

zenon driver manual
Idec32

v.7.60

©2017 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 5

2. Idec32 ... 5

3. IDEC32 - Data sheet ... 6

4. Driver history .. 7

5. Requirements .. 8

5.1 PC .. 8

5.2 Control .. 8

6. Configuration .. 9

6.1 Creating a driver .. 10

6.2 Settings in the driver dialog .. 13

6.2.1 General ... 14

6.2.2 Driver dialog Com ... 17

6.2.3 Driver dialog Idec settings .. 18

7. Creating variables .. 18

7.1 Creating variables in the Editor ... 19

7.2 Addressing ... 22

7.3 Driver objects and datatypes .. 23

7.3.1 Driver objects ... 23

7.3.2 Mapping of the data types ... 26

7.4 Creating variables by importing .. 27

7.4.1 XML import ... 27

7.4.2 DBF Import/Export ... 28

7.5 Communication details (Driver variables) ... 34

8. Driver-specific functions .. 39

9. Driver commands .. 40

10. Error analysis ... 43

4

10.1 Analysis tool .. 43

10.2 Error numbers ... 45

10.3 Check list ... 46

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and

give an initial insight into working with different zenon modules. All tutorials are available in

English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. Idec32

Variable addressing via address

You can find the general driver configuration in the chapter "Process data model and variable
definition".

https://www.copadata.com/tutorial_menu
mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

IDEC32 - Data sheet

6

3. IDEC32 - Data sheet

General:

Driver file name IDEC32.exe

Driver name Idec

PLC types Idec MicroSmart, Idec OpenNet Controller, Idec FC4A -HPC1

PLC manufacturer Idec;

Driver supports:

Protocol Idec Communication Protocol;

Addressing: Address-based X

Addressing: Name-based --

Spontaneous
communication

--

Polling communication X

Online browsing --

Offline browsing --

Real-time capable --

Blockwrite --

Modem capable --

Serial logging X

RDA numerical --

RDA String --

Hysteresis --

extended API --

Supports status bit WR-SUC --

Driver history

7

alternative IP address --

Requirements:

Hardware PC RS 232 interface, cable FC2A -KC4C

Software PC --

Hardware PLC --

Software PLC --

Requires v-dll --

Platforms:

Operating systems Windows 7, 8, 8.1, 10, Server 2008R2, Server 2012, Server 2012R2,
Server 2016;

CE platforms -;

4. Driver history

Date Driver version Change

07.07.08 700 Created driver documentation

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of
this version. This is the number in the 4th position of the file version,
For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build number
4228.

Expansions or error rectifications will be incorporated into a build in the future and are then available
from the next consecutive build number.

Requirements

8

 Example

A driver extension was implemented in build 4228. The driver that you are using is build
number 8322. Because the build number of your driver is higher than the build number
of the extension, the extension is included. The version number of the driver (the first
three digits of the file version) do not have any significance in relation to this. The drivers
are version-agnostic

5. Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 PC

HARDWARE

Serial interface

Protocol: Idec communication protocol

SOFTWARE

Copy the driver file Idec32.EXE into the current zenon directory (unless it is already there) and enter it
into the TREIBER_EN.XML file with the tool DriverInfo.exe.

CONNECTION

Establish a serial connection with a FC2A-KC4C cable (Computerlink cabel to loader port RS2).

5.2 Control

 Idec MicroSmart

Configuration

9

 Idec OpenNet Controller

 Idec FC4A-HPC1 (RS232 interface)

Protocol: Idec communication protocol

CONNECTION

Establish a serial connection with a FC2A-KC4C cable (Computerlink cabel to loader port RS2).

6. Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables
(main.chm::/15247.htm) of the online manual.

main.chm::/15247.htm

Configuration

10

6.1 Creating a driver

In the Create driver dialog, you create a list of the new drivers that you want to create.

Configuration

11

Parameter Description

Available drivers List of all available drivers.

The display is in a tree structure:
[+] expands the folder structure and shows the drivers
contained therein.
[-] reduces the folder structure

Default: no selection

Driver name Unique Identification of the driver.

Default: Empty
The input field is pre-filled with the pre-defined
Identification after selecting a driver from the list of
available drivers.

Driver information Further information on the selected driver.
Default: Empty
The information on the selected driver is shown in this
area after selecting a driver.

CLOSE DIALOG

Option Description

OK Accepts all settings and opens the driver configuration dialog of
the selected driver.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

 Information

The content of this dialog is saved in the file called Treiber_[Language].xml. You can find

this file in the following folder: C:\ProgramData\COPA-DATA\zenon[version
number].

CREATE NEW DRIVER

In order to create a new driver:

1. Right-click on Driver in the Project Manager and select New driver in the context menu.
Optional: Select the New driver button from the toolbar of the detail view of the Variables.
The Create driver dialog is opened.

Configuration

12

2. The dialog offers a list of all available drivers.

3. Select the desired driver and name it in the Driver name input field.
This input field corresponds to the Identification property. The name of the selected driver is
automatically inserted into this input field by default.
The following is applicable for the Driver name:

 The Driver name must be unique.
If a driver is used more than once in a project, a new name has to be given each time.
This is evaluated by clicking on the OK button. If the driver is already present in the project,
this is shown with a warning dialog.

 The Driver name is part of the file name.
Therefore it may only contain characters which are supported by the operating system.
Invalid characters are replaced by an underscore (_).

 This name cannot be changed later on.

4. Confirm the dialog by clicking on the OK button.
The configuration dialog for the selected driver is opened.

 The language of driver names cannot be switched. They are always shown in the language in
which they have been created, regardless of the language of the Editor. This also applies to driver object
types.

Configuration

13

DRIVER NAME DIALOG ALREADY EXISTS

If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by clicking
on the OK button. The driver can be named correctly.

<CD_PRODUCNTAME> PROJECT

The following drivers are created automatically for newly-created projects:

 Intern

 MathDr32

 SysDrv

 Information

Only the required drivers need to be present in a zenon project. Drivers can be
added at a later time if required.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

Configuration

14

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later
for editing, double click on the driver in the list or click on the Configuration property.

Configuration

15

Option Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:
A connection to the control is established.

 Simulation - static:
No communication between to the control is established,
the values are simulated by the driver. In this modus the
values remain constant or the variables keep the values
which were set by zenon Logic. Each variable has its own
memory area. E.g. two variables of the type marker with
offset 79 can have different values in the Runtime and do
not influence each other. Exception: The simulator driver.

 Simulation - counting:
No communication between to the control is established,
the values are simulated by the driver. In this modus the
driver increments the values within a value range
automatically.

 Simulation - programmed:
No communication is established to the PLC. The values are
calculated by a freely programmable simulation project. The
simulation project is created with the help of the zenon Logic
Workbench and runs in a zenon Logic Runtime which is
integrated in the driver. For details see chapter Driver
simulation (main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested from the
control even if they are currently not needed.
This has the advantage that e.g. multiple screen switches after
the screen was opened for the first time are executed faster
because the variables need not be requested again. The
disadvantage is a higher load for the communication to the
control.

Output can be written Active: Outputs can be written.

Inactive: Writing of outputs is prevented.

: Not available for every driver.

Variable image remanent This option saves and restores the current value, time stamp and
the states of a data point.

Fundamental requirement: The variable must have a valid value
and time stamp.

The variable image is saved in mode hardware if:

 one of the states S_MERKER_1(0) up to S_MERKER8(7),
REVISION(9), AUS(20) or ERSATZWERT(27) is active

The variable image is always saved if:

main.chm::/25206.htm

Configuration

16

 the variable is of the driver object type Communication

details

 the driver runs in simulation mode. (not programmed
simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a
criterion in order to restore the remanent variable image.

Stop on Standby Server Setting for redundancy at drivers which allow only one
communication connection. For this the driver is stopped at
the Standby Server and only started at the upgrade.

 If this option is active, the gapless archiving is
no longer guaranteed.

Active: Sets the driver at the not-process-leading Server
automatically in a stop-like state. In contrast to stopping via
driver command, the variable does not receive status
switched off (statusverarbeitung.chm::/24150.htm) but an
empty value. This prevents that at the upgrade to the
Server irrelevant values are created in the AML, CEL and
Historian.

 Not available if the CE terminal serves as a data
server. You can find further information in the zenon
Operator manual in the CE terminal as a data server
chapter.

Global Update time Active: The set Global update time in ms is used for all
variables in the project. The priority set at the variables is not
used.
Inactive: The set priorities are used for the individual
variables.

Priority The polling times for the individual priority classes are set here.
All variables with the according priority are polled in the set time.

The variables are allocated separately in the settings of the
variable properties.
The communication of the individual variables can be graded
according to importance or required topicality using the priority
classes. Thus the communication load is distributed better.

 Priority classes are not supported by each driver For
example, drivers that communicate spontaneously do not
support it.

statusverarbeitung.chm::/24150.htm

Configuration

17

CLOSE DIALOG

Options Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR CYCLICAL DRIVERS

The following applies for cyclical drivers:

For Set value, advising of variables and Requests, a read cycle is immediately triggered for all drivers - regardless
of the set update time. This ensures that the value is immediately available for visualization after writing. Update
times can therefore be shorter than pre-set for cyclical drivers.

6.2.2 Driver dialog Com

Here all general driver specific settings are done.

Parameters Description

Com Select serial interface

COM1 - COM64

Data bit Data word length

5; 6; 7; 8

Creating variables

18

Stop bit 1; 1,5; 2

Baud rate Data transfer rate

110; 300; 600; 1200; 2400; 4800; 9600; 19200; 38400; 56000;
57600; 115200; 128000; 256000

Parity No; Even; Odd;

Protocol None; Xon/Xoff; RTS/CTS; DTR/DSR

6.2.3 Driver dialog Idec settings

Parameters Description

Repetitions If the transmission was not successful, it is retried this number of
times.

Response time (ms) Within this time, there must a response from the PLC.

MicroSmart Activate this if the target PLC is of the MicroSmart series.

7. Creating variables

This is how you can create variables in the zenon Editor:

Creating variables

19

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

The dialog for configuring variables is opened

2. Configure the variable

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

20

3. The settings that are possible depends on the type of variables

Property Description

Name Distinct name of the variable. If a variable with the same name already
exists in the project, no additional variable can be created with this name.

Maximum length: 128 characters

 The characters # and @ are not permitted in variable names. If
non-permitted characters are used, creation of variables cannot be
completed and the Finish button remains inactive.

 For some drivers, the addressing is possible over the property
Symbolic address, as well.

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for internal
variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is
automatically loaded.

Driver Object Type
(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm

Creating variables

21

Data Type Select the desired data type. Click on the ... button to open the selection
dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays
chapter.

Addressing options Expanded settings for arrays and structure variables. You can find details
in the respective section.

Automatic element

activation
Expanded settings for arrays and structure variables. You can find details
in the respective section.

SYMBOLIC ADDRESS

The Symbolic address property can be used for addressing as an alternative to the Name or Identification
of the variables. Selection is made in the driver dialog; configuration is carried out in the variable
property. When importing variables of supported drivers, the property is entered automatically.

Maximum length: 1024 characters.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

 If a change is made to a data type that does not support the set signal range, the signal

range is amended automatically. For example, for a change from INT to SINT, the signal range is changed to
127. The amendment is also carried out if the signal range was not inherited from the data type. In this case, the
measuring range must be adapted manually.

Creating variables

22

7.2 Addressing

Property Description

Name Freely definable name.

 For every zenon project the name must be unambiguous.

Identification Freely definable identification.
E.g. for Resources label, comments, ...

Net address Bus address or net address of the variable.

This address refers to the bus address in the connection configuration of the driver.
This defines the PLC, on which the variable resides.

Data block For variables of object type Extended data block, enter the datablock number

here.

Adjustable from 0 to 4294967295.

You can take the exact maximum area for data blocks from the manual of the PLC.

Offset Offset of variables. Equal to the memory address of the variable in the PLC.
Adjustable from 0 to 4294967295.

Alignment not used for this driver

Bit number Number of the bit within the configured offset.

Possible entries: 0 to 65535.
Working range [0..7]

String length Only available for String variables.
Maximum number of characters that the variable can take.

Driver

connection/Driver

Object Type

Object type of the variables. Depending on the driver used, is selected when the
variable is created and can be changed here.

Driver

connection/Data

Type

Data type of the variable. Is selected during the creation of the variable; the type
can be changed here.

 If you change the data type later, all other properties of the variable
must be checked and adjusted, if necessary.

Driver

connection/Priority
Setting the priority class. The variable of the priority class is thus assigned as
it was configured in the driver dialog in the General tab. The priority classes
are only used if the global update time is deactivated.

If the global update time option is activated and the priority classes are used,
there is an error entry in the log file of the system. The driver uses the
highest possible priority.

Creating variables

23

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out
which driver objects are provided by the driver and which IEC data types can be assigned to the
respective driver objects.

7.3.1 Driver objects

The following driver object types are available in this driver:

Creating variables

24

Driver Object Type Channel
type

Read Write Supported
data types

Comment

Output 11 X X BOOL

Data Register 65 X X BOOL,

UDINT,

DINT,

USINT,

UINT, INT,

SINT

Input 10 X -- BOOL

Link Register 67 X X BOOL,

UDINT,

DINT,

USINT,

UINT, INT,

SINT

Link Relay 64 X X BOOL,

UDINT,

DINT,

USINT,

UINT, INT,

SINT

Shift Register 68 X X BOOL

PLC marker 8 X X BOOL

Counter 23 X X UDINT, UINT

Counter current 70 X X UDINT, UINT

Timer 22 X X BOOL, SINT,

USINT,

UINT, DINT,

INT, UDINT

Times current 69 X X UDINT, UINT

Communication

details
35 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT,

REAL,

STRING

Variables for the statistical
analysis of communication.

You can find detailed
information on this in the
Communication details
(Driver variables) (on page
34) chapter.

OBJECTS FOR PROCESS VARIABLES IN ZENON

KANALNAME DATENART KANALTYP OBJEKT LESEN SCHREIBEN

X Bool 8 10 8 X --

Creating variables

25

Y Bool 8 11 14 X X

M Bool 10 8 3 X X

Time target WORD 2 22 22 X X

Time target INT 1 22 22 X X

Time target

DWORD
4 22 23 X X

Time target DINT 3 22 23 X X

Counter target

WORD
2 23 28 X X

Counter target INT 1 23 28 X X

Counter target

DWORD
4 23 29 X X

Counter target

DINT
3 23 29 X X

Link relay BOOL 8 64 32 X X

Link relay BYTE 9 64 33 X X

Link relay CHAR 10 64 33 X X

Link relay WORD 2 64 34 X X

Link relay INT 1 64 34 X X

Link relay DWORD 4 64 35 X X

Link relay DINT 3 64 35 X X

Shift Register

BOOL
8 68 38 X X

Data Register

BOOL
8 65 44 X X

Data Register

BYTE
9 65 45 X X

Data Register

CHAR
10 65 45 X X

Data Register

WORD
2 65 46 X X

Data Register INT 1 65 46 X X

Data Register

DWORD
4 65 47 X X

Data Register DINT 3 65 47 X X

Link Register

BOOL
8 67 56 X X

Link Register 8 67 57 X X

Creating variables

26

BYTE

Link Register

CHAR
10 67 57 X X

Link Register

WORD
2 67 58 X X

Link Register INT 1 67 58 X X

Link Register

DWORD
4 67 59 X X

Link Register DINT 3 67 59 X X

Time current

WORD
2 69 64 X X

Time current INT 1 69 64 X X

Time current

DWORD
4 69 65 X X

Time current DINT 3 69 65 X X

Counter current

WORD
2 70 70 X X

Counter current

INT
1 70 70 X X

Counter current

DWORD
4 70 71 X X

Counter current

DINT
3 70 71 X X

X => supported

-- => not supported

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes
with the datatypes of the PLC.

Creating variables

27

EXAMPLES FOR ALL POSSIBLE ZENON DATA TYPES

PLC zenon

I8 i/u8Bit (signed)

I16 i/u16Bit (signed)

I32 i/u32Bit (signed)

U8 i/u8Bit

U16 i/u16Bit

U32 i/u32Bit

Boolean Boolean

 The property Data type is the internal numerical name of the data type. It is also used for the
extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every driver.

 Information

You can find details on the import and export of variables in the Import-Export
(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

7.4.1 XML import

During XML import of variables or data types, these are first assigned to a driver and then analyzed.
Before import, the user decides whether and how the respective element (variable or data type) is to be
imported:

 Import: The element is imported as a new element.

 Overwrite: The element is imported and overwrites a pre-existing element.

 Do not import: The element is not imported.

 The actions and their durations are shown in a progress bar during import.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

28

REQUIREMENTS

The following conditions are applicable during import:

 Backward compatibility

At the XML import/export there is no backward compatibility. Data from older zenon versions
cannot be taken over. The handover of data from newer to older versions is not supported.

 Consistency

The XML file to be imported has to be consistent. There is no plausibility check on importing the
file. If there are errors in the import file, this can lead to undesirable effects in the project.

Particular attention must be paid to this, primarily if not all properties exist in the XML file and
these are then filled with default values. E.g.: A binary variable has a limit value of 300.

 Structure data types

Structure data types must have the same number of structure elements.
Example: A structure data type in the project has 3 structure elements. A data type with the
same name in the XML file has 4 structure elements. Then none of the variables based on this
data type in the export file are imported into the project.

 Hint

You can find further information on XML import in the Import - Export manual, in the
XML import (main.chm::/13046.htm) chapter.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable settings, such
as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

main.chm::/13046.htm

Creating variables

29

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in the DBF file in
order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for
name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.
e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file name length
including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

FILE STRUCTURE OF THE DBASE EXPORT FILE

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

30

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with their name to the 8.3 DOS format (8 alphanumeric characters for name, 3
characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Identification Typ
e

Field size Comment

KANALNAME Char 128 Variable name.

The length can be limited using the MAX_LAENGE entry in
project.ini.

KANAL_R C 128 The original name of a variable that is to be replaced by the
new name entered under "VARIABLENNAME" (field/column
must be entered manually).

The length can be limited using the MAX_LAENGE entry in
project.ini.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has to be
created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE entry in
project.ini.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)
corresponds to the driver object type.

HWKANAL Num 3 Net address

BAUSTEIN N 3 Datablock address (only for variables from the data area of the
PLC)

ADRESSE N 5 Offset

BITADR N 2 For bit variables: bit address
For byte variables: 0=lower, 8=higher byte
For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables
ATTENTION: Only the first variable is fully available. All others
are only available for VBA or the Recipegroup Manager

Creating variables

31

LES_SCHR L 1 Write-Read-Authorization
0: Not allowed to set value.
1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object
comprises TREIBER-OBJEKTTYP and DATENTYP

SIGMIN Float 16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values
(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one decimal
possible)
not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal
possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s], one
decimal possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable is not
requested from the server but from the Standby Server in
redundant networks

RESOURCE C 128 Resources label.
Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry in
project.ini.

ADJWVBA R 1 Non-linear value adaption:
0: Non-linear value adaption is used

Creating variables

32

1: Non-linear value adaption is not used

ADJZENON C 128 Linked VBA macro for reading the variable value for non-linear
value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for non-linear value
adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

 Attention

When importing, the driver object type and data type must be amended to the target
driver in the DBF file in order for variables to be imported.

LIMIT VALUE DEFINITION

Limit definition for limit values 1 to 4, or status 1 to 4:

Creating variables

33

Identification Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for a
dynamic limit value (see VARIABLEx)
(if VARIABLEx is 1 and here it is -1, the existing variable
linkage is not overwritten)

SCHWWERT1 F 16 Threshold value for limit value

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking
the limit is defined by an absolute value (see field
GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function
(if “-1” is entered here, the existing function is not
overwritten during import)

A_GRUPPE1 N 10 Alarm/event group

A_KLASSE1 N 10 Alarm/event class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the
definition of variables. For more information, see chapter Variable definition.

Creating variables

34

7.5 Communication details (Driver variables)

The driver kit implements a number of driver variables. This variables are part of the driver object type
Communication details. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables implemented in the driver kit are available in the import file drvvar.dbf

(on the installation medium in the \Predefined\Variables folder) and can be imported from
there.

 Variable names must be unique in zenon. If driver variables of the driver object type
Communication details are to be imported from drvvar.dbf again, the variables that were imported
beforehand must be renamed.

 Information

Not every driver supports all driver variables of the driver object type Communication

details.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one
connection at a a time

Creating variables

35

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and no

OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver
simulation.

Creating variables

36

ConnectionStates STRING 61 Internal connection status of the driver to the
PLC.

Connection statuses:

0: Connection OK

1: Connection failure

2: Connection simulated

Formating:

<Netzadresse>:<Verbindungszustand

>;…;…;

A connection is only known after a variable
has first signed in. In order for a connection
to be contained in a string, a variable of this
connection must be signed in once.

The status of a connection is only updated if
a variable of the connection is signed in.
Otherwise there is no communication with
the corresponding controller.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically
reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial
interface. Writing to this variable
immediately results in the method
SrvDrvVarApplyCom being called (which
currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the
modem. Writing this variable immediately
calls the method SrvDrvVarApplyModem.
This closes the current connection and
opens a new one according to the settings
PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone
number

Creating variables

37

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be
kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the
modem

ComPort UINT 9 Number of the serial interface.

Baudrate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial
interface

Value = 0 if the driver cannot establish any
serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be
established automatically for
reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone
number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer
occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem
connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is
accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a
connection.

Creating variables

38

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is
required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is
required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required
to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required
to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read
all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read
all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group
Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group
Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group
High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group
Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

ERROR MESSAGE

Name from import Type Offset Description

Driver-specific functions

39

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error
occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error
occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error
occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error
occurred.

RdErrHwAdresse DINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8. Driver-specific functions

The driver supports the following functions:

CREATING A VARIABLE

The neta address matches the device number. 255 is for all PLCs.

Independent of the addressed range, the PLC element number matches the offset of the variable.

e.g. in the program WINDLDR, an output is named "Q0037", which means an offset of 37.

This offset consists of module 3 and output 7.

If there are more than 8 outputs - inputs on one module, the next highest module number will be used.

Driver commands

40

 Example

Output 10 at module 3 in this case has an offset of 40.

The following PLC areas are supported:

Parameters Description

Input Bit

Output Bit

Internal relay Bit

Link relay Bit, not available for MicroSmart

Shift relay Bit

Link relay Bit

Timer preset und Istwert Word

Counter preset und Istwert Word

Data register Word

Link register Bit, not available for MicroSmart

9. Driver commands

This chapter describes standard functions that are valid for most zenon drivers. Not all functions
described here are available for every driver. For example, a driver that does not, according to the data
sheet, support a modem connection also does not have any modem functions.

Driver commands are used to influence drivers using zenon; start and stop for example.
The engineering is implemented with the help of function Driver commands. To do this:

 create a new function

 select Variables -> Driver commands

Driver commands

41

 The dialog for configuration is opened

Driver commands

42

Parameter Description

Drivers Drop-down list with all drivers which are loaded in the project.

Current status Fixed entry which has no function in the current version.

Driver command Drop-down list for the selection of the command.

 Start driver (online
mode)

Driver is reinitialized and started.

 Stop driver (offline
mode)

Driver is stopped. No new data is accepted.

 If the driver is in offline mode, all variables that were
created for this driver receive the status switched off (OFF;

Bit 20).

 Driver in simulation mode Driver is set into simulation mode.
The values of all variables of the driver are simulated by the
driver. No values from the connected hardware (e.g. PLC, bus
system, ...) are displayed.

 Driver in hardware mode Driver is set into hardware mode.
For the variables of the driver the values from the connected
hardware (e.g. PLC, bus system, ...) are displayed.

 Driver-specific command Enter driver-specific commands. Opens input field in order to
enter a command.

 Driver - activate set
setpoint value

Write set value to a driver is allowed.

 Driver - deactivate set
setpoint value

Write set value to a driver is prohibited.

 Establish connecton with
modem

Establish connection (for modem drivers) Opens the input fields
for the hardware address and for the telephone number.

 Disconnect from modem Terminate connection (for modem drivers)

Show this dialog in the Runtime The dialog is shown in Runtime so that changes can be made.

DRIVER COMMANDS IN THE NETWORK

If the computer, on which the driver command function is executed, is part of the zenon network,
additional actions are carried out. A special network command is sent from the computer to the project
server, which then executes the desired action on its driver. In addition, the Server sends the same
driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby
both have a working and independent connection to the hardware.

Error analysis

43

10. Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display
them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also
installed with zenon. You can find it under Start/All programs/zenon/Tools 7.60 -> Diagviewer.

zenon driver log all errors in the LOG files. LOG files are text files with a special structure. The default
folder for the LOG files is subfolder LOG in the folder ProgramData. For example:

%ProgramData%\COPA-DATA\LOG.

 With the default settings, a driver only logs error information. With the Diagnosis Viewer
you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the
driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 Follow newly-created entries in real time

 customize the logging settings

 change the folder in which the LOG files are saved

1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more
columns activate property Add all columns with entry in the context menu of the column
header.

3. If you only use Error-Logging, the problem description is in the column Error text. For other
diagnosis level the description is in the column General text.

4. For communication problems many drivers also log error numbers which the PLC assigns to
them. They are displayed in Error text or Error code or Driver error parameter (1 and 2). Hints
on the meaning of error codes can be found in the driver documentation and the protocol/PLC
description.

5. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and
Deep Debug there are a great deal of data for logging which are saved to the hard drive and
which can influence your system performance. They are still logged even after you close the
Diagnosis Viewer.

main.chm::/12464.htm

Error analysis

44

 Attention

In Windows CE errors are not logged per default due to performance reasons.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer
(main.chm::/12464.htm) manual.

main.chm::/12464.htm

Error analysis

45

10.2 Error numbers

Number Description

X1000 Read. Command could not be sent to the PLC.

X1100 Time out while reading.

X1200 Read. Unknown command character in response.

X1300 Read response telegram is shorter than the minimum size.

X1400 Read. The checksum of the response is incorrect.

X1500 Read. Response telegram has an incorrect length.

X1600 Read. Error telegram has an incorrect length.

X1700 Read. PLC error message.

X1706 Read. PLC error message incorrect data range.

X1708 Read. PLC error message. Calendar or time data error.

X1800 Interface cannot be opened.

X1900 Write. Command could not be sent to the PLC.

X1A00 Write. Confirmation has an incorrect length.

X1B00 Write. PLC error message.

X1B06 Write. PLC error message incorrect data range.

X1B07 Write. PLC error message. Time/counter set value incorrect.

X1B08 Write. PLC error message. Calendar or time data error.

X1C00 Write. Error telegram has an incorrect length.

X1D00 Read. Command error has an incorrect length.

X1E00 Write. Unknown character in error telegram.

X1F00 Write. The checksum of the confirmation is incorrect.

X2000 Write. Telegram lenght of confirmation too short.

X2100 Write. Time for confirmation too long.

X22xx Write. PLC-specific command error. Look up XX in the PLC documentation.

X2300 Write. Start sign of confirmation unknown.

X2400 Write. Command error message has an incorrect length.

X2500 Read. PLC-specific command error. Look up XX in the PLC documentation.

X2600 Read. Command error message has an incorrect length.

Error analysis

46

10.3 Check list

Is the connection to the PLC configured correctly (interface, character format)?

Is the PLC turned on?

Can the PLC use the defined ranges and offsets?

Are the offset and the net address in the variable correct?

Was the "Error – text file" analyzed? (which errors occurred?)

Send the zenon project to support@copadata.com (mailto:support@copadata.com)

mailto:support@copadata.com

	1. Welcome to COPA-DATA help
	2. Idec32
	3. IDEC32 - Data sheet
	4. Driver history
	5. Requirements
	5.1 PC
	5.2 Control

	6. Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Driver dialog Com
	6.2.3 Driver dialog Idec settings

	7. Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export

	7.5 Communication details (Driver variables)

	8. Driver-specific functions
	9. Driver commands
	10. Error analysis
	10.1 Analysis tool
	10.2 Error numbers
	10.3 Check list

