, EventArgs e)
{
}
public IVarType GetDataType (string vType)
{
//gets the corresponding vartypes for bool, int, real and strings
IVarType retType;
switch (vType)
{
case "BOOL":
retType = this.ActiveDocument.VarTypes () .Item ("BOOL") ;
break;
case "INT":
retType = this.ActiveDocument.VarTypes () .Item ("INT") ;
break;
case "REAL":
retType = this.ActiveDocument.VarTypes () .Item("REAL") ;
break;
case "STRING":
retType = this.ActiveDocument.VarTypes () .Item("STRING") ;
break;

default:

retType this.ActiveDocument.VarTypes () .Item ("INT") ;

break;

}

return retType;

//Reads a defined text file and creates corresponding variables on the ze

non internal driver
public void MacroCreateVariablesFromFile ()

{

//create objects that will take the internal driver and the variable
type
IDriver zenonInternDriver = null;

//search for the Internal driver and throw exception if no driver was

found

95

try

for (int driverCount = 0; driverCount < this.ActiveDocument.Drive
rs () .Count; driverCount++)
{
if (this.ActiveDocument.Drivers () .Item(driverCount) .Name == "
Intern")
{
zenonInternDriver = this.ActiveDocument.Drivers().Item(dr
iverCount) ;
break;

}

catch (Exception driverEx)

{

MessageBox.Show ("Unable to find zenon 'Intern' driver. Error: " +

driverEx.Message) ;
throw;
}
this.ActiveDocument.Variables () .DoAutoSave (false);
try
{
OpenFileDialog varFileSelect = new OpenFileDialog();

String[] varLine = new Stringl[2];

//show file dialog
if (varFileSelect.ShowDialog() == DialogResult.OK)
{

string line = string.Empty;

//open new stream reader with selected file

StreamReader importReader = new StreamReader (varFileSelect.Fi
leName, System.Text.Encoding.Default);

//read in line by line, split the lines when a ', ' occurs and
create variables
while ((line = importReader.ReadLine()) != null)
{
varLine = line.Split(new Char([] { ',' });

96

VSTA
zenon

this.ActiveDocument.Variables () .CreateVar (varLine[0], zen

onInternDriver, tpKanaltypes.tpSystemVariable, GetDataType (varLine[l]));

}

importReader.Close () ;

}

catch (Exception fileEx)

{

MessageBox.Show ("An error occurred while opening the file: " + fi
leEx.Message) ;

throw;

}

this.ActiveDocument.Variables () .DoAutoSave (true) ;
}
#region VSTA generated code

private void InternalStartup ()

{
this.Startup += new System.EventHandler (MyWorkspace Startup);

this.Shutdown += new System.EventHandler (MyWorkspace Shutdown);

}

#endregion

5.3.2 Writing project information in the zenon output window

In this example, it is demonstrated how the output window of the zenon editors can be accessed using
VSTA. The method named Macrol reads out the process screens created in the project for this, identifies
the respective template and identifies all drivers available as well as their labels.

using System;

namespace WorkspaceAddin

{
[System.AddIn.AddIn ("MyWorkspace", Version = "1.0", Publisher = "", Descripti

on = un)]

public partial class MyWorkspace
{

private void MyWorkspace Startup (object sender, EventArgs e)

{

private void MyWorkspace Shutdown (object sender, EventArgs e)

{

public void MacroPrintDebugInformation ()
{
string picName = string.Empty;
string corTemp = string.Empty;
string driverName = string.Empty;

string driverDescription = string.Empty;

//print start string into output window

this.Application.DebugPrint (" -----=--=—-=---- START----—--—-—-——--- ", zen
On.tpDebugPrintStyle.tpMsqg) ;

//go through all pictures and print name and used template into outpu

t window

for (int i = 0; i1 < this.ActiveDocument.DynPictures () .Count; i++)
{
picName = this.ActiveDocument.DynPictures().Item(i) .Name;

corTemp = this.ActiveDocument.DynPictures().Item(i).get DynProper

ties ("Template") .ToString () ;

this.Application.DebugPrint (" Picture '" + picName + "' uses Temp
late '" + corTemp + "'", zenOn.tpDebugPrintStyle.tpMsqg) ;
}

//print separator string into output window

this.Application.DebugPrint (" =—===—=—=———————m—m e , zenOn.

tpDebugPrintStyle.tpMsqg) ;

//go through all drivers and print name and description into output w

indow
for (int 1 = 0; i1 < this.ActiveDocument.Drivers () .Count; 1i++)
{
driverName = this.ActiveDocument.Drivers () .Item (i) .Name;
driverDescription = this.ActiveDocument.Drivers().Item(i) .Identif
ication;
this.Application.DebugPrint (" Driver '" + driverName + "' has des
cription '" + driverDescription + "'", zenOn.tpDebugPrintStyle.tpMsg);

}
//print end string into output window

this.Application.DebugPrint (" -------=-=-----—- END---—=—=—====——= ", zen
On.tpDebugPrintStyle.tpMsqg) ;

}
#region VSTA generated code

private void InternalStartup()

{
this.Startup += new System.EventHandler (MyWorkspace Startup);
this.Shutdown += new System.EventHandler (MyWorkspace Shutdown);
}

#endregion

5.3.3 Reading in of variables in zenon via regular expressions

In the following example, zenon variables are read out in a Runtime project and saved in a local text file.

Using regular expressions, variables are only read if their names start with 3 figures and a subsequent
underscore (for example "001_var" or "234_xyz"). The user is then requested to select a folder. A text
file with a time-dependent file name is created in this folder. In this file, name, labeling and current
value of all applicable variables is saved separately with a semi colon.

99

¥ Information

It is possible that manual references may have to be added to execute the example in
zenon Runtime. To do this, open the context menu in the Project Explorer and click on

Add Reference...
The references required in this example are:

Microsoft.VisualStudio.Tools.Applications.Runtime.v9.0
System

System.AddIn

System.Data

System.Windows.Forms

System.Xml

vV vV v Vv Vv Vv Vv

zenonVSTAProxy6500

C# code
using System;
using System.Text.RegularExpressions;
using System.IO;

using System.Windows.Forms;

namespace ProjectAddin
{
[System.AddIn.AddIn ("ThisProject", Version = "1.0",

on = "")J
public partial class ThisProject

{

Publisher = "",

private void ThisProject Startup (object sender, EventArgs e)

{
}

private void ThisProject Shutdown (object sender, EventArgs e)

{
}
public void MacroGetFilteredVariables ()
{
string filename = string.Empty;
string name = string.Empty;
string description = string.Empty;

string value = string.Empty;

Descripti

100

//define regular expression pattern

Regex match = new Regex ("~ ([0-9]1){3}[_1");
try

{

filename = FolderSelection ("Select place to store the variable in

formation") ;

//create stream writer to the .txt file
StreamWriter matchedVariables = new StreamWriter (filename, true);
//run through all variables in zenon
for (int 1 = 0; i < this.Variables () .Count; i++)
{
//if name of the variable matches the pattern, get name, tag
name and current value
if (match.IsMatch(this.Variables().Item (i) .Name))
{
name = this.Variables().Item(i) .Name;
description = this.Variables().Item(i).Tagname;
value = this.Variables().Item(i).get Value (0).ToString();
//write information to the .txt file

matchedVariables.WriteLine (name + ";" + description + ";"

+ value);

}

//close stream

matchedVariables.Close () ;
}

catch (Exception ex)

{

MessageBox.Show ("An error occured -> " + ex.Message);

throw;

}
private string FolderSelection(String caption)
{

string selectedPath = string.Empty;

//create a dialog for selecting the output folder

101

FolderBrowserDialog folderSelect = new FolderBrowserDialog();
folderSelect.Description = caption;
try
{
if (folderSelect.ShowDialog() == DialogResult.OK)

{
//1if selection was valid, get the current date, put it to fil
e date format
//then create a txt file with the name "zenonVar" and the cor
responding date
DateTime currentTime = DateTime.Now;
selectedPath = folderSelect.SelectedPath + "\\zenonVar" + cur
rentTime.ToFileTime () + ".txt";
}
}
catch (Exception ex)
{
MessageBox.Show ("An error occurred: " + ex.Message);
throw;
}
return selectedPath;
}
#region VSTA generated code
private void InternalStartup()
{
this.Startup += new System.EventHandler (ThisProject Startup);

this.Shutdown += new System.EventHandler (ThisProject Shutdown);

}

#endregion

102

6. Process Control Engine (PCE)

& Attention

Starting from version 7.20, PCE will not be supported anymore and it will not be shown in
the module tree of zenon anymore. While converting projects from versions lower than
7.20, which contain PCE tasks, the node PCE will be shown for these projects again. PCE
will not further be developed and documented.

Recommendation: Please use zenon Logic instead of PCE

6.1 The PCE Editor

The PCE can be found in the Project Manager in the entry Programming interfaces. The PCE Editor is

opened with the entry Open PCE Editor in the context menu.

"Whrocess ControlEnging mE x|
File ‘iew Help
ZHE 2R | 0 HAae R M| % 4%

x|
Tasks I Properties I
Tasks D:ASOLAI...

i = Taskmanager
=
i)
Output I
Ready == 7/,1

103

Process Control Engine (PCE)

Zzenon

6.1.1 The Taskmanager

The Taskmanager of the PCE Editor lists the existing tasks and the linked variables.

1=l
Tasks | Properties |
P Tasks EXAPROYP..
£ @ Taski Taskl.vbs
@ Tank[1]
@ Tank[2)

H Taskmanager I

A doubleclick on a task opens it in the editing area. With the right mouse button the context menu of a
task can be opened.

x|

Tasks Properties
P Tasks T:\Progra..

2 Taskl
2

Taskl.vbs

Task properties...

“k_]_ aics
manager
Delete task

Compile task
Help

The context menu of a task has four entries:

L

Task properties... Opens the properties dialog of the task.

Task variables... Opens the variable selection. So you can add new variables to the task.
Delete task Deletes the task without any further query.

Compile tasks Compiles the task.

6.1.2 The editing area

In the editing area of the PCE Editor the code of the tasks is entered in VB Script or Java Script.

6.1.3 The output window

6.1.4 The menus of the PCE Editor

Menu File

The menu File includes the following commands:

Parameters Description

Save Saves new or changed tasks.

Print Prints the current task.

Close Closes the PCE Editor.
Menu Edit

The menu Edit includes the following commands:

Parameter

Undo

Redo

Cut

Copy

Paste

Delete

Select all

Find

Find next

Find previous
Replace...
Bookmarks

- set bookmark

- next bookmark
- previous bookmark

- delete all bookmarks

Description

Undoes the last executed action.
Repeats the last executed action.
Moves a text to the Windows Clipboard.
Copies a text to the Windows Clipboard.

Pastes a text from the Windows Clipboard.

Selects the entire text of the task.
Searches for a text in the current task.
Goes to the next place of finding.
Goes to the previous place of finding.

Replaces a text in the task by another.

Administration of bookmarks in the code of the task.

Sets a bookmark at the selected line in the code.
Goes to the next bookmark in the code.
Goes to the previous bookmark in the code.

Deletes all bookmarks in the code.

105

Process Control Engine (PCE)
Zenon

Menu Run

The menu Run includes the following commands:

Compile tasks Compiles the task.

Menu View

The menu View includes the following commands:

Options Opens the settings dialog of the PCE Editor.
Task manager Opens/closes the Taskmanager window.
Output Opens/closes the Output window.

Status Bar Opens/closes the status bar.

Menu Window

The menu Window includes the following commands:

Arrange

Divide

Align symbols

List of the last open windows

Menu help

The menu Help includes the following commands:

Process Control Engine (PCE)
Zenon

Help Opens online help.

Info about... Opens a window with information on zenon:
» Serial Number

» Activation number

» Licensed tags/I0s

» Licensed module

A slider can be used for navigation in the information window. Clicking in the
window or pressing the Esc key closes the info window.

6.1.5 The icon bar of the PCE Editor

The most important commands of the PCE Editor can also be executed with the icons of the icon bar.

ZHE VBB o> MR RN (N % AR

The following icons are available:

Parameters
Close

Save all

Print active screen
Cut

Copy

Paste

Undo

Redo

Find

Find next

Find previous
Replace...

Save and restart
Start debugger
Next bookmark
Set bookmark

Previous bookmark

Description

Closes the PCE Editor.

Saves new or changed tasks.

Prints the current task.

Moves a text to the Windows Clipboard.
Copies a text to the Windows Clipboard.
Pastes a text from the Windows Clipboard.
Undoes the last executed action.
Repeats the last executed action.
Searches for a text in the current task.
Goes to the next place of finding.

Goes to the previous place of finding.

Replaces a text in the task by another.

Goes to the next bookmark in the code.
Sets a bookmark at the selected line in the code.

Goes to the previous bookmark in the code.

Delete all bookmarks Deletes all bookmarks in the code.

6.2 Course of actions

6.2.1 Creating a task

With the context menu of the Taskmanager a new task can be created.

108

Properties of the task

After creating the task the properties dialog of the new task opens automatically.

x
Task I
Name: Script file: Cancel |
Taskl Task1|vbs I
Help |
Type: Start type:
Icyclic :] Isyslem start :]
Priority: limit of time scedule [ms)
{NORMAL = 100

The following properties can be defined:

Parameters Description

Name Unique name of the task.

Type Tasks can be executed cyclic or once.
Cyclic:the task is executed cyclically in the interval defined under limit of time
schedule.

Once: the task is executed one single time.

Priority Process priorities for operating system multithreading (idle, low, normal, high,
highest, time critical).
Default: Normal
main process:the task runsin the same thread as Runtime. If the task gets into
a waiting loop or crashes, that also influences the Runtime.

Script file Selection of the script file: VB-Files (*.vbs) for VB Script or JS-Files (*.js) for Java
Script.
The according file is created, when the task is opened in the editing area for the
first time.

Start type System start :automatically started with Runtime. (This is the only way to use

the PCE under Windows CE, as Windows CE does not support VBA.)
event triggered:the taskis started in a VBA macro with the statement
"thisProject.Tasks.ltem("Taskname").Run".

Cycle time to reach | For cyclic tasks the interval in milliseconds that should be achieved.
If this cycle time is not achieved, the task is executed as fast as possible.

For a later change of the properties this dialog can also be opened with the context menu of the task
and the entry Task Properties....

Variables of the task

After defining the properties the variable selection dialog is automatically opened. Here the variables
that should be processed in the task are selected.

109

All variables that are read or written in the task should be linked here. There is also the possibility to
access the variables via the variables object, but only the variables directly linked to the task are
automatically updated when initializing the task before execution.

The variables must have the following syntax:

Task.Value ('Variable name')=123

For a later change of the variable selection this dialog can also be opened with the context menu of the
task and the entry Task Variables....

6.2.2 Entering code

Double-clicking the task in the Taskmanager opens it in the editing area. If the task is opened for the first
time, the according VBS or JS file is created now.

Four procedures are automatically created:

Parameters Description

Task_Init() This procedure is automatically executed when starting the task.

Task_Main() This procedure is either executed once (type once) or cyclically (type
cyclic).

Task_Exit() This procedure is automatically executed when stopping the task.

Task_Timer(ITimerld) This procedure is executed cyclically, as long as the according time is
running. The cycle time is defined as a parameter with the starting of the
timer.

Generally speaking the PCE uses the same object model as VBA (see VBA Tutorials). When using VBA
objects (except the object Task) multithreading is lost, because these objects only can be accessed from
the main thread.

A Attention

Not all funtions of the COM interface are multithread-able and therefore can only be
used in a main tread context. If a different property than "in the main process" is set as
PCE task, there must not be any access from the PCE to the main thread. In case there is
an access to the COM interface nevertheless, this can lead to undefined system states,
e.g. a Runtime freeze.

Of special importance are the collection Tasks and the object Task.

110

Process Control Engine (PCE)

Zzenon

The collection Tasks

Item

Parent

The object Task

ActualCycleTime Property Currently achieved cycle time of the task
CountVariable Property Number of variables linked to the task
CycleTime Property Defined cycle time of the task
DynProperties Property

ErrorNumber Property

ErrorString Property

Exit Event

On init Event

ItemVariable Method

Main Event

MemValue Property With "Task.MemValue("Name")=value" an internal variable is

created and a value is assigned to it. There is no need to declare
the variable before.

This variable can also be accessed from other tasks. So it allows
the exchange of values between tasks.

Name Property Name of the current task

Parent Property The collection Tasks

Priority Property Priority of the current task

Run Method Starts a task

Sleep Method Holds a task

StartTimer Method The method "StartTimer" starts a timer of the task.
Status Property

Stop Method Stops a task

StopTimer Method The method "StopTimer" stops a timer of the task.
Timer Event

Type Property

Value Property With "Task.Value("name of linked variable")=value" a variable of

the project can get a new value.

6.2.3 Function Show PCE

With the zenon function Show PCE the PCE Editor can be opened from the Runtime.

112

6.2.4 Executing tasks

Tasks can be executed when the system is started or can be event-triggered.

Executing tasks with system start

If in the configuration of the task the Start type is set to System start , the task is automatically
started with the Runtime.

This is the only way to use the PCE under Windows CE, as Windows CE does not support VBA.

Executing tasks event triggered

OnaPC

A task can also be started event triggered. In this case the Start type has to be set to Event driven . Now
the task is no longer automatically started with the Runtime.

A VBA macro has to be created in order to execute a task by pressing a button, by a limit value violation

or any other event. With the following VBA statement the task can be started:
thisProject.Tasks.Item(Taskname) .Run

The task is automatically started in an own thread if in the configuration Priority Main process has not
been set.

With the following VBA statement the task can be stopped at any time:
thisProject.Tasks.Item("Taskname") .Stop

Note: To execute a task more than once, it must also be explicitly stopped after it has ended, so that it
can be restarted.

Instruction: thisProject.Tasks.Item(Taskname) .Stop

It can be restarted after being stopped properly.

On a CE terminal

As Windows CE does not support VBA, the procedure for execution on a PCis not possible on a CE
terminal. But there is a possibility to execute tasks event triggered also here.

A task with the Start type System start is created. This task is automatically started with the Runtime.
And this task gets the Priority Main process so that it runs in the same thread as the Runtime. Now bit
variables are linked to that task, then will execute other tasks event triggered. With the following
statement the task can be started: Parent.Item(Taskname) .Run

113

Now the task is automatically started in an own Thread if in the configuration the Priority Main process
has not been set.

With the following statement the task can be stopped at any time: Parent.Item("Taskname") .Stop

6.3 VB Script - Introduction

6.3.1 Data types

Variant

VBScript has only one data type called a Variant. A Variant is a special kind of data type that can contain
different kinds of information, depending on how it is used. Because Variant is the only data type in
VBScript, it is also the data type returned by all functions in VBScript.

At its simplest, a Variant can contain either numeric or string information. A Variant behaves as a
number when you use it in a numeric context and as a string when you use it in a string context. That is,
if you are working with data that looks like numbers, VBScript assumes that it is numbers and does what
is most appropriate for numbers. You can always make numbers behave as strings by enclosing them in
quotation marks (" "). If you work with data that only can be interpreted as strings, VBScript will
interpret them as strings.

Variant Subtypes

Beyond the simple numeric or string classifications, a Variant can make further distinctions about the
specific nature of numeric information. For example, you can have numeric information that represents
a date or a time. When used with other date or time data, the result is always expressed as a date or a
time. You can also have a rich variety of numeric information ranging in size from Boolean values to
huge floating-point numbers. These different categories of information which can be contained in a
Variant are called subtypes . Most of the time, you can just put the kind of data you want in a Variant ,
and the Variant behaves in a way that is most appropriate for the data it contains.

The following summary shows subtypes of data that a Variant can contain.

114

Subtype Meaning

Empty Variant is uninitialized. Value is 0 for numeric variables or a zero-length string ("") for
string variables.

Null Variant intentionally contains no valid data.

Boolean Contains either TRUE or FALSE.

Byte Contains integer in the range 0 to 255.

Integer Contains integer in the range -32,768 to 32,767.

Currency -922,337,203,685,477.5808 bis 922,337,203,685,477.5807.

Long Contains integer in the range -2,147,483,648 to 2,147,483,647.

Single Contains a single-precision, floating-point number in the range -3.402823E38 to

-1.401298E-45 for negative values; 1.401298E-45 to 3.402823E38 for positive values.

Double Contains a double-precision, floating-point number in the range -1.79769313486232E308
t0 -4.94065645841247E-324 for negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

Date (Time) Contains a number that represents a date between January 1, 100 to December 31, 9999.

String Contains a variable-length string that can be up to approximately 2 billion characters in
length.

Object Contains an object.

Error Contains an error number.

6.3.2 Variables

A variable is a convenient placeholder that refers to a computer memory location where you can store
program information that may change during the time your script is running. For example, you might
create a variable called ClickCount to store the number of times a user clicks an object on a particular
Web page. Where the variable is stored in computer memory is unimportant. What is important is that
you only have to refer to a variable by name to see or change its value. In VBScript, variables are always
of one fundamental data type, Variant.

Declaring Variables

You declare variables explicitly in your script using the Dim statement, the Public statement, and the
Private statement. Example:

Dim DegreesFahrenheit

You declare multiple variables by separating each variable name with a comma. Example:

115

Dim Top, Bottom, Left, Right

Limitations for names

Variable names follow the standard rules for naming anything in VBScript. A variable name:
» Must begin with an alphabetic character.
» Cannot contain an embedded period.
» Must not exceed 255 characters.

» Must be unique in the scope in which it is declared.

Scope and Lifetime of Variables

When you declare a variable within a procedure, only code within that procedure can access or change
the value of that variable. It has local scope and is a procedure-level variable.

If you declare a variable outside a procedure, you make it recognizable to all the procedures in your
script. This is a script-level variable, and it has script-level scope.

The lifetime of a variable depends on how long it exists. The lifetime of a script-level variable extends
from the time it is declared until the time the script is finished running. At procedure level, a variable
exists only as long as you are in the procedure. When the procedure exits, the variable is destroyed.

Local variables are ideal as temporary storage space when a procedure is executing. You can have local
variables of the same name in several different procedures because each is recognized only by the
procedure in which it is declared.

Assigning Values to Variables
Values are assigned to variables creating an expression as follows: the variable is on the left side of the

expression and the value you want to assign to the variable is on the right. Example:
B = 200

Scalar Variables and Array Variables

Much of the time, you only want to assign a single value to a variable you have declared. A variable
containing a single value is a scalar variable. Other times, it is convenient to assign more than one
related value to a single variable. Then you can create a variable that can contain a series of values. This

116

is called an array variable. Array variables are declared nearly like scalar variables The only difference is,
that in the declaration brackets follow the names of array variables. In the following example, a
single-dimension array containing 11 elements is declared:

Dim A (10)
Although the number shown in the parentheses is 10, all arrays in VBScript are zero-based, so this array

actually contains 11 elements. In a zero-based array, the number of array elements is always the
number shown in parentheses plus one. This kind of array is called a fixed-size array.

You assign data to each of the elements of the array using an index into the array. Beginning at zero and
ending at 10, data can be assigned to the elements of an array as follows:

A(0) = 256
A(l) = 324
A(2) = 100
A(10) = 55

Similarly, the data can be retrieved from any element using an index into the particular array element
you want. Example:

SomeVariable = A(8)

Arrays aren't limited to a single dimension. You can have as many as 60 dimensions, although most
people can't comprehend more than three or four dimensions. You can declare multiple dimensions by
separating an array's size numbers in the parentheses with commas. In the following example, the
MyTable variable is a two-dimensional array consisting of 6 rows and 11 columns:

Dim MyTable (5, 10)

In a two-dimensional array, the first number is always the number of rows; the second number is the
number of columns.

You can also declare an array whose size changes during the time your script is running. This is called a
dynamic array. The array is initially declared within a procedure using either the Dim statement or using
the ReDim statement. However, for a dynamic array, no size or number of dimensions is placed inside
the parentheses. Example:

(Dim AnArray ()

ReDim AnotherArray ()

To use a dynamic array, you must subsequently use ReDim to determine the number of dimensions and
the size of each dimension. In the following example, ReDim sets the initial size of the dynamic array to
25. A subsequent ReDim statement resizes the array to 30, but uses the Preserve keyword to preserve
the contents of the array as the resizing takes place.

ReDim MyArray (25)

117

ReDim Preserve MyArray (30)

6.3.3 Constants

A constant is a meaningful name that takes the place of a number or string and never changes. VBScript
defines a number of intrinsic constants . You can get information about these intrinsic constants from
the VBScript Language Reference.

You create user-defined constants in VBScript using the Const statement. So you can assign a
meaningful name to string or numerical constants. Then you can assign them literal values and use them
in a script. Example:

Const MyString = "This is a string."
Const MyAge = 49

Note that the string literal is enclosed in quotation marks (" "). Quotation marks are the most obvious
way to differentiate string values from numeric values. You represent Date literals and time literals by
enclosing them in number signs (#). Example:

Const CutoffDate = #6-1-97#

You may want to adopt a naming scheme to differentiate constants from variables. This will prevent you
from trying to reassign constant values while your script is running. For example, you might want to use
a "vb" or "con" prefix on your constant names, or you might name your constants in all capital letters.
Care that constants and variables can be distinguished. So you avoid problems when creating complex
scripts.

6.3.4 Operators

VBScript has a full range of operators, including arithmetic operators, comparison operators,
concatenation operators, and logical operators.

Operator Precedence

If several operators appear in a statement, each part is evaluated and resolved in a pre-defined
sequence. This sequence is called operator precedence. You can use parentheses to override the order
of precedence and force some parts of an expression to be evaluated before others. Operations within
parentheses are always performed before those outside. Within parentheses, however, standard
operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence.

118

Arithmetic Operators

Description Symbol
Exponentiation A

Unary negation -

Multiplication *
Division /
Integer division /
Modulus arithmetic Mod
Addition +

Subtraction -

String concatenation

Comparison Operators

Description Symbol
Equality =
Inequality <>

Less than <
Greater than >

Less than or equal <=

to

Greater than or >=
equal to

Opject equivalence Is

Logical Operators

If several operators appear in a statement, each part is evaluated and resolved in a pre-defined
sequence. This sequence is called operator precedence. You can use parentheses to override the order
of precedence and force some parts of an expression to be evaluated before others. Operations within

119

parentheses are always performed before those outside. Within parentheses, however, standard
operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence.

6.3.5 Conditional Statements

You can control the flow of your script with conditional statements and looping statements. Using
conditional statements, you can write VBScript code that makes decisions and repeats actions.

Making Decisions Using If...Then...Else

The If...Then...Else statementis used to evaluate whether a condition is True or False and,
depending on the result, to specify one or more statements to run. Usually the condition is an
expression that uses a comparison operator to compare one value or variable with another. For
information about comparison operators, see Comparison Operators. If...Then. . .Else statements
can be nested to as many levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax for the
If...Then...Else statement. The following example shows the single-line syntax. Notice that this
example omits the E1se keyword.

Sub FixDate ()

Dim myDate

myDate = #2/13/95#

If myDate < Now Then myDate = Now
End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax includes
the End If statement, as shown in the following example:

Sub AlertUser (value)

If value = 0 Then
AlertLabel.ForeColor = vbRed
AlertLabel.Font.Bold = True
AlertlLabel.Font.Italic = True
End If

End Sub

120

To run only one statement when a condition is True, use the single-line syntax for the
If...Then...Else statement. The following example shows the single-line syntax. Notice that this
example omits the E1se keyword.

Sub FixDate ()

Dim myDate

myDate = #2/13/95#

If myDate < Now Then myDate = Now
End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax includes
the End If statement, as shown in the following example:

Sub AlertUser (value)

If value = 0 Then
AlertLabel.ForeColor = vbRed
AlertLabel.Font.Bold = True
AlertLabel.Font.Italic = True
End If

End Sub

Running Certain Statements if a Condition is True and Running Others if a Condition is False

Youcanusean If...Then...Else statement to define two blocks of executable statements: one
block to run if the condition is True, the other block to run if the condition is False.

Sub AlertUser (value)

If value = 0 Then
AlertLabel.ForeColor vbRed
AlertLabel.Font.Bold = True
AlertLabel.Font.Italic = True
Else

AlertLabel.Forecolor = vbBlack
AlertLabel.Font.Bold = False
AlertLabel.Font.Italic = False
End If

End Sub

Deciding Between Several Alternatives

A variationonthe If...Then...Else statement allows you to choose from several alternatives.
Adding E1seIf clauses expands the functionality of the If...Then...Else statement so you can
control program flow based on different possibilities.

Example:
Sub ReportValue (value)
If value = 0 Then

MsgBox value

121

ElseIf
MsgBox
ElseIf
Msgbox
Else

Msgbox
End If

value
value
value

value

Walue

= 1 Then

= 2 then

out of range!

Making Decisions with Select Case

The Select Case structure provides an alternativeto If...Then...ElseIf for selectively executing
one block of statements from among multiple blocks of statements. A Select Case statement provides
capability similartothe If...Then...Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated once, at the top of the
structure. The result of the expression is then compared with the values for each Case in the structure.
If there is a match, the block of statements associated with that Case is executed, as in the following
example.

Select Case Document.Forml.CardType.Options (SelectedIndex) .Text

Case MasterCard

DisplayMCLogo

ValidateMCAccount

Case Visa

DisplayVisaLogo

ValidateVisaAccount

Case American Express
DisplayAMEXCOLogo
ValidateAMEXCOAccount

Case Else

DisplayUnknownImage

PromptAgain
End Select

6.3.6

Looping Through Code

Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a
condition is False; others repeat statements until a condition is True. There are also loops that repeat
statements a specific number of times.

The following looping statements are available in VBScript:

Parameters

Description

Using Do loops (on page 123): Loops while or until a condition is True.

122

Using While...Wend (on page
125):

Using For...Next (on page 125):

Using For Each...Next (on page
126):

Using Do Loops

You can use Do. . .Loop

Loops while a condition is True.

Uses a counter to run statements a specified number of times.

Repeats a group of statements for each item in a collection or each element of a

statements to run a block of statements an indefinite number of times. The

statements are repeated either while a condition is True or until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do. . . Loop statement. You can check the condition
before you enter the loop (as shown in the following ChkFirstWhile example), or you can check it after
the loop has run at least once (as shown in the ChkLastWhile example). In the ChkFirstWhile procedure,
if myNum is set to 9 instead of 20, the statements inside the loop will never run. In the ChkLastWhile
procedure, the statements inside the loop run only once because the condition is already False.

Sub ChkFirstWhile ()
Dim counter, myNum
counter = 0
myNum = 20
Do While myNum > 10
myNum = myNum - 1
counter = counter + 1
Loop
MsgBox 'The loop made ' &

End Sub

Sub ChkLastWhile ()
Dim counter, myNum
counter = 0
myNum = 9
Do
myNum = myNum - 1

counter = counter + 1

Loop While myNum > 10

counter & ' repetitions.'

123

MsgBox 'The loop made ' & counter & ' repetitions.'

End Sub

Repeating a Statement Until a Condition Becomes True

There are two ways to use the Until keyword to check a condition in a Do. . . Loop statement. You can
check the condition before you enter the loop (as shown in the following ChkFirstUntil example), or you
can check it after the loop has run at least once (as shown in the ChkLastUntil example). As long as the
condition is False, the looping occurs.

Sub ChkFirstUntil ()
Dim counter, myNum
counter = 0
myNum = 20
Do Until myNum = 10

myNum = myNum - 1

counter = counter + 1
Loop
MsgBox 'The loop made ' & counter & ' repetitions.'
End Sub

Sub ChkLastUntil ()
Dim counter, myNum
counter = 0
myNum = 1
Th
myNum = myNum - 1
counter = counter + 1
Loop Until myNum = 10
MsgBox 'The loop made ' & counter & ' repetitions.'

End Sub

Exiting a Do...Loop Statement from Inside the Loop

You can exita Do. . .Loop by using the Exit Do statement. Because you usually want to exit only in
certain situations, such as to avoid an endless loop, you should use the Exit Do statementin the True
statement block of an If...Then. . .Else statement. If the condition is False, the loop runs as usual.

124

In the following example, myNum is assigned a value that creates an endless loop. The
If...Then...Else statement checks for this condition, preventing the endless repetition.

Sub ExitExample ()
Dim counter, myNum
counter = 0
myNum = 9
Do Until myNum = 10
myNum = myNum - 1
counter = counter + 1
If myNum < 10 Then Exit Do
Loop
MsgBox 'The loop made ' & counter & ' repetitions.'

End Sub

Using While...Wend

The While. . .Wend statement is provided in VBScript for those who are familiar with its usage.
However, because of the lack of flexibility in while. . .Wend, it is recommended that you use
Do...Loop instead.

Using For...Next

You can use For. . .Next statements to run a block of statements a specific number of times. For loops,
use a counter variable whose value increases or decreases with each repetition of the loop.

The following example causes a procedure called MyProc to execute 50 times. The For statement
specifies the counter variable x and its start and end values. The Next statement increments the counter
variable by 1.

Sub DoMyProc50Times ()
Dim x
For x = 1 To 50
MyProc
Next
End Sub
Using the step keyword, you can increase or decrease the counter variable by the value you specify. In

the following example, the counter variable j is incremented by 2 each time the loop repeats. When the
loop is finished, the total is the sum of 2, 4, 6, 8, and 10.

Sub DoMyProc50Times ()
Dim x

For x = 1 To 50

125

MyProc
Next

End Sub

To decrease the counter variable, use a negative Step value. You must specify an end value that is less
than the start value. In the following example, the counter variable myNum is decreased by 2 each time
the loop repeats. When the loop is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

Sub NewTotal ()
Dim myNum, total
For myNum = 16 To 2 Step -2
total = total + myNum
Next

MsgBox 'The total is ' & total
End Sub

Using For Each...Next

A For Each...Next loopissimilartoa For...Next loop. Instead of repeating the statements a
specified number of times, a For Each...Next loop repeats a group of statements for each item in a
collection of objects or for each element of an array. This is especially helpful if you don't know how
many elements are in a collection.

In the following HTML code example, the contents of a Dictionary object is used to place text in
several text boxes.
<HTML>
<HEAD><TITLE>Formulare und Elemente</TITLE></HEAD>
<SCRIPT LANGUAGE="VBScript'>
<I--
sub cmdChange_OnClick
Dimd 'Create a variable
Set d = CreateObiject('Scripting.Dictionary")
d.Add '0’, 'Athen’ 'Add some keys and items
d.Add '1', '‘Belgrad’
d.Add '2', "Kairo'

For Eachl ind

Document.frmForm.Elements(l).Value = D.Item(l)
Next
End Sub

126

>
</SCRIPT>

<BODY>

<CENTER>

<FORM NAME="frmForm’

<Input Type = "Text'><p>

<Input Type = "Text'><p>

<Input Type = "Text'><p>

<Input Type = "Text'><p>

<Input Type = 'Button' NAME="cmdChange' VALUE="Hierauf klicken'><p>
</FORM>

</CENTER>

</BODY>

</HTML>

6.3.7 Types of procedures

Sub Procedures

A sub procedure is a series of VBScript statements (enclosed by Sub and End Sub statements) that
perform actions but don't return a value. A sub procedure can take arguments (constants, variables, or
expressions that are passed to it by a calling procedure). If a Sub procedure has no arguments, its Sub
statement must include an empty set of parentheses ().

The following Sub procedure uses two intrinsic, or built-in, VBScript functions, MsgBox and InputBox,
to prompt a user for information. It then displays the results of a calculation based on that information.
The calculation is performed in a Function procedure created using VBScript. The Function
procedure is shown after the following discussion.

Sub ConvertTemp ()
temp = InputBox('Please enter the temperature in degrees F.', 1)
MsgBox 'The temperature is ' & Celsius(temp) & ' degrees C.'

End Sub

Function Procedures

127

A Function procedure is a series of VBScript statements enclosed by the Function and End
Function statements. A Function procedure is similar to a Sub procedure, but can also return a
value. A Function procedure can take arguments (constants, variables, or expressions that are passed
to it by a calling procedure). If a Function procedure has no arguments, its Function statement must
include an empty set of parentheses. A Function returns a value by assigning a value to its name in
one or more statements of the procedure. The return type of a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from degrees Fahrenheit. When
the function is called from the ConvertTemp Sub procedure, a variable containing the argument value is
passed to the function. The result of the calculation is returned to the calling procedure and displayed in
a message box.

Sub ConvertTemp ()

temp = InputBox ('Please enter the temperature in degrees F.', 1)
MsgBox 'The temperature is ' & Celsius(temp) & ' degrees C.'
End Sub

Function Celsius (fDegrees)
Celsius = (fDegrees - 32) * 5 / 9

End Function

Getting data into or out of procedures

Each piece of data is passed into your procedures using an argument . Arguments serve as placeholders
for the data you want to pass into your procedure. When you create a procedure using either the sub
statement or the Function statement, parentheses must be included after the name of the procedure.
Any arguments are placed inside these parentheses, separated by commas. For example, in the
following example, fDegrees is a placeholder for the value being passed into the Celsius function for
conversion.

Function Celsius (fDegrees)
Celsius = (fDegrees - 32) * 5 / 9

End Function

Using Sub and Function Procedures in Code

A Function in your code must always be used on the right side of a variable assignment or in an
expression.

Examples:

Temp = Celsius (fDegrees)

128

or

MsgBox 'The temperature is ' & Celsius(temp) & ' degrees C.'

To call a sub procedure from another procedure, type the name of the procedure along with values for
any required arguments, each separated by a comma. The Call statement is not required, but if you do
use it, you must enclose any arguments in parentheses.

The following example shows two calls to the MyProc procedure. In the one case the Call statement is
used in the code, in the other one it is not. Both calls have the same result.

Call MyProc (firstarg, secondarq)

MyProc firstarg, secondarg

6.3.8 Coding Conventions

Coding conventions are suggestions are designed to help you write code using Microsoft Visual Basic
Scripting Edition.

Coding conventions can include the following:

Naming conventions for objects, variables, and procedures

Commenting conventions

Text formatting and indenting guidelines
The main reason for using a consistent set of coding conventions is to standardize the structure and
coding style of a script or set of scripts so that you and others can easily read and understand the code.

Using good coding conventions results in clear, precise, and readable source code that is consistent with
other language conventions and is intuitive.

Constant Naming Conventions

Earlier versions of VBScript had no mechanism for creating user-defined constants. Constants, if used,
were implemented as variables and distinguished from other variables using all uppercase characters.
Multiple words were separated using the underscore (_) character.

Examples:
USER LIST MAX
NEW LINE

Although this way of naming constants still works, you can use a different way of naming. You can create
real constants with the statement Const. This convention uses a mixed-case format in which constant
names have a "con" prefix.

129

Process Control Engine (PCE)
Zenon

For example:

conYourOwnConstant

Variable Naming Conventions

To enhance readability and consistency, use the following summary with descriptive names for variables
in your VBScript code.

Boolean bin binFound
Byte byt bytRasterData
Date (Time) dtm dtmStart
Double dbl dblTolerance
Error err errOrderNum
Integer int intQuantity
Long Ing IngDistance
Object obj objCurrent
Single sng sngAverage
String str strFirstName

Variable Scope

Variables should always be defined with the smallest scope possible. VBScript variables can have the
following scope.

Procedure-level Event, Function, or Sub procedure. Visible in the procedure in which it is
declared.
Script-level HEAD section of an HTML page, outside | Visible in every procedure in the script.
any procedure.

Variable Scope Prefixes

As script size grows, so does the value of being able to quickly differentiate the scope of variables. A
one-letter scope prefix preceding the type prefix provides this, without unduly increasing the size of
variable names.

Valid range Prefix Example
Procedure-level None dblVelocity
Script-level sec sbinCalcinProgress

Descriptive Variable and Procedure Names

In the core of a variable or procedure name also capitals should be used. The name should be long
enough to describe the use of the variable. In addition, procedure names should begin with a verb, such
as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to help keep name length
reasonable. In general, variable names greater than 32 characters can be difficult to read. When using
abbreviations, make sure they are consistent throughout the entire script. For example, randomly
switching between Cnt and Count within a script or set of scripts may lead to confusion.

Object Naming Conventions

The following table lists recommended conventions for objects you may encounter while programming
VBScript.

131

Object type Prefix Example

3D Panel pnl pnlGroup
Animated button ani aniMailBox
Check box chk chkReadOnly
Combo box, drop-down list box cbo cboEnglish
Command button cmd cmdExit
Common dialog dig digFileOpen
Frame fra fraLanguage
Horizontal scroll bar hsb hsbVolume
Image img imglcon

Label Ibl IbIHelpMessage
Line lin linVertical

List Box Ist IstPolicyCodes
Spin spn spnPages
Text box txt txtLastName
Vertical scroll bar vsb vsbRate
Slider sld sldScale

Code Commenting Conventions

Each procedure should start with a short comment describing the purpose of the procedure. This
description should not go into implementation details (how operations are executed), because these
might change with the time. This could result in maintenance effort for the comments and - even worse
- wrong comments. The code itself and any necessary inline comments describe the implementation.

Arguments passed to a procedure should be described when their purpose is not obvious and when the
procedure expects the arguments to be in a specific range. Return values for functions and variables
that are changed by a procedure, especially through reference arguments, should also be described at
the beginning of each procedure.

Procedure header comments should include the following section headings. For examples, see the
"Formatting Your Code" section that follows.

132

Section Heading Comment

Purpose What the procedure does (not how).

Assumptions List of the procedure's effect on each external variable, control, or other
element.

Effects List of the procedure's effect on each external variable, control, or other
element.

Inputs Explanation of each argument that is not obvious. Each argument should

be on a separate line with inline comments.

Return Values Explanation of the value returned.

Remember the following points:

Every important variable declaration should include an inline comment describing the use of the variable
being declared.

Variables, controls, and procedures should be named clearly to ensure that inline comments are only needed
for complex implementation details.

At the beginning of your script, you should include an overview that describes the script, enumerating
objects, procedures, algorithms, dialog boxes, and other system dependencies. Sometimes a piece of
pseudocode describing the algorithm can be helpful.

Code formating

Screen space should be conserved as much as possible, while still allowing code formatting to reflect
logic structure and nesting. Here are a few suggestions:

» Indent standard nested blocks four spaces.
» Indent the overview comments of a procedure one space.

» The statements on the highest level, directly following the overview comment, should be
indented with four blanks. Each nested block should again be indented by four blanks.

Example:

The following code adheres to VB Script coding conventions.
» 'Purpose: Searches for the first appearance of the stated user in the data field UserList.
» Inputs: strUserList(): the list of users to be searched.
» strZielUser: the name of the user to search for.

» Return values: Index of the first appearance of strTargetUser in the data field strUserList.
If the target user is not found, return -1. -1.
Function intFindUser (strUserList(), strTargetUser)

Dim i ' Loop counter.

133

Dim blnFound ' 'Target found' flag.
intFindUser = -1
i=20 ' Initialize loop counter

Do While i <= Ubound(strUserList) and Not blnFound

If strUserlList (i) = strTargetUser Then
blnFound = True ' Set flag to True
intFindUser = 1i ' Set return value to loop count
End If
i=1i+1 ' Increment loop counter
Loop

End Function

134

	1. Welcome to COPA-DATA help
	2. Programming Interfaces
	3. Add-Ins
	3.1 Prior knowledge
	3.2 Terminology
	3.3 Limitations
	3.4 Create add-in
	3.4.1 Basics
	3.4.2 Types of extensions
	Wizard in the Editor - Editor wizard extension
	Services in the Editor - Editor Service Extension
	Wizard in Runtime - project wizard extension
	Service in Runtime - project service extension

	3.4.3 Content of add-in packages
	3.4.4 SharpDevelop
	Create add-in package with SharpDevelop
	Deploying and debugging add-ins

	3.4.5 Microsoft Visual Studio
	Create add-in package with Visual Studio
	Deploying and debugging add-ins

	3.4.6 Source code management
	3.4.7 Add-in analysis and packaging utility (AddInUtility)
	Command line tool AddInUtility.exe

	3.4.8 Action in the event of reloading
	3.4.9 Isolation

	3.5 Use of add-ins in Editor and Runtime
	3.5.1 Activate add-ins in zenon
	3.5.2 Action during installation
	3.5.3 Add-ins node in the Project Manager
	Project tree context menu
	Detail view of context menu and toolbar

	3.5.4 Use in the zenon Editor
	Installing and manging add-ins for the Editor
	Manage Editor Add-Ins dialog
	Manage Editor services

	3.5.5 Use in zenon Runtime
	Installing and manging add-ins for Runtime

	3.6 Switch/conversion from VSTA

	4. Macro list
	4.1 VBA toolbar and context menu detail view
	4.2 VBA on 64-bit systems
	4.3 Basics
	4.3.1 Object PROPERTIES
	4.3.2 Object METHODS
	4.3.3 Object EVENTS
	4.3.4 VBA object structure in zenon
	4.3.5 How to use VBA macros
	Inserting existing macros

	4.3.6 How to insert an ActiveX element in zenon?
	4.3.7 Access from an external program
	Visual Basic 6

	4.3.8 Functionality of online variables
	Functionality of the event:
	Define and create container
	Put variables in the container
	Create event
	Activate event
	Switching off the event
	Remove on closing

	4.3.9 List of status bits
	4.3.10 Lasso for selecting dynamic elements in the Runtime

	4.4 Macros in the Editor
	4.4.1 Tool bar macro list
	4.4.2 Linking macros

	4.5 Functions in zenon
	4.5.1 Execute VBA macro
	Macro selection

	4.6 Developing wizard in VBA
	4.6.1 Using a wizard
	4.6.2 Structure of a wizard
	4.6.3 Integration in VBA
	4.6.4 Developing a wizard
	4.6.5 Updating wizards

	4.7 Frequently asked questions
	4.7.1 Why does the button stay pressed?
	4.7.2 Macro is not performed with the first click
	4.7.3 Macros no longer work in the Runtime?
	4.7.4 Windows CE and VBA

	4.8 Examples
	4.8.1 MouseEvents and ActiveX Control initialization
	4.8.2 Display variable information
	4.8.3 Read and write variable values
	4.8.4 Read and write variables and implement online variables
	4.8.5 Use dialog multiple times
	4.8.6 Alarm – Events and ActiveX Control handling
	4.8.7 Access to alarms
	4.8.8 Set switch (working with process variables)

	5. VSTA
	5.1 Basics
	5.1.1 Setting up the VSTA environment
	5.1.2 Access to the object model in zenon
	5.1.3 Functions in zenon
	Execute VSTA macro

	5.1.4 Debugging a VSTA add-in
	5.1.5 Events in VSTA
	5.1.6 Creating a backup of VSTA projects

	5.2 Creating a VSTA project
	5.2.1 VSTA projects in the editor
	5.2.2 VSTA projects in Runtime
	5.2.3 Developing wizards in VSTA

	5.3 Examples
	5.3.1 Creating variables in the zenon editor
	5.3.2 Writing project information in the zenon output window
	5.3.3 Reading in of variables in zenon via regular expressions

	6. Process Control Engine (PCE)
	6.1 The PCE Editor
	6.1.1 The Taskmanager
	6.1.2 The editing area
	6.1.3 The output window
	6.1.4 The menus of the PCE Editor
	Menu File
	Menu Edit
	Menu Run
	Menu View
	Menu Window
	Menu help

	6.1.5 The icon bar of the PCE Editor

	6.2 Course of actions
	6.2.1 Creating a task
	Properties of the task
	Variables of the task

	6.2.2 Entering code
	The collection Tasks
	The object Task

	6.2.3 Function Show PCE
	6.2.4 Executing tasks
	Executing tasks with system start
	Executing tasks event triggered
	On a PC
	On a CE terminal

	6.3 VB Script - Introduction
	6.3.1 Data types
	Variant
	Variant Subtypes

	6.3.2 Variables
	Declaring Variables
	Limitations for names
	Scope and Lifetime of Variables
	Assigning Values to Variables
	Scalar Variables and Array Variables

	6.3.3 Constants
	6.3.4 Operators
	Operator Precedence
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	6.3.5 Conditional Statements
	Making Decisions Using If...Then...Else
	Running Statements if a Condition is True
	Running Certain Statements if a Condition is True and Running Others if a Condition is False
	Deciding Between Several Alternatives

	Making Decisions with Select Case

	6.3.6 Looping Through Code
	Using Do Loops
	Repeating Statements While a Condition is True
	Repeating a Statement Until a Condition Becomes True
	Exiting a Do...Loop Statement from Inside the Loop

	Using While...Wend
	Using For...Next
	Using For Each...Next

	6.3.7 Types of procedures
	Sub Procedures
	Function Procedures
	Getting data into or out of procedures
	Using Sub and Function Procedures in Code

	6.3.8 Coding Conventions
	Constant Naming Conventions
	Variable Naming Conventions
	Variable Scope
	Variable Scope Prefixes

	Descriptive Variable and Procedure Names
	Object Naming Conventions
	Code Commenting Conventions
	Code formating

