

zenon manual
zenon WPF-Element

v.7.60

©2017 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

3

Contents

1. Welcome to COPA-DATA help .. 5

2. WPF element ... 5

3. Basics .. 6

3.1 WPF in process visualization ... 7

3.2 Referenced assemblies ... 8

3.3 Workflows ... 10

3.3.1 Workflow with Microsoft Expression Blend ... 11

3.3.2 Workflow with Adobe Illustrator .. 11

4. Guidelines for designers... 12

4.1 Workflow with Microsoft Expression Blend .. 12

4.1.1 Create button as an XAML file with Microsoft Expression Blend ... 12

4.2 Workflow with Adobe Illustrator .. 16

4.2.1 Bar graph illustration .. 17

4.2.2 WPF export ... 19

4.2.3 Animation in Blend ... 20

5. Guidelines for developers .. 24

5.1 Creation of a simple WPF user control with code behind function .. 24

5.2 Debugging the WPF user control in Runtime .. 30

5.3 Data exchange between zenon and WPF user controls .. 35

5.3.1 Data exchange using dependency properties .. 35

5.3.2 Data replacement via VSTA .. 39

5.4 Access to the zenon (Runtime) object model from a WPF user control ... 40

5.4.1 Access via VSTA "variable link" ... 40

5.4.2 Access via marshaling ... 45

6. Engineering in zenon ... 48

6.1 CDWPF files (collective files) ... 49

6.2 create WPF element.. 50

6.3 Configuration of the linking .. 50

6.3.1 Properties ... 53

4

6.3.2 Events ... 59

6.3.3 Transformation ... 61

6.4 Validity of XAML Files .. 63

6.5 Pre-built elements ... 65

6.5.1 Analog clock - AnalogClockControl ... 66

6.5.2 Bar graph vertical - VerticalBargraphControl ... 67

6.5.3 Progress bar - ProgressBarControl ... 68

6.5.4 COMTRADE-Viewer .. 68

6.5.5 Energy class diagram .. 79

6.5.6 Pareto diagram ... 80

6.5.7 Circular gauge control .. 84

6.5.8 Sankey Diagram .. 87

6.5.9 Temperature indicator - TemperatureIndicatorControl ... 89

6.5.10 Universal slider - UniversalReglerControl ... 90

6.5.11 Waterfall diagram ... 91

6.6 Display of WPF elements in the zenon web client .. 93

6.6.1 Engineering in the zenon Editor ... 93

6.6.2 VSTA code (complex) .. 94

6.6.3 VSTA code (simplified) .. 96

6.7 Examples: Integration of WPF in zenon .. 97

6.7.1 Integrate bar graph as WPF XAML in zenon ... 97

6.7.2 Integrate button as WPF XAML in zenon ... 102

6.7.3 Integrate DataGrid Control in zenon .. 108

6.8 Error handling ... 116

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and

give an initial insight into working with different zenon modules. All tutorials are available in

English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com
(mailto:documentation@copadata.com).

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com (mailto:support@copadata.com).

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com (mailto:sales@copadata.com).

2. WPF element

With the WPF dynamic element, valid WPF/XAML files in zenon can be integrated and displayed.

 In the zenon Editor, the standard tooltip for the WPF element is not displayed if a .wpf file is
linked. Furthermore, in zenon Runtime, the zenon tooltip for WPF elements is not supported.

https://www.copadata.com/tutorial_menu
mailto:documentation@copadata.com
mailto:support@copadata.com
mailto:sales@copadata.com

Basics

6

 Information

All brand and product names in this documentation are trademarks or registered
trademarks of the respective title holder.

3. Basics

XAML

XAML stands for Extensible Application Markup Language. The XML-based descriptive text developed
by Microsoft defines graphic elements, animations, transformations, displays of color gradients etc. in
Silverlight and WPF user interfaces. The use of XAML makes it possible to strictly separate design and
programming. The designer prepares, for example, the graphical user interface and creates basic
animations that are then used by the developers/project planners who create the application logic.

WPF

WPF stands for Windows Presentation Foundation and describes a graphics framework that is part of
the Windows .NET framework:

 WPF provides a comprehensive model for the programmer.

 XAML describes, based on XML, the interface hierarchy as a markup language. Depending on the
construction of the XAML file, there is the possibility to link properties, events and
transformations of WPF elements with variables and functions of
CD_PRODUCTNAME<.

 The framework unites the different areas of presentation such as user interface, drawing,
graphics, audio, video, documents and typography.

 For execution in zenon, Microsoft .NET framework version 3.5 or higher is required.

Basics

7

 Information

Transparency

In order for WPF controls in which a transparent background has been defined to
also be displayed as transparent, the following must be the case on the computer for
both Editor and Runtime:

 The operating system must be at least Windows 8.1

 The .NET framework version 4.6 or higher must be installed

WPFs are not shown as transparent in Windows 7 or 8. Instead, the transparent
areas are filled with the background color set on the zenon screen.

3.1 WPF in process visualization

XAML makes different design possibilities possible for zenon. Display elements and dynamic elements
can be adapted graphically regardless of the project planning. For example, laborious illustrations are
first created by designers and then imported into zenon as an XAML file and linked to the desired logic.
There are many possibilities for using this, for example:

DYNAMIC ELEMENTS IN ANALOG-LOOK

Graphics no longer need to be drawn in zenon, but can be imported directly as an XAML file. This makes
it possible to use complex, elaborately illustrated elements in process visualization. Reflections, shading,
3D effects etc. are supported as graphics. The elements that are adapted to the respective industry
environment make intuitive operation possible, along the lines of the operating elements of the
machine.

INTRICATE ILLUSTRATIONS FOR INTUITIVE OPERATION

Basics

8

The integration of XAML-based display elements improves the graphics of projects and makes it very
easy to display processes clearly. Elements optimized for usability make operation easier. A clear display
of data makes it easier to receive complex content. The flexible options for adapting individual elements
makes it easier to use for the operator. It is therefore possible for the project planners to determine
display values, scales and units on their own.

CLEAR PRESENTATION OF DATA AND SUMMARIES

Grouped display elements make it possible to clearly display the most important process data, so that
the equipment operator is always informed of the current process workflow. Graphical evaluations,
display values and sliders can be grouped into an element and make quick and uncomplicated control
possible.

INDUSTRY-SPECIFIC DISPLAYS

Elements such as thermometers, scales or bar graphs are part of the basic elements of process
visualization. It is possible, using XAML, to adapt these to the respective industry. Thus equipment
operators can find the established and usual elements that they already know from the machines in
process visualization at the terminal.

ADAPTATION TO CORPORATE DESIGN

Illustrations can be adapted to the respective style requirements of the company, in order to achieve a
consistent appearance through to the individual process screen. For example, the standard operation
elements from zenon can be used, which can then be adapted to color worlds, house fonts and
illustration styles of the corporate design.

3.2 Referenced assemblies

It is not just standard objects (rectangles, graphics, etc.) or effects (color gradients, animations, etc.) that
can be displayed using the WPF elements, but also customized user controls (with logic in the code
behind), which are referenced as assemblies.

Basics

9

For example, a user control that looks like a tacho and provides special properties and optical effects can
be created, such as a "Value" property, which causes the pointer of the tacho to move and/or the
corresponding value to be displayed in a label.

The workflow for this:

 The appearance of a user controls is labeled with standard objects, which are offered by WPF.

 The properties and interactions are programmed.

 The whole package is compiled and present in the form of a .NET assembly.

This assembly can also be used for WPF projects. To do this, it must be referenced (linked) in the WPF
editor (for example: Microsoft Expression Blend). To do this, select the assembly in the zenon file
selection dialog:

From this point in time, the WPF user controls of the assembly in the tool box can be selected under
Custom user controls and used in the WPF project.

See also, in relation to this, the following chapter: Guidelines for developers (on page 24).

USED REFERENCED ASSEMBLIES IN ZENON

To use an assembly in zenon, this must be provided as a file.
Collective files in .cdwpf format administer these independently; no further configuration is necessary.
Assemblies must be added to the Files folder for .xaml files:

 Click on Files on the project tree

 Select Other

 Select Add file... in the context menu

 The configuration dialog opens

 Insert the desired assembly

When displaying a WPF file in the WPF element (Editor and Runtime), the assemblies from this folder
are loaded. It is thus also ensured that that when the Runtime files are transferred using Remote

Transport, all referenced assemblies are present on the target computer.

A collective file (.cdwpf) can exist alongside an XAML file with the same name. All assemblies (*.dll) from

all collective files and the Other folder are copied to the work folder. Only the highest file version is
used if there are several assemblies with the same name.

Basics

10

 Hint

DLLs that belong to a WPF element (referenced by the linked XAML file) can also be
replaced in the Editor during ongoing operation.
To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.
You can find this folder in the SQL directory under
...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in the
zenon Editor directly; to do this:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the file
with the higher version number.

MULTI-PROJECT ADMINISTRATION

With multi-project administration, the same assembly must be used in all projects. If an assembly is replaced
by another version in a project, it must also be replaced in all other projects that are loaded in the Editor or in
Runtime.

3.3 Workflows

The WPF/XAML technology makes new workflows in process visualization possible. The separation of
design and functionality ensures a clear distinction of roles between the project engineer and designers;
design tasks can be easily fulfilled by using pre-existing designs, which no longer need to be modified by
the project engineer.

The following people are involved in the workflow to create WPF elements in zenon:

 Designer

 illustrates elements

 takes care of the graphics for MS Expression Design

 MS Expression Blend operator

 Animates elements

Basics

11

 Creates variables for the animation of WPF elements in zenon, which project engineer can
access

 Project engineer

 Integrates elements into zenon:

 stores logic and functionality

We make a distinction:

 Workflow with Microsoft Expression Blend (on page 11)

 Workflow with Adobe Illustrator (on page 11)

3.3.1 Workflow with Microsoft Expression Blend

When using Microsoft Expression Blend, a WPF element is created in four stages:

1. Illustration of elements in MS Expression Blend (on page 12)

2. Open element in MS Expression Design and export as WPF

3. Animation in MS Expression Blend (on page 12)

4. Integration into zenon (on page 102)

You can find an example for creating a WPF elements with Microsoft Expression Blend in the Create
button as XAML file with Microsoft Expression Blend (on page 12) chapter.

3.3.2 Workflow with Adobe Illustrator

Based on traditional design processes with Adobe Illustrator the following workflow is available:

1. Illustration of elements in Adobe Illustrator (on page 17)

2. Import of .ai files and preparation in MS Expression Design (on page 19)

3. WPF export from MS Expression Design (on page 19)

4. Animation in MS Expression Blend (on page 20)

5. Integration into zenon (on page 97)

You can find an example for creation in the Workflow with Adobe Illustrator (on page 16) chapter.

Guidelines for designers

12

4. Guidelines for designers

This section informs you how to correctly create WPF files in Microsoft Expression Blend and Adobe
Illustrator. The tutorials on Creating a button element (on page 12) and a bar graph element (on page
16) show you how fully functional WPF files for zenon can be created from pre-existing graphics in a few
steps.

The following tools were used for this:

 Adobe Illustrator CS3 (AI)

 Microsoft Expression Design 4 (ED)

 Microsoft Expression Blend 4 (EB)

 zenon

 Information

If referenced objects (assemblies) are used in WPF, note the instructions in the
Referenced objects (on page 8) chapter.

4.1 Workflow with Microsoft Expression Blend

With Microsoft Expression Blend, a WPF element:

 is illustrated

 is converted into WPF format using MS Expression Design

 animated

The following example shows the illustration and conversion of a button element into an XAML file.

 A test version of "Microsoft Expression Blend" can be downloaded from the Microsoft website.

4.1.1 Create button as an XAML file with Microsoft Expression Blend

CREATE BUTTON

1. Start Expression Blend

Guidelines for designers

13

2. select the New Project option

3. Select WPF as project type

4. give it a path and name of your choice (MyBlendProject, for example)

The Language and Version settings can be ignored, because no functionality is to be
programmed.

5. After the dialog has been confirmed with OK, Microsoft Blend creates a new project with the
chosen settings. Expression Blend adds an empty XAML file which already contains a class
reference.

6. Delete the CS file that belongs to the XAML file using the context menu.

Guidelines for designers

14

7. Rename the XAML file MainControl.xaml to MyButton.xaml.

8. The development size of the file is set at 640 x 480 pixels as standard and must still be changed:

a) switch to XAML view

b) correct the size to 100 x 100 pixels

c) Delete the class reference x:Class="MyBlendProject.MyButton"

9. switch to Design view

10. add a button via the toolbar

11. define the properties

 Width: 50

 Height: 50

Guidelines for designers

15

 Margins: 25

The button is therefore at the center of the control.

12. Save the changes and open the file in Internet Explorer to check it. You will see that the button is
displayed in a size of 50 x 50 pixels.

MAKE BUTTON SCALABLE

If you integrate this status into zenon, the button will always have the exact size of 50 x 50 pixels.
Because the button can be implemented as a scalable button, switch to Expression Blend again:

1. Select the button in the tree view.

2. select the Group Into->Viewbox button in the context menu

3. the button is inserted into a Viewbox

4. Define the properties of the viewbox

 Width: Auto

 Height: Auto

Guidelines for designers

16

5. save the file

6. If you now open the file in Internet Explorer, the button is automatically scaled when the IE
window size is changed. This file will now also automatically adapt to changes in the size of the
WPF element in zenon.

CHANGE NAME

Before you can integrate the file into zenon, you must give the WPF element a name. The WPF elements
are not named in Expression Blend as standard, and are labeled with square brackets and their type.
zenon content is assigned to WPF content via the name of the WPF elements:

 in tree view, change the name

 of the button on MyButton

 of the ViewBox to MyViewBox

This button can now be integrated in zenon (on page 102) as an XAML file.

4.2 Workflow with Adobe Illustrator

When Adobe Illustrator is used, a WPF element:

 is illustrated in Adobe Illustrator

 is converted into a WPF in MS Expression Design

 is animated in MS Expression Blend

The following example shows the illustration and conversion of a bar graph element into an XAML file.

Guidelines for designers

17

4.2.1 Bar graph illustration

A bar graph is created in Adobe Illustrator.

1. AI: Starting element for bar graph

Illustrated in Adobe Illustrator CS3.

2. AI: Path view of bar graph in Adobe Illustrator

 All effects must be converted (Object -> Convert appearance)

 All lines are transformed into paths (Object -> Path -> Contour line)

 Do not use filters such as shading, blurring etc.

NOTES ON COMPATIBILITY

Illustrations that were created with Adobe Illustrator are in principle suitable for WPF export. However,
not all Illustrator effects can become corresponding effects in Expression Design/Blend. Note:

Guidelines for designers

18

Effect Description

Clipping masks Clipping masks created in Adobe Illustrator are not correctly interpreted
by Expression Design. These are usually shown in Blend as areas of black
color.

We recommend creating illustrations without clipping masks.

Filters and effects Not all Adobe Illustrator filters are transferred into Expression Design
accordingly: Thus blurring filters, shading filters and corner effects from
Illustrator do not work in Expression Design.

Solution:

 Most effects can be converted so that they can be read correctly by
Expression Design using the Object -> Convert appearance
command in Adobe Illustrator.

 Corner effects from Adobe Illustrator are correctly interpreted by MS
Design if they are converted to AI in paths.

Text fields To be able to link text fields with code, these must be created separately
in Expression Blend. "Labels" are required for dynamic texts; simple
"text fields" are sufficient for static information.

There is no possibility to create text labels in MS Design. These must be
directly created in MS Blend.

Transparencies and group

transparencies
There can be difficulties in Adobe Illustrator with the correct
interpretation of transparency settings, in particular from group
transparency settings.

However MS Expression Blend and MS Expression Design do offer the
possibility to create new transparency settings.

Multiply levels These level settings in Adobe Illustrator are not always correctly
displayed by MS Expression Blend.

However, there is the possibility to "Multiply levels" directly in
Expression Design.

Indicating instruments and

standard positions
To prepare the graphics optimally for animation, the indicator and slider
must always be set to the starting position, usually 0 or 12:00

o'clock.

Thus the position parameters for rotations etc. are also correct in Blend
and an animation can be implemented without conversion of position
data.

Guidelines for designers

19

4.2.2 WPF export

WPF files are required for animation in Microsoft Expression Blend. We recommend Microsoft
Expression Design for this export, because it provides good results and most Illustrator effects are
correctly interpreted.

 There is a free plug-in for the direct export of WPF files from Adobe Illustrator available on the
internet. This plug-in provides a quick, uncomplicated way of exporting from Illustrator, however it is
less suited to the current application because it lead to graphical losses. Even color deviations from the
original document are possible.

Files in .ai format can regularly be imported into Expression Design; the paths are retained in the
process.

 Some common Illustrator effects cannot be displayed by Expression Design correctly
however (see Illustration (on page 17) chapter).

We export the pre-created bar graph element in 5 stages:

1. ED: Import

 Import the prepared Illustrator file (on page 17) in Microsoft Expression Design via File ->

Import

2. ED: Optimization

 If the starting file is not correctly displayed in MS Expression Design, it can still be
subsequently edited and optimized here

Guidelines for designers

20

3. ED: Select

 Highlight the element for WPF export with the direct selection arrow in MS Expression
Design; in this case it is the whole clock

4. ED: Start export

 Start the export via File -> Export

 the dialog for configuring the export settings opens

5. ED: Export settings

 Enter the following export settings:

a) Format: XAML Silverlight 4 / WPF Canvas

Always name objects: Activate with tick

Place the grouped object in an XAML layout container: Activate with tick

b) Text: Editable text block

c) Line effects: Rasterize all

The exported file has .xaml file suffix. It is prepared and animated (on page 20) in MS Expression Blend
in the next stage.

4.2.3 Animation in Blend

With MS Expression Blend:

 static XAML files from MS Expression Design are animated

 Variables for controlling effects that can be addressed by zenon are created

Guidelines for designers

21

In thirteen steps, we go from a static XAML to an animated element, that can be embedded in zenon:

1. EB:create project

a) Open Microsoft Expression Blend

b) Create a new project

c) Select the Project type of WPF- >WPF Control Library

d) Give it a name (in our tutorial: My_Project)

e) Select a location where it is to be saved

f) Select a language (in our tutorial: C#)

g) Select Framework Version 3.5

2. EB: delete MainControl.xaml.cs

a) Navigate to MainControl.xaml.cs

b) Delete this file using the Delete command in the context menu

3. EB: Open exported XAML file

a) Open the context menu for My_Project (right mouse button)

b) Select Add existing element…

c) Select the XAML file exported from Microsoft Expression Design, in order to open this in
Microsoft Expression Blend

4. EB: Open MainControl.xaml

Guidelines for designers

22

a) Open the automatically created MainControl.xaml

b) In the Objects and Time axes area, navigate to the UserControl entry

5. EB: Adapt XAML code

a) Click on UserControl with the right mouse button

b) Select Display XAML in the contextual menu.

c) Delete lines 7 and 9 in the XAML code:

x:Class="My_Project.MainControl"

d:DesignWidth="640" d:DesignHeight="480"

6. EB: check XAML code

 The XAML code should now look like this:

<UserControl

xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d"
x:Name="UserControl">

<Grid x:Name="LayoutRoot"/>

</UserControl>

7. EB: Copy elements

a) Open the XAML file imported from Expression Design

b) Mark all elements

c) Select Delete in the context menu

d) Change back to the automatically created XAML file

Guidelines for designers

23

8. EB: Insert element

a) Click on Layout Root with the right mouse button

b) Select Insert

9. EB: Adapt layout type

a) Click on Layout root -> Change layout type -> Viewbox with the right mouse button

b) The structure should now look like this: UserControl -> LayoutRoot -> Grid -> Elements

c) Give a name for LayoutRoot and Grid by double-clicking on the names

10. EB: Texts and values

 Dynamic and static texts are labeled with text fields

 Values (numbers) are issued with Labels

11. EB: Insert labels

 Labels replace numbers that are to be subsequently linked using INT variables (must be
carried out for all number elements)

12. EB: Set property

 To display 100%, set the bar graph element's MaxHeight property to 341 (the maximum
height of the indicator element is 340)

Guidelines for developers

24

13. EB: prepare for use in zenon

a) Delete all name labels (names may only be given for elements that are to be addressed via
zenon)

b) Save the XAML file with any desired name

c) Integrate the XAML file into zenon (on page 97)

 If the XAML file is displayed with no problems in Microsoft Internet Explorer and
the window size of Internet Explorer adapts to it, it will also be correctly used in zenon.

5. Guidelines for developers

This section handles the creation of simple WPF user controls with code-behind functionality using
Microsoft Visual Studio and debugging this user control in Runtime.

The following tools were used for this:

 Microsoft Visual Studio 2015

 zenon

 Information

A Microsoft Visual Studio version from 2012 is recommended, due to the
better-integrated XAML designer.

5.1 Creation of a simple WPF user control with code behind
function

The creation and incorporation of a simple user control is described in this chapter. Because only the
fundamental mechanisms/process for integration into zenon is described, the functionality of the user
control is limited to the addition of two values. There is intentionally no enhanced error handling or
explicit completion, in order to retain the simplicity of this example.

Guidelines for developers

25

CREATE WPF USER CONTROL

1. Create a new Solution and a WPF User Control Library in this in Visual Studio.

The .NET framework version 4 was selected for this example. A different version can also be
selected, which must be installed on the target system on which Runtime will subsequently be
started.

 If the corresponding project template does not appear in the list of available templates,
this can be added by means of the search (field at the top right of the dialog).

In our example, the project is given the name WPFUserControlLibrary.

Guidelines for developers

26

2. Create 3 text boxes and a button in the UserControl1.xaml file:

3. Add the following code in the click event of the button:

Now you have the user control with the required functionality available. However, because zenon can
only display XAML files that do not link to a code-behind file, an additional XAML file is needed that
references the library (assembly) that has just been built.

CREATION OF THE XAML FILE (WITHOUT CODE BEHIND) FOR ZENON

Proceed as follows to create the XAML file required in zenon.

1. Create a further project, again as a WPF User Control Library

2. It was called WPFUserControlNoCodeBehind in our example.

Guidelines for developers

27

3. Insert a reference to the project that has just been built into this new project.

4. The XAML files (UserControl1.xaml) looks as follows:

5. Because all necessary content is contained in the DLL that has been created and no code-behind
file can be used, delete the following lines:

x:Class="WPFUserControlNoCodeBehind.UserControl1"

xmlns:local="clr-namespace:WPFUserControlNoCodeBehind"

6. Also delete (for the designer's size setting) the following lines:

mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="300"

7. Delete the code-behind file (UserControl1.xaml.cs) in this project.

8. Drag the user control that has been created beforehand (for the project
WPFUserControlLibrary) over the toolbox in the XAML designer.

9. Assign a name for the grid and the user control.

 If no name is given here, these elements do not appear in the linking dialog in the
zenon Editor and thus cannot be made dynamic.

Guidelines for developers

28

10. The XAML file should now look as follows:

In the next step, how the DLL and XAML file are incorporated into zenon is explained.

STEPS IN ZENON

1. Open the zenon Editor

2. Go to File -> Graphics.

3. Select Add file... in the context menu

4. Select the XAML file at the save location (UserControl1.xaml from the
WPFUserControlNoCodeBehind project) and add this:

5. Insert the DLL with the functionality for the XAML file.

To do this:

a) Select, in the context menu, File -> OtherAdd file....

Guidelines for developers

29

b) Select the file WPFUserControlLibrary.dll (from the output path) of the first project
(WPFUserControlLibrary).

6. Create a zenon screen.

7. Add a WPF element and select the previously-incorporated XAML file.

You should now see the following in the zenon Editor:

8. Start zenon Runtime in order to also test the control there.

 Information

The XAML file and referenced assemblies can also be saved in complied form as a
*.cdwpf file. Only one file thus need to be imported in the Editor (under Files ->
Graphics). Further information on this can be found in the CDWPF files (collective
files) (on page 49) chapter.

 When developing a WPF user control, it is usually more practical to insert the
XAML file and the referenced DLL(s) separately. This makes the replacement of the
DLL and debugging easier. Further information on the topic of debugging in the
Debugging the WPF user control in Runtime (on page 30).

Guidelines for developers

30

 Hint

DLLs that belong to a WPF element (referenced by the linked XAML file) can also be
replaced in the Editor during ongoing operation.
To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.
You can find this folder in the SQL directory under
...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in the
zenon Editor directly; to do this:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the file
with the higher version number.

Further examples can be found in the Examples: Integration of WPF into zenon (on page 97) chapter.

5.2 Debugging the WPF user control in Runtime

To debug the WPF user control in Runtime, proceed as follows.

In this example, the control described in the Creation of a simple WPF user controls with code behind
function (on page 24) is used.

DEBUGGING BY MEANS OF ATTACH TO PROCESS

1. Ensure that zenon Runtime has been started and a screen with the WPF user control is open.

Furthermore, ensure that the DLL that is currently being used corresponds to the build (Version)
of the user control project (WPFUserControlLibrary).

Guidelines for developers

31

2. Set a breakpoint in the click event of the button in the Visual Studio project

3. In Visual Studio, under Debug , select the Attach to Process menu item.

4. Select the zenon Runtime process

5. Under Attach to, select either Automatic or the corresponding .NET framework version (v4.x in
this case)

6. Click on Attach.

Guidelines for developers

32

7. Now trigger the breakpoint in which you enter values into the WPF control in zenon Runtime and
click on the button

DEBUG USING START EXTERNAL PROGRAM

1. Ensure that zenon Runtime has been closed.

2. Ensure that, in the zenon Editor, the project that contains the WPF user control has been set as
the start project.

3. Ensure that the user control project (WPFUserControlLibrary) is set as the start project in Visual
Studio.

4. In the project properties of the Visual Studio project, select under Debug, for Start action: Start

external program

5. For Start external program, select the path of the zenon Runtime application.

6. Under Working Directory, select the \wpfcache folder of the Runtime files
(...\PROJECTNAME\RT\FILES\zenon\custom\wpfcache)

Guidelines for developers

33

 In the selected project in the zenon Editor, press the keyboard combination CTRL+ALT+R
in order to jump directly to the root directory of the Runtime files.

7. In the project properties, enter \wpfache folder of the Runtime files as the Output path under
Build .

8. Create the project in Visual Studio

9. Start debugging in Visual Studio with Start

10. zenon Runtime is now started automatically.

11. Trigger the breakpoint by entering values in the WPF control in zenon Runtime and click on the
button

Guidelines for developers

34

 Information

When starting zenon Runtime, the assemblies (DLLs) referenced in the WPF user
controls from the \FILES\zenon\custom\additional folder, and/or the assemblies
from CDWPF files in the \FILES\zenon\custom\wpfcache folder are copied. If the file
version of the DLL in the \wpfache folder is one higher than the version of the
"original file", it is not replaced!

For debugging, it is thus sufficient to only replace the file that is on the \wpfache
folder directly.

For delivery, it must be ensured that the current version of the DLL is present in the
\additional folder or the CDWPF file!

 If only the DLL is updated in the \additional folder or in the CDWPF, but
the version number is not increased, the DLL must be deleted manually in the
\wpcache folder, because it is not updated otherwise (due to the above-described
mechanism).

 Hint

DLLs that belong to a WPF element (referenced by the linked XAML file) can also be
replaced in the Editor during ongoing operation.
To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.
You can find this folder in the SQL directory under
...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in the
zenon Editor directly; to do this:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the file

with the higher version number.



Guidelines for developers

35

5.3 Data exchange between zenon and WPF user controls

There are different possibilities for exchanging data between zenon and WPF user controls.

 Data exchange using dependency properties (on page 35)

 Data replacement via VSTA (on page 39)

5.3.1 Data exchange using dependency properties

The most elegant and secure way to exchange data between zenon and self-created WPF user controls
is by using Dependency Properties.

The WPF user control project created in the Creating a simple WPF user controls with code behind
function (on page 24) serves as a basis (WPFUserControlLibrary).

In this chapter, the focus is purely on the core theme (Dependency Properties and data exchange
between the user control and zenon in this case). Specific WPF features such as Databinding, etc., as
well as explicit error handling, are not covered.

ADDITIONS TO THE CODE

1. Create the TextChanged Event for the textBoxA element in the UserControl1.xaml file

TextChanged="textBoxA_TextChanged"

2. Add the following lines of code in the UserControl1 class of the code behind file
(UserControl1.xaml.cs)

 /// <summary>

 /// Gets or sets the ValueA.

 /// </summary>

 public double ValueA

 {

 get

 {

 return (double)GetValue(ValueADependencyProperty);

 }

 set

 {

 SetValue(ValueADependencyProperty, value);

 }

 }

Guidelines for developers

36

 /// <summary>

 /// Dependency property for ValueA

 /// </summary>

 public static readonly DependencyProperty ValueADependencyProperty =

 DependencyProperty.Register("ValueA", typeof(double),

 typeof(UserControl1), new FrameworkPropertyMetadata(0.0, new

PropertyChangedCallback(OnValueADependencyPropertyChanged)));

 /// <summary>

 /// Called when [value a dependency property changed].

 /// </summary>

 /// <param name="source">The source.</param>

 /// <param name="e">The <see cref="DependencyPropertyChangedEventArgs"/> instance

containing the event data.</param>

 private static void OnValueADependencyPropertyChanged(DependencyObject source,

DependencyPropertyChangedEventArgs e)

 {

 UserControl1 control = source as UserControl1;

 if (control != null)

 {

 try

 {

 control.ValueA = (double)e.NewValue;

 control.textBoxA.Text = control.ValueA.ToString();

 }

 catch (Exception)

 {}

 }

 }

 /// <summary>

 /// Handles the TextChanged event of the textBoxA control.

 /// </summary>

 /// <param name="sender">The source of the event.</param>

 /// <param name="e">The <see cref="TextChangedEventArgs"/> instance containing the

event data.</param>

 private void textBoxA_TextChanged(object sender, TextChangedEventArgs e)

 {

 try

Guidelines for developers

37

 {

 ValueA = Convert.ToDouble(textBoxA.Text);

 }

 catch (Exception)

 {}

 }

Then build the solution.

 Information

A numerical property (double) is used in this example. Other simple data types (such
as bool, string, int, etc.) can also be used.

LINKING IN ZENON

1. Update the WPF user control (DLL) in the zenon Editor.

2. Proceed as described in the creation of a simple WPF user controls with code behind function
(on page 24) chapter.

3. Create a numeric variable in zenon. Link this variable to a dynamic text element. You place the
dynamic text element in the screen next to the WPF element with your user control.

4. Open the screen that contains the WPF element and select, for the WPF element, under WPF

links: Configuration

Guidelines for developers

38

5. Expand the node in the tree at the top left and select AdditionControl

6. Select the line with ValueA (this is the name of the property that was created in the code
beforehand) and select, for Type of link:, Variable.

 Give Properties a prefix so that this can be found more easily, for example: _ValueA

7. In the column under Linkage, print out the variable that was created in zenon beforehand

8. Confirm the dialog with OK and build the Runtime files

9. Start Runtime in order to test the WPF user control

10. If the value is changed in user control, the value automatically changes in zenon and vice versa.

11. Of course you can debug the control as described in the Debugging the WPF user control in
Runtime (on page 30) chapter, as well as create further dependency properties.

Guidelines for developers

39

 Information

The UserControl_Loaded event can be used in order to (automatically) access the
values of the dependency property during initialization (when calling up the user control)
for example.

5.3.2 Data replacement via VSTA

Data can also be exchanged between zenon and WPF user controls using VSTA.

The API element methods

 get_WPFProperty (reading of values)

 set_WPFProperty (writing of values)

are used for this.

The example used here is based on the example used in the Data exchange using dependency properties
(on page 35) chapter.

CREATION OF A VSTA MACRO FOR DATA EXCHANGE BETWEEN ZENON AND THE WPF
USER CONTROL

1. Create the following VSTA macro in the project add-in of the zenon project

Whereby:

 "Screen" is the name of the zenon screen in which the WPF element is located

 "WPF_Element" is the name of the WPF element that contains the WPF user control

 "AdditionControl" is the name of the WPF user controls itself (defined in the
(UserControl1.xaml file)

 "ValueA" is the name of the user control property

Guidelines for developers

40

2. Create an execute VSTA macro function and link this to a button in the screen in which the WPF
element is also located

3. Start Runtime to test changes

When executing the macro, the value is read by the control, doubled and written back.

 Information

The user control properties used for this method of data exchange need not necessarily
be dependency properties, as outlined in this example. "Standard" properties can also be
used, see in relation to this the Access via VSTA "variable link" (on page 40) chapter.

5.4 Access to the zenon (Runtime) object model from a WPF user
control

There are different possibilities for access to the zenon object model from a WPF user control. This is
explained in more detail in the following chapters.

 Attention

When using zenon COM objects with self-created user controls or external applications,
they must be enabled using the Marshal.ReleaseComObject method. Enabling by
means of the Marshal.FinalReleaseComObject method must not be used, because
this leads to a malfunction of zenon add-ins.

5.4.1 Access via VSTA "variable link"

In order to get access to the zenon Runtime COM interface by means of "variable link", proceed as
follows. The creation of a simple WPF user controls with code behind function (on page 24) serves as an
initial example.

Guidelines for developers

41

 Information

The following code is intended to show an example of how the COM implements
access to zenon Runtime and in doing so limits itself to the basic functionality. There
is no explicit error handling, etc.

NECESSARY AMENDMENTS IN WPF USER CONTROL

The following steps are necessary in the WPF user control project (WPFUserControlLibrary).

Firstly, a reference to the zenon COM interface must be incorporated.

After this, the following code must be inserted in the UserControl1 class:

//The zenon Project

zenOn.Project zenonProject = null;

/// <summary>

/// Property for the Variable link via VSTA

/// </summary>

public object zenonVariableLink

{

 get { return null; }

 set

 {

 if (value != null && zenonProject == null)

 {

Guidelines for developers

42

 zenOn.Variable zenonVariable;

 try

 {

 zenonVariable = (zenOn.Variable)value;

 }

 catch (Exception)

 {

 return;

 }

 if ((zenonVariable!= null) && (!string.IsNullOrEmpty(zenonVariable.Name)))

 {

 zenonProject = zenonVariable.Parent.Parent;

 }

 }

 }

}

/// <summary>

/// Trigger used to notify the control from VSTA to release the COM resources

/// </summary>

public object zenonReleaseTrigger

{

 get { return null; }

 set

 {

 if ((bool)value && zenonProject != null)

 {

 try

 {

 Marshal.ReleaseComObject(zenonProject);

 }

 catch (Exception)

 {

 return;

 }

 zenonProject = null;

 GC.Collect();

 GC.WaitForPendingFinalizers();

 GC.Collect();

Guidelines for developers

43

 }

 }

}

Whereby access to the properties zenonVariableLink (to initialize the COM object) and
zenonReleaseTrigger (to unlock the COM object) are subsequently accessed from VSTA (write).

In order to test the COM access quickly very easily, it is possible to insert the following line of code in
the existing button-click event of the user control.

private void buttonAdd_Click(object sender, RoutedEventArgs e)

{

 if (zenonProject != null)

 {

 MessageBox.Show(zenonProject.Name);

 }

 return;

 ...

 Information

A zenOn.Project variable is used in this example. Of course other objects such as
events, etc. of the zenon object model can also be used.

NECESSARY AMENDMENTS IN THE ZENON PROJECT/VSTA CODE

The following steps are necessary in the VSTA code:

Creation of a VSTA macro for the initialization

/// <summary>

/// Macro for API initialization in the WPF User Control

/// </summary>

public void MacroWPFInit()

{

 zenOn.IDynPicture myWPFScreen = this.DynPictures().Item("Screen");

 zenOn.IElement myWPFElement = myWPFScreen.Elements().Item("WPF_Element");

 myWPFElement.set_WPFProperty("AdditionControl", "zenonVariableLink",

this.Variables().Item(0));

}

Guidelines for developers

44

Creation of a VSTA macro for approval

/// <summary>

/// Macro for API release in the WPF User Control

/// </summary>

public void MacroWPFRelease()

{

 zenOn.IDynPicture myWPFScreen = this.DynPictures().Item("Screen");

 zenOn.IElement myWPFElement = myWPFScreen.Elements().Item("WPF_Element");

 myWPFElement.set_WPFProperty("AdditionControl", "zenonReleaseTrigger", true);

}

Create two execute VSTA macro functions that are linked with buttons, which are in the same screen as
the WPF element.

Now start Runtime in order to test the functionality

 Execute the macro for initialization

 Click on the button in the WPF user control; a message box with the project name of the project
appears

 Execute the macro for release

In order to debug the user control, it is possible to proceed as described in the Debugging the WPF user
control in Runtime (on page 30).

Guidelines for developers

45

 Hint

The initialization and release of the COM object in this example is only carried out for
simple demonstration using VSTA macro functions. Depending on the application, and/or
in practice, events in VSTA are better suited to this.

For example, the code for initialization in the _Open event of the screen can be executed
with the WPF element and the code for release in the _Close event.

The mechanism described here is also used in the Display of WPF elements in the zenon
Web Client (on page 93) chapter.

 Attention

If COM objects are used in WPF user controls, these must always be explicitly approved
before destroying the WPF user control (before closing the screen, before closing
Runtime, before reloading).

5.4.2 Access via marshaling

In order to get access to the zenon Runtime COM interface by means of marshaling, proceed as follows.
The creation of a simple WPF user controls with code behind function (on page 24) serves as an initial
example.

 Information

The following code is intended to show an example of how the COM implements
access to zenon Runtime and in doing so limits itself to the basic functionality. There
is no explicit error handling, etc.

NECESSARY AMENDMENTS IN WPF USER CONTROL

The following steps are necessary in the WPF user control project (WPFUserControlLibrary).

Guidelines for developers

46

Firstly, a reference to the zenon COM interface must be incorporated.

After this, the following code must be inserted in the UserControl1 class:

//The zenon Project

zenOn.Project zenonProject = null;

Furthermore, the constructor of the user controls must be supplemented with the lines below (to
initialize the COM object):

/// <summary>

/// Constructor for UserControl1, initialize COM Object

/// </summary>

public UserControl1()

{

 InitializeComponent();

 try

 {

 zenonProject =

((zenOn.Application)Marshal.GetActiveObject("zenOn.Application")).Projects().Item("TES

TPROJECT");

 }

 catch (Exception)

 {

 }

}

Guidelines for developers

47

The COM object must be approved in the UserControl_Unloaded event:

/// <summary>

/// Release COM Object

/// </summary>

private void UserControl_Unloaded(object sender, RoutedEventArgs e)

{

 try

 {

 if (zenonProject != null)

 {

 Marshal.ReleaseComObject(zenonProject);

 zenonProject = null;

 }

 }

 catch (Exception)

 {

 }

}

In order to test the COM access quickly very easily, it is possible to insert the following line of code in
the existing button click event of the user control.

private void buttonAdd_Click(object sender, RoutedEventArgs e)

{

 if (zenonProject != null)

 {

 MessageBox.Show(zenonProject.Name);

 }

 return;

 ...

Now build the solution and update the WPF user control in the zenon project.

Engineering in zenon

48

Start Runtime to test the user control.

In order to debug the user control, it is possible to proceed as described in the Debugging the WPF user
control in Runtime (on page 30).

 Information

A zenOn.Project variable is used in this example. Of course other objects such as
events, etc. of the zenon object model can also be used.

 Attention

If COM objects are used in WPF user controls, these must always be explicitly approved
before destroying the WPF user control (before closing the screen, before closing
Runtime, before reloading).

 Information

No access by means of marshaling is possible in the zenon web client. If access to the
COM interface is required there, the method described in the Access via VSTA "variable
link" (on page 40) must be used.

6. Engineering in zenon

In order to be able to use WPF user controls in zenon, version 3.5 (or higher, depending on the .NET
framework version used in the user control) of the Microsoft framework must be used on both the
Editor computer and the Runtime computer.

Engineering in zenon

49

CONDITIONS FOR THE WPF DISPLAY IN ZENON

The dynamization is currently available for simple variable types (numerical data types as well as string).
Arrays and structures cannot be dynamized.

Therefore the following WPF functions can be implemented in zenon:

 Element properties that correspond to simple data types, such as SString, Int, Double,
Bool etc.

 Element properties of the "Object" type, which can be set with simple data types

 Element events can be used with functions; the parameters of the events are not however
available in and cannot be evaluated in zenon

 Element transformation, for which a RenderTransform is present for the element in the XAML
file

 if the content is outside of the area of the WPF element during transformation, this
is not labeled

 No shade can be displayed in zenon for WPF elements.

 Attention

If the Runtime files were created for a project for a version before 6.50, existing WPF

elements are not included into Runtime screens.

6.1 CDWPF files (collective files)

A CDWPF file (with the suffix *.cdwpf) is an renamed ZIP file that contains the following components:

 XAML file (to reference the user control assembly)

 DLL file (the actual WPF user control, optional)

 Preview graphics (for preview, optional)

Rules for the use of collective files:

 The files (XAML, DLL, preview graphics) can be in the CDWPF file directly or in a joint folder.

 The name of the collective file should correspond to the names of the XAML file.

 Only one XAML file may be contained.

 The preview graphic should be small and no more than 64 pixels high.
Name of the preview file: preview.png or the name of the XAML file with the suffix png.

Engineering in zenon

50

 Any number of assemblies can be used. The distinction is made on the basis of the file version.

 Collective files do not need to contain an assembly.

 All subfolders are examined and only taken into account with *.dll, *.xaml or *.png files.

 If a collective file (*.cdwpf) is replaced by a file with a different version, all corresponding CDWPF
files in all symbols and images in all projects must be adapted.

6.2 create WPF element

To create a WPF element

1. In the elements toolbar, select the symbol for WPF element or the Elements entry in the menu

2. Select the start point in the main window.

3. Pull open the element with the mouse.

4. In properties, select Representation the property XAML file in the group.

5. The file selection dialog opens.

6. Select the desired file
Files of the following formats are valid:

 *.xaml: Extensible Application Markup Language

 *.cdwpf: WPF collective file, also shows preview image

(The file must already be present in the Project Manager under Files/graphics or created in the
dialog.)

7. Configure the links (on page 50).

 Information

If referenced assemblies are used, note the instructions in the Referenced assemblies (on
page 8) chapter.

6.3 Configuration of the linking

To configure a WPF element

1. In properties, select WPF links the property Configuration in the group.

2. The dialog with three tabs opens with a preview of the XAML file and the elements present in
the file

Engineering in zenon

51

DIALOG CONFIGURATION

Engineering in zenon

52

Parameter Description

Available elements Shows the named file elements in a tree structure. The
selected element can be linked with process data.

WPF is assigned to process data based on the element
name. Therefore elements are only shown if they and the
attendant elements have a name. Allocations are
configured and shown in the Properties, Events,
Transformations tabs.

 If the corresponding elements are not displayed,
check in the XAML file to see if this has a name (for
example: <Grid Name="GridName">).

Preview The selected element is shown flashing in the preview.

Properties (on page 53) Configuration and display of properties (variables,
authorizations, interlockings, linked values).

Events (on page 59) Configuration and display of events (functions).

Transformations (on page 61) Configuration and display of transformations.

Name Name of the property.

Connection Selection of link.

Link type Type of link (variable, authorization, function)

WPF info Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

 Information

Only logical objects can be displayed in the configuration dialog. Visual objects are not
displayed. You can read about backgrounds and how visual objects can be animated in
the Allocation of zenon object to WPF content.

EDIT HYPERLINKS

All configured hyperlinks can be edited from the properties of the element. Click on the element and
open the property group WPF links. Hyperlinks can be further configured here, without having to open
the dialog.

Limitations:

 The linking type cannot be changed here.

Engineering in zenon

53

 New linkings can only be created via the configuration dialog.

 Insertion of a WPF elements into a symbol: WPF linkings cannot be exported.

6.3.1 Properties

The properties enable the linking of:

 Variables (on page 55)

 Values (on page 56)

 Authorizations and interlockings (on page 58)

Engineering in zenon

54

Parameter Description

Name Name of the property.

Linkage Linked variable, authorization or linked value.

Clicking in the column opens the respective selection
dialog, depending on the entry in the Link type column.

Type of link Selection of linking.

WPF info Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

CREATE LINK

To create a link:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select the desired link from the drop-down list.

The following are available:

 <not linked> (deletes an existing link)

 Authorization/Interlocking

 Constant value

 Variable

4. Click in the Link cell

5. The dialog for configuring the desired link opens

 Information

Properties of WPF and zenon can be different. If, for example the visibility property is
linked, there are three values available in .NET:

 0 - visible

 1 - invisible

 2- collapsed

These values must be displayed via the linked zenon variable.

Engineering in zenon

55

Link variable

To link a variable with a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select from the variable drop down list

4. Click in the Link cell

5. The dialog for configuring the variables opens

This dialog also applies for the selection of variables with transformations (on page 61). The
configuration also makes it possible to convert from zenon into WPF units.

Engineering in zenon

56

Parameters Description

Linked variables Selection of the variable to be linked. A click on the ...
button opens the selection dialog.

Value range of WPF element Data to convert variable values into WPF values.

Convert value range Active: WPF unit conversion is switched on.

The current zenon value (incl.
zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

 The value of a variable varies from
100 to 200. With the variables, the standardized
range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

 for Transformations, the RotateTransform.Angle
property is linked to the variables

 Adjust value activated

 a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Minimum Defines the lowest WPF value.

Maximum Defines the highest WPF value.

OK Accepts settings and ends the dialog.

Cancel Discards settings and ends the dialog.

Help Opens online help.

Link values

Linked values can either be a String or a numerical value of the type Double. When selecting the screen,
the selected value is sent in WPF content after loading the WPF content.

To link a value with a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select Value linkings from the drop-down list

4. Click in the Link cell

Engineering in zenon

57

5. The dialog for configuration of value linking opens

Parameter Description

Linked value: Entry of a numerical value or string value.

Use string
Active: A string value is used instead of a numerical value.

The language of string values can be switched. The text is
translated in Runtime when the screen is called up and sent in
WPF content. If the language is switched whilst the screen is
opened, the string value is retranslated and sent.

String value/numerical value Depending on what is selected for the Use string property, a
numerical value or a string value is entered into this field. For
numerical values, a unit of measurement can also be selected.

Unit: Selection of a unit of measurement from the drop down list. You must
have configured this in unit switching beforehand.

The unit of measurement is allocated with the numerical value. If
the units are switched in Runtime, the value is converted to the
new unit of measurement and sent to WPF content.

CLOSE DIALOG

Options Description

OK Applies settings and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

Engineering in zenon

58

Link authorization or interlocking

Authorizations cannot be granted for the whole WPF element. The element is allocated a user level.
Authorizations are granted within the user level for individual controls. If an authorization is active, the
value 1 is written to the element.

To link an authorization or interlocking with a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select Authorization/interlocking from the drop down menu

4. Click in the Link cell

5. The dialog for configuring the authorizations opens

Parameters Description

Link authorization/interlocking Setting the authorizations.

Linked status Selection of an authorization that is linked to a WPF control from
the drop down list. For example, visibility and operability of a
WPF button can depend on a user's status.

Engineering in zenon

59

Authorization Description

Authorization available If the user has sufficient rights to operate the WPF element, a value of 1

is written to the property.

Authorization does not

exist
If the user does not have sufficient rights to operate the WPF element, a
value of 1 is written to the property.

Not interlocked If the element is not locked, the value 1 is written to the property.

Interlocked If the element is locked, the value 1 is written to the property.

Can be operated If authorization is present and the element is not locked, then a value of
1 is written to the property.

Cannot be operated If authorization is not present or the element is not locked, then a value
of 1 is written to the property.

6.3.2 Events

Events make it possible to link zenon functions to a WPF element.

Engineering in zenon

60

Parameters Description

Name Name of the property.

Connection Linked function. Clicking in the cell opens the
configuration dialog.

Link type Selection of linking. Clicking in the cell opens the selection
dialog.

WPF info Shows the current value for properties in WPF content.
For the user, it is directly visible what type of property it is
(Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected
using Context menu->Column selection.

LINK FUNCTIONS

To create a link:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select from the drop down list function

4. Click in the Link cell

5. The dialog for configuring the function opens

Parameters Description

Linked function Selection of the function to be linked. Clicking on the ...
button opens the dialog for Function selection.

OK Accepts selection and closes dialog.

Cancel Discards changes and closes dialog.

Help Opens online help.

Engineering in zenon

61

6.3.3 Transformation

The WPF element does not support rotation. If, for example, the WPF element is in a symbol and the
symbol is rotated, the WPF element does not rotate with it. Therefore there is a different mechanism for
Transformation with WPF to turn elements or to otherwise transform them. These transformations are
configured in the Transformation tab.

: If the content is outside of the WPF element area, this part of the contents is lost or it is not
shown.

Engineering in zenon

62

Parameters Description

Name Name of the property.

Connection Selection of the linked variables.

Transformations are displayed in XAML as transformation objects with their own
properties. If an element supports a transformation, then the possible properties
of the transformation object are displayed in list view. (more on this in: Integrate
button as WPF XAML in zenon (on page 102)

For example, if the linked variable is set at the value of 10, then this value is
written as a WPF target and the WPF element is rotated by 10°.

Link type Selection of transformation link type.

WPF info Shows the current value for properties in WPF content. For the user, it is directly
visible what type of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

Not contained by default in the view, but can be selected using Context

menu->Column selection.

LINK TRANSFORMATIONS

To link a transformation with a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select from the Transformation drop down list

4. Click in the Link cell

5. The dialog for configuring the variables opens

The configuration also makes it possible to convert from zenon into WPF units.

Engineering in zenon

63

Parameters Description

Linked variables Selection of the variable to be linked. A click on the ...
button opens the selection dialog.

Value range of WPF element Data to convert variable values into WPF values.

Convert value range Active: WPF unit conversion is switched on.

The current zenon value (incl.
zenon unit) is converted to the WPF range using
standardized minimum and maximum values.

 The value of a variable varies from
100 to 200. With the variables, the standardized
range is set to 100 - 200. The aim is to display this
change in value using a WPF rotary knob. For this:

 for Transformations, the RotateTransform.Angle
property is linked to the variables

 Adjust value activated

 a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of
150, for example, by 180 degrees.

Minimum Defines the lowest WPF value.

Maximum Defines the highest WPF value.

OK Accepts settings and ends the dialog.

Cancel Discards settings and ends the dialog.

Help Opens online help.

6.4 Validity of XAML Files

XAML files are valid subject to certain requirements:

 Correct name spaces

 No class references

 Scalability

CORRECT NAME SPACE

The WPF element can only display WPF content, i.e.:

Engineering in zenon

64

Only XAML files with the correct WPF namespace can be displayed by the WPF element. Files that use a
Silverlight namespace cannot be loaded or displayed. However, in most cases it is suffice to change the
Silverlight namespace to the WPF namespace.

WPF-Namespaces:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

NO USE OF CLASS REFERENCES

Because the XAML files can be loaded dynamically, it is not possible to use XAML files that contain
references to classes ("class" key in header). Functions that have been programmed in
independently-created C#- files cannot be used.

In order to use WPF user controls with code behind, the process as described in the Creating a simple
WPF user control with code behind funciton (on page 24) must be carried out.

SCALABILITY

If the content of a WPF element is adjusted to the size of the WPF element, then the controls of the WPF

element are interlaced in a control that offers this functionality, such as a view box for example. In
addition, it must be ensured that the height and width for this elements are configured as automatic.

CHECKING AN XAML FILE TO SEE IF IT IS CORRECT

To check if an XAML file has the correct format:

 Open XAML file in Internet Explorer

 If it can be opened without additional plug-ins (Java or similar), then it can be assumed with
a high degree of certainty that this file can be loaded or displayed by zenon

 if problems occur during loading, these are then shown in Internet Explorer and the lines in
which problems arise can be clearly seen

The scaling can also be tested in this manner: If the file has been created correctly, the content will
adjust to the size of the Internet Explorer window.

ERROR MESSAGE

If an invalid file is used in zenon, then an error message is displayed in the output window when loading
the file in the WPF element.

For example:

Engineering in zenon

65

"error when loading
xaml-Datei:C:\ProgramData\COPA-DATA\SQL\781b1352-59d0-437e-a173-08563c3142e9\

FILES\zenon\custom\media\UserControl1.xaml

The attribute "Class" cannot be found in XML namespace

"http://schemas.microsoft.com/winfx/2006/xaml". Line 7 Position 2."

6.5 Pre-built elements

zenon is already shipped with several WPF elements. More are available for download in the web shop.

All WPF elements have properties which determine the graphical design of the respective element
(Dependency Properties). Setting the values via an XAML file or linking the property via zenon can
directly change the look in the Runtime. The tables in the description of the individual elements contain
the respective Dependency Properties, depending on the control.

Available elements:

 Analog clock (on page 66)

 Vertical bar graph (on page 67)

 Comtrade Viewer (on page 68)

 Energy class diagram (on page 79)

 Progress bar (on page 68)

 Pareto diagram (on page 80)

 Sankey Diagram (on page 87)

 Round display (on page 84)

 Temperature control (on page 89)

 Universal slider (on page 90)

 Waterfall diagram (on page 91)

REPLACING ASSEMBLY WITH A NEWER VERSION

Per project only one Assembly for a WPF element can be used in the zenon Editor as well as in the
Runtime. If two versions of an Assembly are available in a project, then the first loaded file is used. A
user enquiry is made as to which version should be used. No further actions are needed for the
maintenance of the versions used up until now. If a newer version is chosen, all corresponding CDWPF
files in all symbols and images in all projects must be adapted.

If an Assembly in a project is replaced by a new version, it
must also be replaced in all other projects that are loaded in the Editor or in Runtime.

Engineering in zenon

66

6.5.1 Analog clock - AnalogClockControl

Property Function Value

ElementStyle Shape/type of element. Enum:

 SmallNumbe
rs

 BigNumbers

 No

ElementBackgroundBrush Color of element background. Brush

ElementGlasReflection Activate the glass effect on the element. Visibility

Offset Value in hours (h) which displays the time lag to the
system clock.

Int16

OriginText Text which is displayed in the clock (e.g. location). String

Engineering in zenon

67

6.5.2 Bar graph vertical - VerticalBargraphControl

Property Function Value

CurrentValue Current value which should be displayed. Double

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

MajorTicksCount Number of main ticks on the scale. Integer

MinorTicksCount Number of sub ticks on the scale. Integer

MajorTickColor Color of main ticks on the scale. Color

MinorTickColor Color of sub ticks on the scale. Color

ElementBorderBrush Color of the element border. Brush

ElementBackgroundBrush Color of element background. Brush

ElementGlasReflection Activate the glass effect on the element. Visibility

ElementFontFamily Element font. Font

ScaleFontSize Font size of the scale. Double

ScaleFontColor Font color of the scale. Color

IndicatorBrush Bar graph fill color. Brush

BargraphSeparation Number of bar graph dividion. Integer

BargraphSeparationColor Color of the scale division. Color

Engineering in zenon

68

6.5.3 Progress bar - ProgressBarControl

Property Function Value

CurrentValue Current value which should be displayed. Double

MinValue Minimum value of the value area. Double

MaxValue Maximum value of the value area. Double

ProgressbarDivisionCount Number of divisions of the progress bar. Integer

VisibilityText Visibility of the value display. Boolean

TextSize Font size of the value display. Double

TextColor Color of the value display. Color

ProgressBarBoxedColor Color of the border of the progress bar. Color

ProgressBarMarginDistance Distance of the progress bar box from the element edge (left,
top, right, down).

Double

ProgressBarInactiveBrush Indicator color not active. Brush

ProgressBarActiveBrush Indicator color active. Brush

ProgressBarPadding Distance of the progress bar from the progress bar box (left,
top, right, down).

Double

ElementBorderBrush Color of the element border. Brush

ElementBackgroundBrush Color of element background. Brush

6.5.4 COMTRADE-Viewer

The COMTRADE-Viewer WPF element is available to partners of COPA-DATA and is available to them via
the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

It is for the graphical analysis of digital error and result logging of a COMTRADE file.

 Information

The control supports IEEE C37.111 (IEEE Standard Common Format for Transient
Data Exchange (COMTRADE) for Power Systems) standards-compliant files. ASCII or
binary files in accordance with the 1999 or 2013 edition can be visualized.

Older files or files without a year identification are not supported. A warning dialog is
called up when an invalid/unsupported file is selected.

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

69

Possibilities of the COMTRADE-Viewer WPF control in zenon Runtime:

 Selection of a file in the COMTRADE file format

 Visualization of the selected COMTRADE file:
 The display colors can be configured in the zenon Editor.

 Current (sinus wave display)

 Voltage (sinus wave display)

 Digital signals (binary bar chart display)

 Display of values at a selected cursor position.

 If an element that represents neither current or voltage is selected, (such as frequency), this
is visualized in both analog areas again (current and voltage).

 Navigation:

 Zoom in and zoom out using the mouse wheel, scroll bar and Multi-Touch gestures

 Enlargement of the area
Selection of the area by clicking the mouse

 Move the display area using the right mouse button, scroll bar or Multi-Touch gestures.

 Exports selected objects as an CSV file.

Engineering in zenon

70

 Hint

To be able to transport COMTRADE files to the zenon Runtime computer, you can
also use the file transfer of the IEC 61850 driver or the FTP function block of zenon
Logic.

You can find further information about this in the driver documentation of the IEC
61850 driver or in the zenon Logic documentation.

Display during Runtime

The COMTRADE WPF element offers two views in Runtime:

 Configuration view

 Selection of a COMTRADE configuration file

 Selection of the elements to be displayed

 Graph view

 Zoom in and zoom out

 Display of values at a selected cursor position.

 Export of the selected elements as an CSV file

 Information

The switch between the views is integrated in the WPF element. Additional project
configuration of a screen switching function is not necessary.

Runtime view - configuration page

If a screen with a configured COMTRADE-Viewer WPF element is called up, the display of the respective
configuration page is empty.

Engineering in zenon

71

 This also applies if, in zenon Runtime, there is a switch from one screen to another screen with
the screen switching function.

COMTRADE VIEWER CONFIGURATION

The COMTRADE Viewer Configuration switching, arranged vertically on the side, switches the display of
the configuration to graphic view and vice versa.

SELECT FILE

The Open... button opens the file selection dialog to select a file.

There is a pre-selection for display in the file selection:

 In doing so, file pairs of *.cfg- and *.dat files are detected.
 Optional *.hdr or *.inf files are not taken into account.

 Only the corresponding *.dat files are displayed.

 All attendant files (*.dat, *.cfg) are loaded by clicking on the desired file and the OK button.

 One file can be loaded.

 After loading the file, the contents of the file are shown in the Analog Channels and Digital

Channels columns.
The labels and units of the elements originate from the COMTRADE configuration and cannot be
changed.

Engineering in zenon

72

FURTHER INFORMATION ON THE EDITING OF _*.CFG- AND *.DAT FILES

The information from the *.cfg file allows the evaluation of the *.dat file. It contains the data from
various analog and digital series of measurements of currents and voltages. The data is broken down
into individual data sets and shown in hex format.

*.cfg files

 The last entry of a file of this data type is a time multiplier. This entry is multiplied by the time
stamp of one of each entry from the *.dat file when a disturbance (error message) is read in. If
there is no time multiplier, a factor with the value of 1 is assumed internally. The *.cfg file is not
changed in the process.

 Certain standards apply for the entries of the digital measured values. Example of a
standard-compliant entry of a digital measured value: 1,LOPHC,,,0. However, if there is no zero
at the end of the entry, the COMTRADE-Viewer adds this internally. The *.cfg file is not changed
in the process.

*.dat files

 The COMTRADE-Viewer is in a position to read in files of this data type that start with the index
0 or >1. In doing so, a check is constantly carried out to see whether these data sets are
numbered continually in discrete steps from 1. If there are data sets that are not correctly
numbered, the file cannot be read in.

Engineering in zenon

73

ANALOG CHANNELS

Parameter Description

[Liste der verfügbaren Kanäle]

Selection of the elements to be visualized.

Multiple selection by clicking on the desired entry in the
list. Selected elements are shown with a colored
background. Another mouse click undoes the selection of
the entry.

Select All Selects all elements from the list.

Deselect All Deactivates the existing selection of elements.

DIGITAL CHANNELS

Parameter Description

[Liste der verfügbaren Kanäle] Selection of the elements to be visualized

Multiple selection by clicking on the desired entry in the
list. Selected elements are shown with a colored
background. Another mouse click undoes the selection of
the entry.

Select All Selects all elements from the list.

Deselect All Deactivates the existing selection of elements.

SHOW SELECTION

To show your selection in the graphic view, click on the Apply button.

 Clicking on the vertically-arranged COMTRADE Viewer Configuration switching only changes the
view. An amended selection of the channels is not taken into account in the process.

Runtime view - visualization of COMTRADE data

The selected channels are visualized in the graph view of the COMTRADE-Viewer WPF element. The
coloring can be configured in the zenon Editor.

EXPORT OF THE SELECTED DATA

The selected analog and digital channels can be exported to a CSV file with the CSV-Export button.

GRAPH VIEW

The graph view of the COMTRADE-Viewers is divided into three sections:

Engineering in zenon

74

 Current amperage
Upper area

 Voltage
Mid area

 Digital channels
Lower area

AXIS LABELING

 Horizontal axis
The horizontal axis represents the complete time period as illustrated in the COMTRADE file
(*.dat).
The scaling of this time axis depends on the enlargement level. The higher the enlargement
selected, the more detailed the time display.

 Vertical axis
The vertical axis represents the values.

 The scaling of the value axis depends on the enlargement level. The greater the
enlargement selected, the more detailed the display of values.

 The labeling of the analog channels is shown vertically next to the values and corresponds to
the measuring unit as defined in the COMTRADE file (*.cfg).

 The digital channels are displayed in the sequence as defined in the COMTRADE file
(*.cfg).
The Channel identifier of the COMTRADE file serves as an identifier.

Engineering in zenon

75

KEY

The color key of the graphs is shown at the head of the graph.

 The labeling of the digital channels corresponds to the channel description as defined in the
COMTRADE file (*.cfg).

 The colors for each channel are assigned automatically with the configured color palette.

 The time is displayed in a footer under the graph. The start time is displayed as a text.

NAVIGATION AND ZOOM

Navigation (scroll and zoom) is always applied to all three areas of the graphic display.

 You can move the display within the horizontal time line with the scroll bar.

 Zoom in and zoom out

 You can zoom at the current position of the mouse pointer in the graphics view or reduce
the enlargement.

 The selected area is displayed by selecting a display area with the mouse button held down.
 The display of the values is always amended to the selected area. As a result, this can

lead to a flattening of the curve in the enlarged graphic view.

 Double clicking on the scroll bar resets the enlargement.

ANALYSIS

The precise values at the position of the mouse pointer are visualized with a display in value blocks. A
crosshair offers additional visual support with the exact determination of the reading position.

Engineering in zenon

76

Configurable control properties - color display

ENGINEERING IN THE EDITOR

The element with the name COMTRADE.CDWPF can be configured and placed in each zenon screen
type.
The project configuration of Width [pixels] and Height [pixels] of the element depend on the proportions.
This prevents the COMTRADE-Viewer being displayed as distorted in Runtime.

 When configuring the project, ensure that there is sufficient size to guarantee a clear overview.

GRAPHICAL AMENDMENTS

You configure the graphic design in the properties of the WPF element.
You can find further information in the configuration of the linking (on page 50) chapter in this manual.

Possible color values:

 Hexadecimal color values
#RRGGBB

 #000000 = black , #FFFFFF = white, #FF0000 = red

 Color values by name
Reference: https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx
(https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx)

 Hint

The properties for the COMTRADE-Viewer WPF element have a "z" as a starting color. Use
name filtering for a clear display when configuring the linking.

CONFIGURATION PAGE

Text and background color of the configuration page.

https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx

Engineering in zenon

77

Parameters Description Value

zConfiguratinPageTextColor Text color of the configuration page String

zConfigurationPageBackgroundColor Background color of the configuration
page

String

BUTTONS

Text and background color of the button.

Parameters Description Value

zButtonTextColor Text color of the button String

zButtonBackgroundColor Background color of the button String

CHART

Text color of the axis labeling or key and background color.

Parameters Description Value

zChartTextColor Text color of the axis labeling. String

zChartBackgroundColor Background color of the axis labeling String

LABEL

Text and background color of the display of a selected cursor position.

Engineering in zenon

78

Parameters Description Value

zChartLabelTextColor Text color of the value display String

zChartLabelBackgroundColor Background color of the value display String

CHART

Color palette of the graph view and the attendant keys.

Parameters Description Value

zChartPalette Color palette of the colors for graphs
and keys.

Referencing with color palette name
(see overview).

Default: if no color palette is
configured, the color palette of the
computer's operating system is used.

String

POSSIBLE COLOR PALETTES - OVERVIEW

Engineering in zenon

79

6.5.5 Energy class diagram

The energy class diagram, WPF element is available to partners of COPA-DATA and is available to them
via the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

A reaction matrix must be used to model an energy class diagram. This reaction matrix must be linked to
the variable whose value is envisaged for display and distribution in energy classes. The name of the
variable must be transferred to the "zVariableName" property.

REACTION MATRIX FOR ENERGY CLASS DIAGRAM

The linked reaction matrix must correspond to the following schematic:

 The first status must be an area, or a "less than" definition

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

80

 Then as many different areas as desired can be defined.

 The last status must be an area or a "greater than" definition.

The following is applicable for project configuration:

1. If the first status is an area and the value of the variable comes under this area, the first status in
the diagram is shown nevertheless. The same is applicable for the last status the other way
round.

2. The colors that the WPF diagram uses for the classes are the limit value colors that were defined
in the reaction matrix.

3. The letters for the classes are set in alphabetical order starting with "A".

Property Description Value

zenonFontID ID for a font from the first font list (font size is not
taken into account)

Integer

zenonNumberOfDecimalPlaces Number of displayed decimal points Integer

zenonVariableName Name of the variable to be displayed. String

 Additional VSTA programming is necessary for the display of the energy class diagram in the
zenon web client. You can find details on this in the display of WPF elements in the zenon web client (on
page 93).

6.5.6 Pareto diagram

The Pareto diagram, WPF element is available to partners of COPA-DATA and is available to them via the
COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

An example of a Pareto diagram in Runtime is shown below:

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

81

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

Engineering in zenon

82

zenonBarColor1 Color of the first Bar Color

(String)

zenonBarColor2 Color of the second Bar Color

(String)

zenonBarColor3 Color of the third Bar Color

(String)

zenonBarColor4 Color of the fourth Bar Color

(String)

zenonBarColor5 Color of element fifth Bar Color

(String)

zenonBarColor6 Color of element sixth Bar Color

(String)

zenonBarColor7 Color of element seventh Bar Color

(String)

zenonBarColor8 Color of element eighth Bar Color

(String)

zenonBarColor9 Color of element ninth Bar Color

(String)

zenonBarColor10 Color of element tenth Bar Color

(String)

zenonColorPercentageLine Color of the percentage line (relative sum
frequency).

Color

(String)

zenonLineVisibility Visibility of the percentage line (relative sum
frequency).

Boolean

zenonVariable1_Label Labeling for the 1st Bar String

zenonVariable1_Value Value of the 1st Bar Double

zenonVariable2_Label Labeling for the 2nd Bar String

zenonVariable2_Value Value of the 2nd Bar Double

zenonVariable3_Label Labeling for the 3rd Bar String

zenonVariable3_Value Value of the 3rd Bar Double

zenonVariable4_Label Labeling for the 4th Bar String

zenonVariable4_Value Value of the 4th Bar Double

zenonVariable5_Label Labeling for the 5th Bar String

zenonVariable5_Value Value of the 5th Bar Double

zenonVariable6_Label Labeling for the 6th Bar String

zenonVariable6_Value Value of the 6th Bar Double

zenonVariable7_Label Labeling for the 7th Bar String

zenonVariable7_Value Value of the 7th Bar Double

Engineering in zenon

83

zenonVariable8_Label Labeling for the 8th Bar String

zenonVariable8_Value Value of the 8th Bar Double

zenonVariable9_Label Labeling for the 9th Bar String

zenonVariable9_Value Value of the 9th Bar Double

zenonVariable10_Label Labeling for the 10th Bar String

zenonVariable10_Value Value of the 10th Bar Double

The following events can be used and linked to zenon functions:

Event Function Value

zenonBar1Click Function that is executed when the 1st bar is
clicked on.

Function

zenonBar2Click Function that is executed when the 2nd bar is
clicked on.

Function

zenonBar3Click Function that is executed when the 3rd bar is
clicked on.

Function

zenonBar4Click Function that is executed when the 4th bar is
clicked on.

Function

zenonBar5Click Function that is executed when the 5th bar is
clicked on.

Function

zenonBar6Click Function that is executed when the 6th bar is
clicked on.

Function

zenonBar7Click Function that is executed when the 7th bar is
clicked on.

Function

zenonBar8Click Function that is executed when the 8th bar is
clicked on.

Function

zenonBar9Click Function that is executed when the 9th bar is
clicked on.

Function

zenonBar10Click Function that is executed when the 10th bar is
clicked on.

Function

Engineering in zenon

84

6.5.7 Circular gauge control

Property Function Value

CurrentValue Current value which should be displayed. Double

IsReversed Scale orientation - clockwise or anti-clockwise. Boolean

ElementFontFamily Element font. Font

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

ScaleRadius Radius of the scale. Double

ScaleStartAngle Angle at which the scale starts. Double

ScaleLabelRotationMode Alignment of the scale caption. Enum:

 None

 Automatic

 SurroundI
n

 SurroundO
ut

ScaleSweepAngle Angel area which defines the size of the scale. Double

ScaleLabelFontSize Font size of the scale caption. Double

ScaleLabelColor Font color of the scale caption. Color

ScaleLabelRadius Radius on which the scale caption is orientated. Double

ScaleValuePrecision Accuracy of the scale caption. Integer

PointerStyle Shape of the pointer displaying the value. Enum:

 Arrow

 Rectangle

 TriangleC
ap

 Pentagon

 Triangle

MajorTickColor Color of main ticks on the scale. Color

MinorTickColor Color of sub ticks on the scale. Color

MajorTickSize Size of main ticks on the scale. Size

MinorTickSize Size of sub ticks on the scale. Size

MajorTicksCount Number of main ticks on the scale. Integer

MajorTicksShape Shape/type of main ticks on the scale. Enum:

 Rectangle

Engineering in zenon

85

 Trapezoid

 Triangle

Engineering in zenon

86

MinorTicksShape Shape/type of sub ticks on the scale. Enum:

 Rectangle

 Trapezoid

 Triangle

MinorTicksCount Number of sub ticks on the scale. Integer

PointerSize Size of the pointer. Size

PointerCapRadius Size of the pointer fastening point. Double

PointerBorderBrush Color of pointer border. Brush

PointerCapStyle Shape/type of pointer fastening point. Enum:

 BackCap

 FrontCap

 Screw

PointerCapBorderBrush Color of pointer fastening point. Brush

PointerBrush Color of pointer. Brush

GaugeBorderBrush Color of the element border. Brush

GaugeBackgroundBrush Color of element background. Brush

PointerCapColorBrush Color of pointer fastening point. Brush

GaugeMiddlePlate Radius of the element background middle plate. Double

PointerOffset Offset of the pointer (displacement). Double

RangeRadius Radius of the total range display. Double

RangeThickness Thickness of the total range display. Double

RangeStartValue Start value of the total range display. Double

Range1EndValue End value of the 1st area and start value of the 2nd range. Double

Range2EndValue End value of the 2nd area and start value of the 3rd range. Double

Range3EndValue End value of the 3rd area and start value of the 4th range. Double

Range4EndValue End value of the 4th area and start value of the 5th range. Double

Range5EndValue End value of the 5th area and start value of the 6th range. Double

Range6EndValue End value of the 6th range. Double

Range1ColorBrush Color of the first range. Brush

Range2ColorBrush Color of the second range. Brush

Range3ColorBrush Color of the third range. Brush

Range4ColorBrush Color of the fourth range. Brush

Range5ColorBrush Color of element fifth range. Brush

Range6ColorBrush Color of element sixth range. Brush

Engineering in zenon

87

ScaleOuterBorderBrush Color of the scale border. Brush

ScaleBackgroundBrush Color of scale background. Brush

ValueTextFrameStyle Shape/type of value display. Enum:

 LargeFram
e

 SmallFram
e

 None

ValueTextContent Content of the value display. Enum:

 Text

 TextValue

 Value

ValueTextSize Font size of the value display. Double

ValueTextColor Font size of the value display. Color

IsGlasReflection Activate the glass effect on the element. Boolean

GaugeOffsett Lowering the rotation point of the whole element. Double

6.5.8 Sankey Diagram

The Sankey diagram, WPF element is available to partners of COPA-DATA and is available to them via
the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

The Sankey wizard must be used to model a Sankey diagram. The wizard creates an XML file that is then
evaluated by the WPF element. To do this, the zSankeyName property must be given the name of the
XML file. The XML file must be in the Other folder of a project. This is saved there by the wizard.

An example of a Sankey diagram in Runtime is shown below:

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

88

Property Function Value

FontSize Font size of the texts. Integer

zBackgroundColor Background color of the diagram. Color

(String)

zFontColor Color of the texts. Color

(String)

zFontFamily Font of all texts. Font

(String)

zLossDetectionActive Automatic loss detection activated/deactivated. If
true, then losses are automatically shown at a

node points as flows.

Bool

zNoDataText Text that is displayed if there are no values to
display and zPrevireActive is false.

String

zNoValidXMLText Text that is displayed if no valid XML file with
entered name has been found and zPreviewActive
is false.

String

zNumberOfDecimalPlaces Denotes how many decimal places are to be
displayed.

Integer

zPreviewActive Display of a preview activated/deactivated.

The preview can be displayed if

There is no data present (the modeled diagram is
filled with default values) or

the XML file was not found or

this does not contain a valid definition (an example
Sankey diagram is displayed).

Bool

zRefreshRate Rate at which the diagram is refreshed in ms. Integer

zSankeyName Name of the XML file with the modeling of the
diagram.

String

zShowRelativeValues Display of the values in absolute false or relative

values true.

Bool

 Additional VSTA programming is necessary for the display of the Sankey diagrams in the zenon
Web Client. You can find details on this in the display of WPF elements in the zenon Web Client (on page
93).

Engineering in zenon

89

6.5.9 Temperature indicator - TemperatureIndicatorControl

Property Function Value

CurrentValue Current value which should be displayed. Double

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

MajorTicksCount Number of main ticks on the scale. Integer

MinorTicksCount Number of sub ticks on the scale. Integer

TickNegativColor Color of the negative main tick (gradient to
TickPositivColor).

Color

TickPositivColor Color of the positive main tick (gradient to
TickNegativColor).

Color

MinorTickColor Color of the sub ticks. Color

ElementBorderBrush Color of the element border. Brush

ElementBackgroundBrush Color of element background. Brush

ElementGlasReflection Activate the glass effect on the element. Visibility

ElementFontFamily Element font. Font

IndicatorColor Color of the indicator fill color. Color

IndicatorBorderColor Color of the indicator border. Color

MajorTickSize Size of main ticks on the scale. Size

MinorTickSize Size of sub ticks on the scale. Size

ScaleLetteringDistance Distance of the scale caption (vertical), each x. main tick
should be captioned.

Integer

IndicatorScaleDistance Distance between indicator and scale (horizontal). Double

ScaleFontSize Font size of the scale. Double

ScaleFontColor Font color of the scale. Color

Unit Unit. String

ElementStyle Shape/type of element. Enum:

 SmallFram
e

 Unit

 None

Engineering in zenon

90

6.5.10 Universal slider - UniversalReglerControl

Property Function Value

CurrentValue Current value which should be displayed. Double

ElementFontFamily Element font. Font

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

Radius Double

ScaleRadius Radius of the scale. Double

ScaleStartAngle Angle at which the scale starts. Double

ScaleLabelRotationMode Alignment of the scale caption. Enum:

 None

 Automatic

 SurroundIn

 SurroundOu
t

ScaleSweepAngle Angel area which defines the size of the scale. Double

ScaleLabelFontSize Font size of the scale caption. Double

ScaleLabelColor Font color of the scale caption. Color

ScaleLabelRadius Radius on which the scale caption is orientated. Double

ScaleValuePrecision Accuracy of the scale caption. Integer

ElementStyle Display type of the element Enum:

 Knob

 Plate

 None

MajorTickColor Color of main ticks on the scale. Color

MinorTickColor Color of sub ticks on the scale. Color

MajorTickSize Size of main ticks on the scale. Size

MinorTickSize Size of sub ticks on the scale. Size

MajorTicksCount Number of main ticks on the scale. Integer

MajorTicksShape Shape/type of main ticks on the scale. Enum:

 Rectangle

 Trapezoid

 Triangle

Engineering in zenon

91

MinorTicksShape Shape/type of sub ticks on the scale. Enum:

 Rectangle

 Trapezoid

 Triangle

MinorTicksCount Number of sub ticks on the scale. Integer

BackgroundBorderBrush Color of the element border. Brush

BackgroundBrush Color of element background. Brush

PointerCapColorBrush Color of pointer fastening point. Brush

GaugeMiddlePlate Radius of the element background middle plate. Double

ValueFontSize Font size of the value display. Double

ValueFontColor Font size of the value display. Color

IsGlasReflection Activate the glass effect on the element. Boolean

KnobBrush Color of the knob. Brush

IndicatorBrush Color of the indicator. Brush

IndicatorBackgroundBrush Background color of the inactive indicator. Brush

KnobSize Diameter of the knob. Double

KnobIndicatorSize Indicator size of the knob. Size

ElementSize Size of the element. Size

VisibilityKnob Activating of the knob. Boolean

ValuePosition Position of the value display. Double

ValueVisibility Activating the value display. Boolean

6.5.11 Waterfall diagram

The waterfall diagram, WPF element is available to partners of COPA-DATA and is available to them via
the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

The Meaning and waterfall chart Wizard must be used to model a waterfall diagram. A waterfall can be
modeled with this wizard. The information is saved directly to the variables in the Parameters for

waterfall diagram property (Analyzer variable properties group).

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

92

An example of a waterfall diagram in Runtime is shown below:

 This screenshot is only available in English.

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

zenonRefreshRate Time between the refreshes of the
diagram in miliseconds.

Integer

zenonWaterfallIdentifier Name of the waterfall diagram. String

zenonZSystemModel Equipment group of the variables
used.

String

 Additional VSTA programming is necessary for the display of the waterfall diagram in the zenon
Web Client. You can find details on this in the display of WPF elements in the zenon Web Client (on page
93).

LINK BARS TO ZENON FUNCTION

The bars of a waterfall diagram can be linked to a function in Runtime. In Runtime, both the bars, as well
as the labeling and value display for executing the function, can be clicked on.

Carry out the following configuration to link the columns of your waterfall diagram to a function:

1. Configure the WPF element for the waterfall diagram.
 To do this, use the Meaning and Waterfall Chart wizard if possible.

2. Engineer a zenon function.

a) Create a new function:

In the toolbar or in the context menu of the Functions node, select New function.
The dialog to select a function is opened.

b) Select the desired function.

c) Set the parameters for function.

Engineering in zenon

93

3. Name the function in the Name property.
 The function name must contain the variables for the waterfall diagram without

color code!
You can also find these parameters in the Parameters for waterfall diagram variable property in
the Analyzer properties group.

4. Link the function to the exact same equipment group as the variables.
 You can find this linking in the Equipment Groups property of the function.

The following is applicable for this project configuration:

 The function and the linked variables must be present in the same zenon project.

 The variables must be linked to an equipment group.

 The function must be linked to the same equipment group as the variables.

 Example

For a bar with the waterfall definition WF= WF1,02,05,#E9ED92; The function
name, for example Function_WF1,02,05, is to be used.

6.6 Display of WPF elements in the zenon web client

In order to also be able to also use the pre-made WPF elements "energy class diagram", "Sankey

diagram" and "waterfall chart" for the display in a zenon web client, amendments are necessary in the
project:

 Engineering in the zenon Editor (on page 93)

 Adapt VSTA code (on page 94)

6.6.1 Engineering in the zenon Editor

Carry out the following project configuration steps in the zenon Editor, in order to also be able to display
certain WPF elements in the zenon web client:

PLACE WPF IN THE ZEN ON SCREEN:

 Place the WPF element in a zenon screen.

 Give it a unique name in the Element name property.
You can find this property in the General properties group.

Engineering in zenon

94

 A warning dialog appears if the name for an element has already been issued in another
screen.

 Use the element name issued here in the VSTA code.

6.6.2 VSTA code (complex)

In order to add the programmer code for the display of WPF elements in the zenon web client, carry out
the following steps:

1. In the zenon Editor, switch to the programmer interfaces node.

2. Select the VSTA node and select the Open VSTA Editor with project add-in... with a right mouse
click

3. The dialog to create a VSTA project is opened.

4. Select the C# entry in the Create new VSTA project dialog.

5. Create (copy) the code below.

6. Enter the name of the WPF element in the code.

 When opening the VSTA editor, note whether the content of the following code is already

present in the project configuration. For the display of the WPF element in the web client, compare the
existing code and undertake the necessary additions. Please note the comments in relation to this in the
model code.

VSTA CODE

//As member:

zenOn.IDynPictures zScreens = null;

string[] WPFElements ={"WPF_Control", "WPFWebclient_1", "WPFWebclient_2" }; //Names of the

WPF screen elements that appear in the zenon project and that need access to the API (as

many/few as you want)

//Add the following three lines of code in the project archive function:

void ThisProject_Active()

{

 zScreens = this.DynPictures();

 zScreens.Open += new zenOn.DDynPicturesEvents_OpenEventHandler(zScreens_Open);

 zScreens.Close += new zenOn.DDynPicturesEvents_CloseEventHandler(zScreens_Close);

}

Engineering in zenon

95

//Add the following two lines of code in the project inactive function:

void ThisProject_Inactive()

{

 zScreens.Open -= new zenOn.DDynPicturesEvents_OpenEventHandler(zScreens_Open);

 zScreens.Close -= new zenOn.DDynPicturesEvents_CloseEventHandler(zScreens_Close);

 //Final release and garbage collection of any API-Objects.

 FreeObjects();

}

//Add two new event handlers:

void zScreens_Open(zenOn.IDynPicture obDynPicture)

{

 foreach (string element in WPFElements)

 {

 if (obDynPicture.Elements().Item(element) != null)

 {

 obDynPicture.Elements().Item(element).set_WPFProperty("ELEMENT",

"zenonVariableLink", this.Variables().Item(0));

 }

 }

}

void zScreens_Close(zenOn.IDynPicture obDynPicture)

{

 foreach (string element in WPFElements)

 {

 if (obDynPicture.Elements().Item(element) != null)

 {

 zenOn.IElement zWPFElement= obDynPicture.Elements().Item(element);

 zWPFElement.set_WPFProperty("ELEMENT", "zenonTrigger", true);

 zWPFElement = null;

 }

 }

}

Engineering in zenon

96

6.6.3 VSTA code (simplified)

If only one WPF element is used in a zenon screen, the following more streamlined code can be used as
an alternative. To do this, the names of the WPF element, and the screen in which the element is used,
must be entered. This code is then recommended if, for each project, only one of the pre-made WPF
elements is used.

VSTA CODE

zenOn.IDynPicture zScreen = zero;

string wpfElement = "WPF_Control"; //Name of the WPF element in the screen

string wpfPicture = "@Details_Overview_Online"; //Name of the zenon screen

//Add to the project active function:

void ThisProject_Active()

{

 zScreen = this.DynPictures().Item(wpfPicture);

 zScreen.Open += new zenOn.OpenEventHandler(zScreen_Open);

 zScreen.Close += new zenOn.CloseEventHandler(zScreen_Close);

}

//Add to the project inactive function:

void ThisProject_Inactive()

{

 zScreen.Open -= new zenOn.OpenEventHandler(zScreen_Open);

 zScreen.Close -= new zenOn.CloseEventHandler(zScreen_Close);

 //Final release and garbage collection of any API-Objects.

 FreeObjects();

}

void zScreen_Open()

{

 if (zScreen.Elements().Item(wpfElement) != null)

 {

 zScreen.Elements().Item(wpfElement).set_WPFProperty("ELEMENT",

"zenonVariableLink", this.Variables().Item(0));

 }

}

Engineering in zenon

97

void zScreen_Close()

{

 if (zScreen.Elements().Item(wpfElement) != null)

 {

 zenOn.IElement zWPFElement = zScreen.Elements().Item(wpfElement);

 zWPFElement.set_WPFProperty("ELEMENT", "zenonTrigger", true);

 zWPFElement = null;

 }

}

6.7 Examples: Integration of WPF in zenon

You can see how XAML files are created and integrated as WPF elements in zenon from the following
examples:

 Integrate button as WPF XAML in zenon (on page 102)

 Integrate bar graph as WPF XAML in zenon (on page 97)

 Integrate DataGrid Control in zenon (on page 108)

6.7.1 Integrate bar graph as WPF XAML in zenon

Example structure:

 Creating a bar graph (on page 16) in Adobe Illustrator and converting it to WPF

 Integrate into zenon

 Linking with variables

 Adapting the bar graph WPF element

CREATE BAR GRAPH

The first step is to generate a bar graph as described in the Workflow with Adobe Illustrator (on page
16) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the Files/graphics

folder.

Engineering in zenon

98

INTEGRATE BAR GRAPH

 A zenon project with the following content is used for the following description:

 An empty screen as a start screen

 Four variables from the internal driver for

 Scale 0

 Scale central

 Scale high

 Current value

 A variable from the mathematics driver for displaying the current value (255)

To integrate the bar graph:

1. open the empty screen

2. place a WPF element (on page 50) in the screen

3. select XAML file in the properties window

4. Select the desired XAML file (for example bar graph_vertical.xaml) and close the dialog

ADJUST BAR GRAPH

Before configuration, the scale of the XAML file is adapted if necessary:

To do this:

 Create a new mathematics variable that calculates the new value in relation to the scaling,
for example:

 Variable: 0-1000

Engineering in zenon

99

 Mathematic variable {value created in xaml file}*Variable/1000

The XAML file is then configured.

CONFIGURE BAR GRAPH

1. Click on the WPF element and select the Configuration property

2. The configuration dialog shows a preview of the selected XAML file.

Engineering in zenon

100

3. Select the minimum value, the average value and the maximum value and link each of these to
the corresponding variable in the Content property

Engineering in zenon

101

4. Select the Slider and link the Value property to the mathematics variables (in our example:
calculation)

5. Check the project planning in Runtime:

Engineering in zenon

102

6.7.2 Integrate button as WPF XAML in zenon

Example structure:

 Creating a button (on page 12) in Microsoft Expression Blend

 Integrate into zenon

 Link to a variable and a function

 adjust the button to the size of the element

 Create button

As a first step, create a button as described in the Create button as XAML file with Microsoft Expression
Blend (on page 12) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the
Files/graphics folder.

INTEGRATE BUTTON

 A zenon project with the following content is used for the following description:

 An empty screen as a start screen

 an internal variable int of type Int

 a function Funktion_0 of typeSend value to hardware with:

 Direct to hardware option activated

 Set was set to 45

To integrate the button:

1. open the empty screen

2. place a WPF element (on page 50) in the screen

3. select XAML file in the properties window

4. select the XAML file (e. g. MyButton.xaml and close the dialog

5. select the Configuration property

Engineering in zenon

103

CONFIGURE THE BUTTON

The configuration dialog shows a preview of the selected XAML file. All elements named in the XAML file
are listed in the tree:

1. select the WPF button, which is in LayoutRoot->MyViewBox->MyButton

2. Look in the Properties EntryContent tab; this contains the button's text

3. Click the Link type column

4. Select Variable from the drop down list

5. Click in the Link column

6. the variable selection dialog is opened

7. select the int variable to link this variable with the Content property

EVENTS

To also assign events:

Engineering in zenon

104

1. select the tab Events

2. look for the 'Click' entry, this event is triggered by the WPF element, as soon as the button is
clicked

3. Click in the Link type column

4. Select Function from the drop down list

5. Click in the Link column

6. the function selection dialog is opened

7. select Function_0

8. Confirm the changes with OK

9. Insert a numerical value element into the screen

10. Link this numerical value element to the int variables too.

11. Compile the Runtime files and start Runtime.

Engineering in zenon

105

The WPF element is displayed in Runtime, the button text is 0. As soon as you click on the button, the
click event is triggered and the set value function is carried out. The value 45 is sent directly to the
hardware and both numerical value and button display the value 45 .

Define a set value of 30 via the numerical value element; this value is then also assumed by the WPF

element.

AUTHORIZATION

Similar to a numerical value, a WPF element can be locked according to authorizations (lock symbol) or
switched to be operable. Set the user authorization level to 1 for the WPF element and create a user
called Test with authorization level 1. In addition, set up the functions Login with dialog and Logout .
You link these two functions with 2 new text buttons on the screen.

In the WPF element configuration dialog, select the MyButton WPF button and select the Properties: tab

Engineering in zenon

106

1. Select the IsEnabled element

2. Click in the Link type column

3. Select Authorizations/interlocking from the drop down list

4. Click in the Link column

5. In the drop-down list, select the Authorized option

6. Close the dialog with OK

Compile the Runtime file and note that Authorizations to be Transferred must also be selected. After
Runtime has been started, the WPF button is displayed as deactivated on the screen and cannot be
operated. If you now log in as the user Test, the button is activated and can be operated. The button is
locked again as soon as you log out.

TRANSFORMATION

The XAML files must still be adapted to use transformations:

1. switch to the Expression Blend program

2. select MyButton, so that the properties of the element are visible in the events window

3. Under Transform at RenderTransform select the Apply relative transform option

Engineering in zenon

107

As a result of this, a block is inserted into the XAML file, which save the transformation settings
in runtime.

4. Save the file and replace the old version in zenon with this new file.

5. Open the WPF element configuration dialog again:

a) select the MyButton button

b) select the Transformations tab

c) select the element RotateTransform.Angle

d) Click in the Link type column

e) Select Transformations from the drop down list

f) Click in the Link column

g) the variable selection dialog is opened

h) select the int variable to link this variable with the RotateTransform.Angle property

Engineering in zenon

108

Compile the Runtime files and start Runtime. Log in as the Test user and click on the button. The button
has the value 45 and the WPF element rotates by 45°.

6.7.3 Integrate DataGrid Control in zenon

To create DataGrid control for zenon, you need:

 Visual Studio (Visual Studio 2015 in this example)

CREATE WPF USER CONTROL

1. in Visual Studio, create a new Solution and a WPF User Control Library project in .NET
Framework version 4 or higher therein.

 If the corresponding project template does not appear in the list of available templates,
this can be added by means of the search (field at the top right of the dialog).

Engineering in zenon

109

In our example, the project is given the name DataGridControlLibrary.

2. Create a new data connection in the Server Explorer.

In our example, the database Northwind is used, which is provided by Microsoft as an example
database that can be downloaded for free.

Te set up the database connection:

a) Right-click on Data Connections.

b) Select Add connection….

c) Select Microsoft SQL Server (SQLClient) as Data source.

d) Select the corresponding server and database name.

Engineering in zenon

110

After adding the connection, the Server Explorer window should look a little like this:

A new DataSet is created in the next step.

CREATING A DATASET

1. Right-click on the project

2. Select Add – New Item… in the context menu

3. Create a new DataSet with the name DataSet1.

4. Double click on the DataSet in order to open it in the Designer.

5. Drag the tables that you need (Customers and Orders in this example) to the DataSet design
window.

The XAML file is modified in the next step.

Engineering in zenon

111

CONFIGURATION OF THE XAML FILE

1. If not already there, add the Namespace as a reference to the class in the XAML file:

2. Define the resources and the DataGrid that is to be used in the WPF:

<UserControl.Resources>

<local:DataSet1 x:Key="DataSet1"/>

<CollectionViewSource x:Key="CustomersViewSource" Source="{Binding Path=Customers,
Source={StaticResource DataSet1}}"/>

</UserControl.Resources>

<Grid DataContext="{StaticResource CustomersViewSource}">

<DataGrid Name="DataGrid1" DisplayMemberPath="CompanyName"
ItemsSource="{Binding}" SelectedValuePath="CustomerID"
HorizontalAlignment="Stretch" VerticalAlignment="Stretch"/>

</Grid>

3. Open the code-behind file (UserControl1.xaml.cs) and insert the following lines in the
constructor:

public UserControl1()

{

InitializeComponent();

DataSet1 ds = ((DataSet1)(FindResource("DataSet1")));

DataSet1TableAdapters.CustomersTableAdapter ta = new
DataSet1TableAdapters.CustomersTableAdapter();

ta.Fill(ds.Customers);

CollectionViewSource CustomersViewSource =
((CollectionViewSource)(this.FindResource("CustomersViewSource")));

CustomersViewSource.View.MoveCurrentToFirst();

}

In doing so, the following happens:

 The DataSet is obtained

 A new TableAdapter is created

 The DataSet is filled

Engineering in zenon

112

 The information is provided to the DataGrid control

The solution can now be built.

BUILD

Now build the solution. The corresponding DLL (DataGridControlLibrary.dll) is created in the output
folder of the project.

Now you have a DLL with the necessary functionality available.

However zenon can only display XAML files that cannot be linked to the code behind file, which is why
an additional XAML file is needed that references the DLL that has just been created.

To do this:

1. Create a further project, again as a WPF User Control Library

2. It was called DataGridControl in our example.

3. Insert a reference to the project that has just been built into this new project.

4. The XAML files (UserControl1.xaml) looks as follows:

5. Because all necessary content is contained in the DLL that has been created and no code-behind
is necessary, delete the following lines:

x:Class="DataGridControl.UserControl1"

xmlns:local="clr-namespace:DataGridControl"

6. Also delete (for the positioning) the following lines:

mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="300"

Engineering in zenon

113

7. Delete the code-behind file (UserControl1.xaml.cs) in this project.

8. Define what is to be displayed in the XAML file.

To do this, modify the XAML file as follows:

<UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:dataGridLibrary="clr-namespace:DataGridControlLibrary;assembly=DataGridCo
ntrolLibrary">

<Grid x:Name="Grid1">

<dataGridLibrary:UserControl1 Name="DataGridControl" HorizontalAlignment="Left"
VerticalAlignment="Top"/>

</Grid>

</UserControl>

The
linexmlns:dataGridLibrary="clr-namespace:DataGridControlLibrary;assembly=DataGrid
ControlLibrary" defines the namespace dataGridLibrary and stipulates that this should use
the assembly that has been created.

9. Assign a name for the grid.

10. Insert the control dataGridLibrary:UserControl1 from our library and give it a name, because
zenon can only modify objects that have a name.

11. Build the solution.

In the next step, how the DLL and XAML file are added to zenon is explained.

STEPS IN ZENON

1. Open the zenon Editor

2. Go to File -> Graphics.

3. Select Add file... in the context menu

Engineering in zenon

114

4. Select the XAML file at the save location (UserControl1.xaml from the DataGridControl project)
and add this:

5. Insert the DLL with the functionality for the XAML file.

To do this:

a) Select, in the context menu, File -> OtherAdd file....

b) Select the file DataGridControlLibrary.dll of the first project (DataGridControlLibrary).

6. Create a zenon screen.

7. Add a WPF element and select the previously-incorporated XAML file.

You should now see the following in the zenon Editor:

8. Start zenon Runtime in order to also test the control there.

Engineering in zenon

115

 Hint

DLLs that belong to a WPF element (referenced by the linked XAML file) can also be
replaced in the Editor during ongoing operation.
To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.
You can find this folder in the SQL directory under
...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in the
zenon Editor directly; to do this:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the file
with the higher version number.



Engineering in zenon

116

6.8 Error handling

ENTRIES IN LOG FILES

Entry Level Meaning

Xaml file found in %s

with different name,

using default!

Warning The name of the collective file and the name of the XAML file
contained therein do not correspond. To avoid internal conflicts, the
file with the name of the collective file and the suffix .xaml is used.

no preview image

found in %s
Warning The collective file does not contain a valid preview graphic

(preview.png or [names of the XAML file].png). Thus no
preview can be displayed.

Xaml file in %s not

found or not unique!
Error The collective file does not contain an XAML file or several files with

the suffix .xaml. It cannot be used.

Could not remove old

assembly %s
Warning There is an assembly that is to be replaced with a newer version, but

cannot be deleted.

Could not copy new

assembly %s
Error A new version is available for an assembly in the work folder, but it

cannot be copied there. Possible reason: The old example is still
loaded, for example. The old version continues to be used, the new
version cannot be used,

file exception in %s Error A file error occurred when accessing a collective file.

Generic exception in

%s
Error A general error occurred when accessing a collective file.

	1. Welcome to COPA-DATA help
	2. WPF element
	3. Basics
	3.1 WPF in process visualization
	3.2 Referenced assemblies
	3.3 Workflows
	3.3.1 Workflow with Microsoft Expression Blend
	3.3.2 Workflow with Adobe Illustrator

	4. Guidelines for designers
	4.1 Workflow with Microsoft Expression Blend
	4.1.1 Create button as an XAML file with Microsoft Expression Blend

	4.2 Workflow with Adobe Illustrator
	4.2.1 Bar graph illustration
	4.2.2 WPF export
	4.2.3 Animation in Blend

	5. Guidelines for developers
	5.1 Creation of a simple WPF user control with code behind function
	5.2 Debugging the WPF user control in Runtime
	5.3 Data exchange between zenon and WPF user controls
	5.3.1 Data exchange using dependency properties
	5.3.2 Data replacement via VSTA

	5.4 Access to the zenon (Runtime) object model from a WPF user control
	5.4.1 Access via VSTA "variable link"
	5.4.2 Access via marshaling

	6. Engineering in zenon
	6.1 CDWPF files (collective files)
	6.2 create WPF element
	6.3 Configuration of the linking
	6.3.1 Properties
	Link variable
	Link values
	Link authorization or interlocking

	6.3.2 Events
	6.3.3 Transformation

	6.4 Validity of XAML Files
	6.5 Pre-built elements
	6.5.1 Analog clock - AnalogClockControl
	6.5.2 Bar graph vertical - VerticalBargraphControl
	6.5.3 Progress bar - ProgressBarControl
	6.5.4 COMTRADE-Viewer
	Display during Runtime
	Runtime view - configuration page
	Runtime view - visualization of COMTRADE data
	Configurable control properties - color display

	6.5.5 Energy class diagram
	6.5.6 Pareto diagram
	6.5.7 Circular gauge control
	6.5.8 Sankey Diagram
	6.5.9 Temperature indicator - TemperatureIndicatorControl
	6.5.10 Universal slider - UniversalReglerControl
	6.5.11 Waterfall diagram

	6.6 Display of WPF elements in the zenon web client
	6.6.1 Engineering in the zenon Editor
	6.6.2 VSTA code (complex)
	6.6.3 VSTA code (simplified)

	6.7 Examples: Integration of WPF in zenon
	6.7.1 Integrate bar graph as WPF XAML in zenon
	6.7.2 Integrate button as WPF XAML in zenon
	6.7.3 Integrate DataGrid Control in zenon

	6.8 Error handling

