

zenon driver manual
BURPVI

v.8.00

©2018 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

Contents

1. Welcome to COPA-DATA help .. 5

2. BURPVI .. 5

3. BURPVI - Data sheet .. 6

4. Driver history .. 8

5. Requirements .. 8

5.1 PC .. 9

5.2 Control .. 9

6. Configuration .. 9

6.1 Creating a driver .. 10

6.2 Settings in the driver dialog .. 13

6.2.1 General ... 14

6.2.2 Global settings .. 18

6.2.3 Connections .. 21

6.2.4 Configuration file in redundant operation ... 40

7. Creating variables .. 41

7.1 Creating variables in the Editor ... 41

7.2 Addressing ... 45

7.3 Driver objects and datatypes .. 46

7.3.1 Driver objects ... 47

7.3.2 Mapping of the data types ... 48

7.4 Creating variables by importing .. 49

7.4.1 XML import ... 49

7.4.2 DBF Import/Export ... 50

7.4.3 Import PVI variables from the driver .. 55

7.5 Communication details (Driver variables) ... 65

8. Driver-specific functions .. 71

9. Driver command function .. 72

10. Error analysis ... 75

10.1 Analysis tool .. 75

10.2 Check list ... 76

10.3 Error messages .. 77

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel
(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an
initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com.

2. BURPVI

Driver for B+R controls based on the PVI software from Bernecker+Rainer. The driver communicates
with PVI. For example system 2000 family (2003, 2005 etc.), Acopos, X20 system, Automation PC,
PowerPanel etc. ...

The driver supports spontaneous operation with hysteresis and online import of multidimensional
arrays and arrays with a start index <> 0.

https://www.copadata.com/tutorial_menu

BURPVI - Data sheet

6

Coupling: Serial, Ethernet

Protocol: PVI

The BUR-PVI driver replaces the BUR20032 driver. The addressing of these two drivers is not compatible
with each other as the BUR20032 driver addresses the PVI items via an allocation file and the BUR-PVI
saves the addressing directly via properties in the V-DLL. The driver is symbol-oriented.

 Attention

Addressing of one-dimensional arrays:

If one-dimensional rays are addressed with a start index <> 0, a comma must be
attached to the index. For details see: Documentation B&R.

 zenon[3,]

3. BURPVI - Data sheet

General:

Driver file name BURPVI.exe

Driver name BR-PVI driver

PLC types All Bernecker and Rainer PLCs which can use the PVI
communication like System 2000 family (2003, 2005 etc), Acopos,
X20 System, AutomationPC, PowerPanel and others.

PLC manufacturer Bernecker + Rainer;

Driver supports:

Protocol PVI;

Addressing: Address-based --

Addressing: Name-based X

Spontaneous
communication

X

Polling communication X

Online browsing X

BURPVI - Data sheet

7

Offline browsing X

Real-time capable --

Blockwrite --

Modem capable --

Serial logging --

RDA numerical X

RDA String --

Hysteresis X

extended API X

Supports status bit WR-SUC X

alternative IP address --

Requirements:

Hardware PC RS 232 interface or Standard network card

Software PC PVI software necessary, also under Windows CE. PC setup can be
found on the installation media.

Hardware PLC --

Software PLC --

Requires v-dll X

Platforms:

Operating systems Windows CE 6.0, Embedded Compact 7; Windows 7, 8, 8.1, 10,
Server 2008R2, Server 2012, Server 2012R2, Server 2016;

CE platforms x86;

Driver history

8

4. Driver history

Date Driver version Change

1/26/201
0

1400 Driver was created newly

1/14/201
0

1500 Fixed error at the configuration

3/5/2010 1600 Adjusted to PVI 3.0

3/17/201
0

1700 Revised dialogs

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of
this version. This is the number in the 4th position of the file version,
For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build number
4228.

Expansions or error rectifications will be incorporated into a build in the future and are then available
from the next consecutive build number.

 Example

A driver extension was implemented in build 4228. The driver that you are using is build
number 8322. Because the build number of your driver is higher than the build number
of the extension, the extension is included. The version number of the driver (the first
three digits of the file version) do not have any significance in relation to this. The drivers
are version-agnostic

5. Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

Configuration

9

5.1 PC

PVI software from Bernecker+Rainer.

5.2 Control

6. Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables
(main.chm::/15247.htm) of the online manual.

main.chm::/15247.htm

Configuration

10

6.1 Creating a driver

In the Create driver dialog, you create a list of the new drivers that you want to create.

Configuration

11

Parameter Description

Available drivers List of all available drivers.

The display is in a tree structure:
[+] expands the folder structure and shows the drivers
contained therein.
[-] reduces the folder structure

Default: no selection

Driver name Unique Identification of the driver.

Default: Empty
The input field is pre-filled with the pre-defined
Identification after selecting a driver from the list of
available drivers.

Driver information Further information on the selected driver.
Default: Empty
The information on the selected driver is shown in this
area after selecting a driver.

CLOSE DIALOG

Option Description

OK Accepts all settings and opens the driver configuration dialog of
the selected driver.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

 Information

The content of this dialog is saved in the file called Treiber_[Language].xml. You can find

this file in the following folder: C:\ProgramData\COPA-DATA\zenon[version
number].

CREATE NEW DRIVER

In order to create a new driver:

1. Right-click on Driver in the Project Manager and select New driver in the context menu.
Optional: Select the New driver button from the toolbar of the detail view of the Variables.
The Create driver dialog is opened.

Configuration

12

2. The dialog offers a list of all available drivers.

3. Select the desired driver and name it in the Driver name input field.
This input field corresponds to the Identification property. The name of the selected driver is
automatically inserted into this input field by default.
The following is applicable for the Driver name:

 The Driver name must be unique.
If a driver is used more than once in a project, a new name has to be given each time.
This is evaluated by clicking on the OK button. If the driver is already present in the project,
this is shown with a warning dialog.

 The Driver name is part of the file name.
Therefore it may only contain characters which are supported by the operating system.
Invalid characters are replaced by an underscore (_).

 This name cannot be changed later on.

4. Confirm the dialog by clicking on the OK button.
The configuration dialog for the selected driver is opened.

 The language of driver names cannot be switched. They are always shown in the language in
which they have been created, regardless of the language of the Editor. This also applies to driver object
types.

Configuration

13

DRIVER NAME DIALOG ALREADY EXISTS

If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by clicking
on the OK button. The driver can be named correctly.

ZENON PROJECT

The following drivers are created automatically for newly-created projects:

 Intern

 MathDr32

 SysDrv

 Information

Only the required drivers need to be present in a zenon project. Drivers can be
added at a later time if required.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

Configuration

14

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later
for editing, double click on the driver in the list or click on the Configuration property.

Configuration

15

Option Description

Mode Allows to switch between hardware mode and simulation mode

 Hardware:
A connection to the control is established.

 Simulation - static:
No communication between to the control is established,
the values are simulated by the driver. In this modus the
values remain constant or the variables keep the values
which were set by zenon Logic. Each variable has its own
memory area. E.g. two variables of the type marker with
offset 79 can have different values in the Runtime and do
not influence each other. Exception: The simulator driver.

 Simulation - counting:
No communication between to the control is established,
the values are simulated by the driver. In this modus the
driver increments the values within a value range
automatically.

 Simulation - programmed:
No communication is established to the PLC. The values are
calculated by a freely programmable simulation project. The
simulation project is created with the help of the zenon Logic
Workbench and runs in a zenon Logic Runtime which is
integrated in the driver.
For details see chapter Driver simulation
(main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested from the
control even if they are currently not needed.
This has the advantage that e.g. multiple screen switches after
the screen was opened for the first time are executed faster
because the variables need not be requested again. The
disadvantage is a higher load for the communication to the
control.

Output can be written Active:

Outputs can be written.

 Inactive:

Writing of outputs is prevented.

: Not available for every driver.

Variable image remanent This option saves and restores the current value, time stamp and
the states of a data point.

Fundamental requirement: The variable must have a valid value
and time stamp.

The variable image is saved in mode hardware if:

main.chm::/25206.htm

Configuration

16

 one of the states S_MERKER_1(0) up to S_MERKER8(7),
REVISION(9), AUS(20) or ERSATZWERT(27) is active

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not programmed
simulation)

The following states are not restored at the start of the Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is not a
criterion in order to restore the remanent variable image.

Configuration

17

Stop on Standby Server Setting for redundancy at drivers which allow only one
communication connection. For this the driver is stopped at
the Standby Server and only started at the upgrade.

 If this option is active, the gapless archiving is
no longer guaranteed.

 Active:
Sets the driver at the not-process-leading Server
automatically in a stop-like state. In contrast to stopping via
driver command, the variable does not receive status
switched off (statusverarbeitung.chm::/24150.htm)
but an empty value. This prevents that at the upgrade to the
Server irrelevant values are created in the AML, CEL and
Historian.

Default: Inactive

 Not available if the CE terminal serves as a data
server. You can find further information in the zenon
Operator manual in the CE terminal as a data server
chapter.

Global Update time Setting for the global update times in milliseconds:

 Active:
The set Global update time is used for all variables in the
project. The priority set at the variables is not used.

 Inactive:

The set priorities are used for the individual variables.

 Spontaneous drivers ignore this option. They
generally use the shortest possible update time.
For details, see the Spontaneous driver update time section.

Priority The polling times for the individual priority classes are set here.
All variables with the according priority are polled in the set time.

The variables are allocated separately in the settings of the
variable properties.
The communication of the individual variables can be graded
according to importance or required topicality using the priority
classes. Thus the communication load is distributed better.

 Priority classes are not supported by each driver, e.g.
spontaneously communicating zenon drivers.

CLOSE DIALOG

Option Description

OK Applies all changes in all tabs and closes the dialog.

statusverarbeitung.chm::/24150.htm

Configuration

18

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR SPONTANEOUS DRIVERS

With spontaneous drivers, for Set value, advising of variables and Requests, a read cycle is triggered
immediately - regardless of the set update time. This ensures that the value is immediately available for
visualization after writing. The update time is generally 100 ms.

Spontaneous drivers are ArchDrv, BiffiDCM, BrTcp32, DNP3, Esser32, FipDrv32, FpcDrv32, IEC850,
IEC870, IEC870_103, Otis, RTK9000, S7DCOS, SAIA_Slave, STRATON32 and Trend32.

6.2.2 Global settings

General settings for the PVI communication are set in the Global Settings tab. These settings are true
for all connections which are available in the driver.

Configuration

19

Parameter Description

Configuration file File in which the configuration of connections and the global settings
are saved. Click on ... in order to open the Windows Explorer.

Note the hints in chapter: Configuration file in redundant operation
(on page 40).

REMOTE CONNECTION

Parameter Description

Use PVI event mode Active: All PVI variables are requested via event mode (PVI

command AT=rwe HY=0).

Inactive: PVI variables are read cyclically with the setting of the
global update time (AT=rw, RF=global update time in ms).

PVI communication timeout [s] Timeout or PVI communication in seconds.
PviInitialize (dwTimeout, …)

Enable Remote Connection Active: Connection to a remote PVI system via TCP/IP is
established. The communication takes place exclusively via this
gateway. A local PVI installation is always necessary.

In addition to the settings for the driver, you must configure the
setting for the remote communication via TCP/IP on the PVI itself
(PVI client/Manager) - locally and on the remote system.

Computername or IP address Computer name or IP address on which the remote PVI system is
installed and runs.

TCP/IP Port number TSP/IP port number of the remote PVI system.

 Any firewall that may be present must be configured so that
the target port can be reached.

ONLINE IMPORT OPTIONS FOR ARRAYS AND STRUCTURE VARIABLES

Options for the online import of array variables and structure variables.

Configuration

20

Parameter Description

Map array elements on driver

object Type "Array as whole"
Active: At the import of array elements select Driver object

typesRead in a request - exception for arrays in structures.

Map structure elements on driver

object Type "Array as whole"
Active: At the import of array elements select Driver object

typesRead in a request - also for arrays in structures.

Create one variable per

array/structure item
Active: Only individual variables are created and no nodes are

displayed.

Default setting.

Create one variable representing

the whole array/structure (block

arrays)

Active: For arrays and structures, only block variables are created,
but no variables that represent individual variables of
structures/arrays. This option has no influence on top level variables.

Create both - ensure that you use a

suffix for block arrays to avoid

import errors

Active: For arrays and structures, both individual elements and

blocks that represent the whole structure are represented.

Suffix for block arrays Suffix for the zenon names of variables that were created as block
array - variables that represent a whole structure or complete array.

ARRAY AS A WHOLE

With this all elements of the driver object type Array as whole are mapped. All elements of this object type are no
longer read in the event that a value changes, but polled cyclically. The driver always reads in the whole array as a
block.

A block array is a large variable in zenon that reads a complete block from the PLC. Many individual arrays are
therefore read as a single array.

Configuration

21

6.2.3 Connections

On this tab you carry out the settings for the connection. You can create any number of connections in
the driver. All connections use the global settings which are defined on tab General Settings (on page
18).

Configuration

22

Parameter Description

Connection file Storage location for the configuration file in which the connection
and the global setting is saved. The file is set in tab General

Settings (on page 18).

Connections List of available connections.

New Adds new entry to the list. Settings are carried out in the field to the
right of the list.

Delete Deletes selected entry from the list.

Edit Makes it possible to configure the selected entry. The area to the
right of the list for editing the connection is activated.

 The driver dialog cannot be closed in editing mode.
Only once the editing mode has been left using Save or Cancel
can you close the driver dialog.

Edit connection Edit connection settings.

Address and name Address and name.

Net address Net address of the connection for the allocation of variables.
If you change the net address here, you must also

change the net address of all other variables of the connection.
Otherwise the allocation is no longer correct and variables cannot
communicate in the Runtime!

Connection name Symbolic connection name. This name is used as a prefix for the
variable name.

Communication parameters Communication parameter:

Device type Selection of the PVI device type from the drop-down list:

 Serial

 Ethernet

 Modem

 CAN

 Shared

 User defined

For types Serial and Ethernet you can open a dialog for
configuration by clicking on

Device parameters Direct input of the PVI device parameter. If you carry out the setting
for the connection with the configuration dialog for Ethernet or
Serial, the settings are overwritten here.

Ethernet default: /IF=TCPIP /SA=1

Serial default: /IF=COM1 /BD=57600 /PA=2 /IT=1

You can find the settings for the single communication types in

Configuration

23

chapter Device parameter - INA2000 device object (on page 31)

CPU parameters Direct input of the PVI CPU parameter. This is the station address of
the CPU. For serial connections no station address is needed.

Ethernet default: /DA=2

Serial default: -

Routing Direct input of a routing path for the routing via PLC stations. See
description for routing further down.

Save Saves the configuration of the selected connection.

Cancel Discards configuration.

OK Saves all changes and closes dialog.

Cancel Discards all changes and closes the dialog.

 Information

Maximum number of Ethernet connections: 256.

ROUTING

With the help of routing, communication connections can be established via a PLC station to PLC stations of other
networks. This connections can run via several PLC stations. The single stations are defined in the routing path.

SYNTAX

<Entry 1>/<Entry 2>/.../<Entry n>

The single path entries are separated by character '/'.

Syntax for an entry:

SL<Slot>.SS<Subslot>.IF<Interface>.<Address>

All partial entries are separated by character '.'. Statement SL<Slot> and SS<Subslot> need not to be specified for 0
or 1. The statement <Address> is only needed for connections via the network.

Parameter Description

SL<Slot> Slot number: 0 (1) - 15.

SS<Subslot> Subslot number: 1 - 3.

IF<Interface> Interface number: 1 - 15.

<Address> Station address: 1 - ff (hexadecimal).

Routing on or via peripheral processors:

Configuration

24

Parameter Description

CP Main processor.

PP<Slot> peripheral processor, slot number: 0 (1) - 15.

EXAMPLES

/CN=IF3/IF2.7
From the PC to the first PLC, from there via IF3 to the next station (PLC) and then via IF2 to a CAN station with
station number 7.

/CN=SL6.IF1

From the PC to the first PLC then on via slot 6 (e.g. IF 050) and IF1

/CN=PP3

From the PC to the first PLC and on to the peripheral processor 3

ETHERNET CONNECTION

A click on ... in area Device type opens the dialog for the configuration of the Ethernet connection if you
have selected Ethernet:

Configuration

25

Parameter Description

Interface Defines the interface. Mist always be TCP/IP.

Source address Station number of the source station (own station).

 The station number must be unique within the
INA2000 network. As default B&R Automation Studio uses station
number 1. Thus it can easily happen that the communication to
the PLC does not work if station number 1 is used.
The highest possible station number is 99 for SG3 and 255 for SG4.

See also Configuration file in redundancy operation (on page 40).

Obtain destination address

automatically
Obtain destination address automatically: PVI connects to the
defined device (IP address or computer name must be set) and
determines the station address automatically.

Enter destination address Enter destination address: Enter the station address of the target
system. If Obtain an IP address automatically is activated, a
broadcast is carried out in the network in order to find the station.

Obtain an IP address automatically Obtain an IP address automatically: Carries out a broadcast in the
network and tries to find the station with the station address
defined at Enter destination address.

Specify an IP address Define IP address: Enter the IP address of the station.

Specify a host name Define host name: Enter the host name of the station.

Use Default values Resets the properties to the default settings.

OK Applies settings and closes the dialog.

Cancel Discards settings and closes the dialog.

As an alternative you can enter the values in areas Device Parameter, CPU Parameter and Path target

system.

Configuration

26

SERIAL CONNECTION

A click on ... in area Device type opens the dialog for the configuration of the serial connection if you
have selected Serial:

Parameter Description

Com port Defines interface.

Default: COM1

Baud rate Defines baud rate.

Default: 57600

Parity Defines parity:

 no

 odd

 even

Default: even

Interval timeout (ms) Defines the interval in milliseconds.

Default: 1

Use Default values Resets the properties to the default settings.

OK Applies settings and closes the dialog.

Cancel Discards settings and closes the dialog.

As an alternative you can enter the values in areas Device Parameter, CPU Parameter and Path target

system.

INA2000 communication

The driver supports the communication in accordance with the INA2000 protocol.
The INA2000 communication is supported by the following devices:

Configuration

27

 Serial communication

 CAN communication

 Ethernet UDP communication

 Modem communication

 Profibus FDL communication

 LS251 communication

 AR000 communication

Each INA2000 communication possesses a life monitoring. As soon as a connection is established, it is
checked each second by exchanging small data packages (ping/pong).

GENERAL PLC PREREQUISITES:

The INA2000 communication works limited (services) as of PLC operating system 1.91. To be able to use
all services (e.g. upload, download of modules), PLC operating system 2.10 is necessary.

If multimaster abilities or a TCP/IP communication between PC and PLC are necessary, you must use PLC
operating systems 2.20 or higher. For a INA2000 event handling via the PLC (PLC monitors data change),
a PLC operating system 2.24 or higher is needed.

INA2000 orders are processed in the PLC in the remaining time. To receive suitable response times, a
balance time of at least 20% is required. If 20% balance time cannot be guaranteed due to application
reasons, longer answer times will occur and therefore the data will be refreshed slower.

SERIAL COMMUNICATION

The serial communication can only be operated as point-to-point connection (RS232 or RS422).

CAN COMMUNICATION

The CAN communication is used as INA2000 network with a maximum of 32 (extendable to 255)
stations. The individual stations are distinguished by the CAN node number.

PC REQUIREMENTS

Please refer to the manufacturers description to find out which CAN card can by used with which
Windows system.

Configuration

28

PLC REQUIREMENTS

To allow an INA2000 communication via CAN, you must activate CAN communication in Automation
Studio. See Automation Studio documentation (Project -> Hardware configuration -> CAN configuration).

ETHERNET UDP COMMUNICATION

PC REQUIREMENTS

The TCP/IP protocol must be installed.

PLC REQUIREMENTS

To allow an INA2000 communication via Ethernet, you must activate Ethernet communication in
Automation Studio. See Automation Studio documentation (Project -> Hardware configuration ->
Ethernet configuration).

For SG4 (i386):
The configuration of the IP address and the station number (INA node number) takes place in the
Ethernet property dialog of the Automation Studio. No additional modules must be transferred to the
PLC.

For SG3 (m68k):
For INA2000 communication modules "FBTCPIP.BR" and "TCPIPMGR.BR" must be burned. In addition a
data object "TCPIPCFG.DAT" with the corresponding settings must exist.

USE SEVERAL ETHERNET NETWORK CARDS AT THE PC.

How to make sure that PVI uses the correct network card in order to communicated with the PLC when
two or more network cards are available in the PC.

In order for the correct network card to be selected for the PLC communication, the subnet mask must
be set correctly. The IP address of the target station (PLC) is linked with the subnet mask with AND; thus
the correct network card is found and used for the communication.

Example:

Device parameter: /IF=tcpip /SA=1

CPU parameter /DA=13 /DAIP=172.43.70.13

IPAdr NW1: 172.43.71.12 subnet mask: 255.255.255.0

IPAdr NW2: 172.43.70.12 subnet mask: 255.255.255.0

IPAdr PLC: 172.43.70.13

Configuration

29

With this network card two is used for the communication to the PLC. If a DHCP server is configured for
a network card, you must know which IP addresses and subnet masks the DHCP server assigns so that
you can configure the second network card correctly.

MODEM COMMUNICATION

The Modem communication just as the serial communication is a point-to-point connection.

Modem features:

 Transparency: The modem is accessed only via standard Windows functions. I.e. any modem can
be used which can be installed under Windows. The user must only take care about the
installation of the modem. He does not need any special knowledge about the modem (AT
commands, etc.).

 Automatic connection reestablishment: An actively established connection (see below) will be
monitored constantly. When the connection is lost (e.g. interruption of the phone line,
unplugging the modem, turning of the modem), a new connection establishment is tried in
periodic intervals. The number of tries and the interval can be engineered.

 Active connection establishment: The Windows computer establishes a dial connection to the
stated phone number and transfers the protocol defined by PVI line on this connection.

 Passive connection establishment: The Windows computer waits for an incoming call, picks up
automatically and establishes a connection. With this operation mode it is for example possible
that a PLC itself initiates a connection establishment to a Windows computer via PVI.

PC REQUIREMENTS

The PVI modem device needs Microsoft TAPI version 2.0. This version is already installed at Windows NT
4.0. When using Windows 95 it is necessary that the default TAPI version 1.4 is replaced by a newer
version. The most topical Microsoft (www.microsoft.com) version available is version 2.1. To install TAPI
version 2.1 under Windows 95, start program "tapi2195.exe" in subfolder "Pvi\SysSetup\Modem". This
file is installed via PVI setup option "Modem system components".

The installation of a modem is carried out in Windows via control panel -> modem. If the dialog is
opened it is possible to add new modems and to change the settings of the modem ("Properties"). The
label of the modem in this dialog matches the modem name which must be stated as PVI device
parameter (/MO).
The behavior during dialing can be configured under "Control panel -> Phone" (current location, dialing
card, etc.).

PROFIBUS FDL COMMUNICATION

Attention:

The INA2000 communication via Profibus FDL is only possible on System 2000. External systems are not
supported by the PVI!

Configuration

30

The settings of the PLC Profibus card (NW100/NW150) and the PC card (5A1104.00-090) can be taken
from the PROFIBUS user manual (MASYS2PB-0).

PC REQUIREMENTS

The data exchange with the PC takes place via a 32 KB DPR. For this a free address area must be defined
on the PC. On the Profibus card this is set with two hex switches SW1 and SW2 (SW1 = 0; SW2=D). If
only one Profibus card is used in the system, jumper BR1 and BR2 must be let open. Additional
information can be found in the PROFIBUS user manual.

For this memory to be deallocated on the PC, the memory area must be excluded in the BIOS. On the
IPC5000 in the BIOS under "PNP/PCI Configuration" you must exclude either 32 KB (1 Profibus card) or
64 KB (for 2 Profibus cards) starting at basic address D000.

PLC REQUIREMENTS

NW100 or NW150 with revision higher/equal to xx.05.

On the PLC operating system 2.00 or higher is necessary. For the INA2000 communication module
"FBPB.BR" must be burnt. The Profibus configuration module is already part of the operating system and
can be changed with the help of suitable tools if necessary.

To allow an INA2000 communication via Profibus, you must extended the configuration for the INA2000
Profibus communication in the SYSCONF module.

LS251 COMMUNICATION

PC REQUIREMENTS

With Windows the LS251 card is recognized by the operating system automatically after it has been
plugged in. In the hardware wizard you can select the corresponding driver under
"Pvi\Drivers\Ls251\W2k_xx".

Runtime PLC prerequisites:

On LS251 PLC operating system V2.01 or higher must be installed.

AR000 COMMUNICATION

Communication with AR000 takes place via an Ethernet UDP device and an Ethernet UDP station with
local IP address 127.0.0.1.

Connection description for device: “/IF=TcpIp", Connection description for station: "/DAIP=127.0.0.1
/REPO=11160".

Configuration

31

PC REQUIREMENTS

The AR000 Runtime emulation must be installed.

Device parameter - INA2000 device object

With the INA2000 device object the used communication device is defined. You must enter the
parameters described here in the connection configuration in field Device parameter.
The following communication parameters can be defined:

 Serial device

 CAN device

 Ethernet UDP device

 Modem device

 Profibus FDL device

 LS251 device

The communication device including the necessary device parameters are defined in the connection
description of the device object. Within the connection description the single parameters are
distinguished by parameter identifications. The parameter identification always starts with character '/'.

SYNTAX OF THE CONNECTION DESCRIPTION

/IF=<device name> [/<identification1>=<parameter value> [/<identification2>=<parameter value> ...
]]

Parameter /IF is the same for all communication devices. All other parameters depend on the used
communication device. The device name is not case-sensitive. You must insert at least one space
character between the parameter declaration.

In the object description the connection description must always be between quotation marks ("...").

EXAMPLE FOR CONNECTION DESCRIPTION

CD="/IF=com1 /BD=57600 /PA=2"

SERIAL DEVICE

The following table shows all definable parameters defined in the connection description of the device
object for serial communication.

Configuration

32

Paramete
rs

Values Input Description

/IF com1
...comX

None by default: com1 to com4. With corresponding serial interface cards
or adapters even more than com4 is possible.

Example: "/IF=com1".

/BD 9600,
19200,
38400,
57600,
115200

57600 Baud rate in bits per second.

/RS -1, 0,
232,
422,
485

232 set protocol RS232 or RS422. RS485 is not supported by INA2000.

Example: "/RS=422".

With this parameter the flow control of the line CTS (clear-to-send))
and RTS (request-to-send) of the serial interface is set.

Possible parameter values:

= -1: PVI does not change the current setting (see properties interface
device) of the CTS/RTS flow control.
= 0: always switch off RTS line (RTS flow control is deactivated).
= 232: Use RTS handshake.
= 422: Always switch on RTS line.
= 485: Switch on RTS line in order to trigger a transfer and during a
transfer.

The CTS flow control is deactivated for all parameters >= 0.

Some USB/serial adapter (USB to serial interface) cannot handle the
CTS/RTS flow control correctly. To establish an RS232 connection via
these adapters, parameter "/RS=0" must be entered.

/PA 0 - 4 1 Setting for parity.

0=NOPARITY,
1=ODDPARITY,
2=EVENPARITY,
3=MARKPARITY,
4=SPACEPARITY.

Default setting for INA2000 communication is "/PA=2".

 Example

Example for connection description:

CD="/IF=com2 /BD=115200 /PA=2"

Configuration

33

CAN DEVICE

To communicate with a INACAN device, you must first set it up as CAN device via B&R device
configuration. The configuration is started via control panel and CAN device. The device list of the
configuration shows all already setup CAN devices. The device number must also be entered in the PVI
device name. At this device CAN1 matches the PVI device name INACAN1; CAN2 matches INACAN2 and
so on. With the B&R CAN device configuration you also set the device resources (IRQ, port address, etc.).

The following table shows all definable parameters defined in the connection description of the device
object for CAN communication.

Configuration

34

Paramete
rs

Values Input Description

/IF inacan1 ...
inacanX

None CAN device. The used device must be entered in the device list of
the B&R CAN device configuration.

Example: "/IF=inacan1".

/CNO 0, 1 0 Number (channel) of the CAN controller.

On the LS172 card 2 CAN controllers are available. With parameter
/CNO the desired controller is selected. For the standard CAN
controller you must not enter another values as 0 (zero).

Example for LS172 card:

CAN-Bus 1: "/IF=inacan2 /CNO=0",
CAN-Bus 2: "/IF=inacan2 /CNO=1".

/IT 0 - 60000,
0 = off

0 Interval timeout (ms).

Defines the maximum time which may pass between receiving and
sending an INA frame between two CAN messages. This parameter
is used together with parameter /RT of the INA2000 CPU objects in
order to recognize a connection termination.

The parameter must not be smaller than the reaction time of the
control (5 - 30 ms) plus a cushion of at least 25 ms (if there is a high
interrupt strain on the PC, it must be respectively higher) but it
should be smaller than /RT. If no quick recognition of the
connection termination is necessary, the monitoring of the interval
timeout can be switched off ("/IT=0").

Example: "/IT=80".

/BI 0 - 2047 /
536870911

1598 Basic CAN-ID of the INA2000 communication.

All stations of the INA2000 network must have the same setting.

Example: "/BI=1598".

/MDA 32 - 255 32 Number of maximally possible INA2000 stations (=highest station
number).

All stations of the INA2000 network must have the same setting.

Example: "/MDA=50".

/SA 1 - /MDA 1 Station number of the source station (own station).

The station number must be unique within the INA2000 network.

Example: "/SA=3".

/BD 10000,

20000,

50000,

100000,

*) Baud rate (data rate) at the CAN bus in bits per second. The rate can
also be in Kbits per second.

All stations of the INA2000 network must have the same setting.

Example: "/BD=250000" or "/BD=250".

Configuration

35

125000,

150000,

250000,

500000,

800000,

1000000

/CMODE 11, 29 *) CAN communication with 29 bit identifier (extended frames)
or with 11 bit identifier (standard frames).

If 29 bit CAN identifiers (extended frames) are used, 11 bit
identifiers cannot be received or sent.

All stations of the INA2000 network must have the same
setting.

Example: "/CMODE=29".

/CT >= 1,

0 = off

*) Cycle time (in ms); in this time not more than the stated
number of CAN messages (parameter /MC) can be sent.

Values < 20 ms make no sense.

Example: "/CT=20".

/MC >= 1 *) Maximum number of CAN messages which are sent in the
states cycle time (parameter /CT).

Example: "/MC=15".

*) Parameters /BD, /CMODE, /CT and /MC can also be set with the B&R CAN device configuration. If
these parameters are not stated in the connection description (= recommended method), the values set
in the configuration are used. If one of the parameters is stated in the connection description, the
respective configuration setting is overwritten.

Parameters /CT and /MC serve as message limitation. With this the number of sent CAN messages per
cycle time can be limited. The traffic caused by the PC on the CAN bus is reduced by this. The message
limitation is important if other bus members can only process a certain number of received CAN
messages at a fixed baud rate or reduce the interrupt strain of other bus members in general. The
disadvantage of the message limitation is a slower CAN communication.

For the INA2000 communication each station needs 3 CAN-IDs. The CAN-IDs are created from the basic
CAN-ID (parameter /BI), the station number (node number) and the maximum number of stations
(parameter /MDA):

 ID1 (initiate request) = <Basic CAN-ID> + <station number> - 1

 ID2 (initiate response) = <Basic CAN ID> + <station number> - 1 + <maximum number of
stations> * 2

Configuration

36

 ID3 (data segment) = <Basic CAN ID> + <station number> - 1 + <maximum number of stations>

 Example

Example for connection description:

CD="/IF=inacan3 /CNO=1 /SA=3"

ETHERNET UDP DEVICE

The following table shows all definable parameters defined in the connection description of the device
object for Ethernet UDP communication.

Parameter
s

Values Input Description

/IF tcpip None Ethernet UDP device.

Statement: "/IF=tcpip".

/LOPO 1024 -
32767

11159 Port number of the source station (own station).

If the value is stated in hexadecimal, "0x" must be placed in
front (e.g. "/LOPO=0x2b97").

You must only set another port number as the default if it is
not unique within the local computer.

Example: "/LOPO=11159".

/SA 0 - 99 / 255 1 Station number of the source station (own station).

The station number must be unique within the INA2000
network. The highest possible station number is 99 for SG3
and 255 for SG4.

Example: "/SA=3".

 Example

Example for connection description:

CD="/IF=tcpip /SA=3"

Configuration

37

MODEM DEVICE

The following table shows all definable parameters defined in the connection description of the device
object for modem communication.

Paramete
rs

Values Input Description

/IF modem1 ...
modemX

None Modem device.

Example: "/IF=modem1".

/MO Modem
description

None Description of the modem as in the setup dialog (control
panel -> modem). The string must be between single
quotation marks. If a single quotation mark should be
used within a string, you must use two single quotation
marks (e.g. m'56k is stated as /MO=''56k').

Example: "/MO='MicroLink 56k'".

/TN Phone number None Phone number. The phone number which should be
called in accordance with "ITU-T Recommendation
E.123", z.B. +43(7748)6586. You must always enter the
complete phone number (including international access
code); the conversion to the actual phone number is
carried out automatically. This string must be between
single quotation marks. If it should be waited for a call,
you must enter an empty string (/TN=").

Example: "/TN='+43(7748)6586'".

/MR 0 - INFINITE INFINITE Maximum number of failed re-dialing attempts. Defines
the number of tries a failed connection should be tried to
be reestablish. If you enter INFINITE the number of
retries is unlimited. If you enter 0, there is no retry.

Parameter /MR only has a meaning if /TN is not empty.

Examples: "/MR=50", "/MR=INFINITE".

/RI 0 - 3600 60 Time interval between retries in seconds. If a retry fails,
this time is waited until a new try is started. Parameter
/RI only has a meaning if /TN is not empty.

Example: "/RI=120".

/IT 0 - 60000 40 Interval timeout (ms).

Defines the maximum time which may pass between the
reception of two successive characters.

Configuration

38

Example: "/IT=100".

In addition to parameter /IF, you must also always enter parameter /MO and /TN.

Reading from the serial interface is carried out by an operating system function. A buffer is handed over
to this function. In this buffer the received data is stored. The operating system finishes the reading if
one of the following situation occurs:

1. The buffer is full.

2. Since receiving the last character a time interval which is larger than the timeout interval has
past.

The correct setting of parameter /IT for the timeout interval is therefore especially important. If the
timeout interval is to small, INA2000 frames could be lost. This would lead to a connection termination.
If the timeout interval is to large, the data throughput suffers as the timeout interval passes before the
PC recognizes a received frame. Default value 40 ms has been chosen because of measurings which
show that a modem (by internal buffering) adds 35 ms breaks in the byte stream. Normally it should not
be necessary to select another value. We can however not rule out that you must set a higher value if
using another modem type or bad line quality (modems have their own transfer security with automatic
retransmission).

 Example

Example for connection description:

CD="/IF=modem1 /MO='ZyXEL MODEM Omni 288S' /TN='+43(7748)999'"

PROFIBUS FDL DEVICE

The following table shows all definable parameters defined in the connection description of the device
object for Profibus FDL communication.

Configuration

39

Paramete
rs

Values Input Description

/IF pbusfdl1 ...
pbusfdlX

None Profibus device.

Example: "/IF=pbusfdl1".

/BA 0x00000 -
0xFFFFF

0xD0000 Basic address of the DPR of the Profibus card. If the
value is stated in hexadecimal, "0x" must be placed in
front.

Example: "/BA=0xD0000".

/FF Path name*) nw_load.bin Path name of the firmware file for the Profibus card.

Example: "/FF=nw.bin".

/FC Path
name*)

nw_pb_32.br Path name of the network configuration file for the
Profibus card.

Example: "/FC=nw_pb.br".

/CB 1 - 255 2 Number of communication buffers of the Profibus card.

Example: "/CB=4".

/SA 0-127 1 Station number of the source station (own station).

The station number must be unique within the INA2000
network.

Example: "/SA=2".

*) A standard firmware file and configuration file is part of the PVI. If no path is entered, the files must
be in the folder of the PVI manager.

Settings such as baud rate and timeout cannot be defined via the device parameters. For this the
configuration file must be changed with the right tools.

 Example

Example for connection description:

CD="/IF=pbusfdl1 /FF=c:\pbconfig\nw_load.bin /FC=c:\pbconfig\nw_pb_32.br
/SA=1"

LS251 DEVICE

The following table shows all definable parameters defined in the connection description of the device
object for LS251 communication.

Configuration

40

Parameter
s

Values Input Description

/IF ls251_1 ... ls251_9 None LS251 device.

Example: "/IF=ls251_1".

 Example

Example for connection description:

CD="/IF=ls251_1"

6.2.4 Configuration file in redundant operation

The PVI communication needs a unique station address for each station (PLC or computer) in the
INA2000 network. For the zenon redundancy operation this means that the server and the standby need
different configuration files. In the configuration file the station address is saved for each connection.
This is how you can created different configuration files for the server and the standby:

 Set up the driver in the Editor so that the connection is correct.

 Test the communication at the server in the Runtime.

 Activate the standby once. At this the standby fetches the whole project including the
configuration file from the server. Deactivate the standby.

 Open the Remote Transport configuration in the project properties.

 Select the line that is responsible for the driver files (line 8) and set this line to inactive. This
setting makes sure that the changes you made at the standby are not overwritten by the file
from the server. If you do not make this changes, the standby will fetch the topical configuration
file from the server and overwrite its own local file.

 Transfer this change to the server and reload it or start it again.

 Start the Windows Explorer at the standby.

 Go to the Runtime folder of the project and then to folder: \RT\FILES\zenon\custom\drivers.
There you can find the driver configuration file. Open the file with the Windows Editor
(Notepad).

 For each connection you can find entry DEVICE_PARAM= in the file. In this entry the station
address is saved (/SA=x). Change the station address to an unique station address. Save the
changes and close the file.

Creating variables

41

 Create a variable in the Editor which has property Read from Standby Server only set. With the
help of this variable you can check in the Runtime whether the server and the standby
communicate simultaneously with the control.

 Attention

Changes in the driver configuration (e.g. changed IP address) in the Editor are now no
longer transferred via the Remote Transport to the server and from there to the standby.
You must manually take care that the changes are added to the configuration files at the
server and the standby.

7. Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

42

1. Select the New variable command in the Variables node in the context menu

The dialog for configuring variables is opened

2. Configure the variable

Creating variables

43

3. The settings that are possible depends on the type of variables

Property Description

Name Distinct name of the variable. If a variable with the same name already
exists in the project, no additional variable can be created with this name.

Maximum length: 128 characters

 The characters # and @ are not permitted in variable names. If
non-permitted characters are used, creation of variables cannot be
completed and the Finish button remains inactive.

 For some drivers, the addressing is possible over the property
Symbolic address, as well.

Drivers Select the desired driver from the drop-down list.

 If no driver has been opened in the project, the driver for internal
variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is
automatically loaded.

Driver Object Type
(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm

Creating variables

44

Data Type Select the desired data type. Click on the ... button to open the selection
dialog.

Array settings Expanded settings for array variables. You can find details in the Arrays
chapter.

Addressing options Expanded settings for arrays and structure variables. You can find details
in the respective section.

Automatic element

activation
Expanded settings for arrays and structure variables. You can find details
in the respective section.

SYMBOLIC ADDRESS

The Symbolic address property can be used for addressing as an alternative to the Name or Identification
of the variables. Selection is made in the driver dialog; configuration is carried out in the variable
property. When importing variables of supported drivers, the property is entered automatically.

Maximum length: 1024 characters.

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

 If a change is made to a data type that does not support the set signal range, the signal

range is amended automatically. For example, for a change from INT to SINT, the signal range is changed to
127. The amendment is also carried out if the signal range was not inherited from the data type. In this case, the
measuring range must be adapted manually.

Creating variables

45

7.2 Addressing

Group/Property Description

Addressing Property group for addressing

Net address Network address of variables.

This address refers to the bus address in the connection configuration of
the driver. This defines the PLC, on which the variable resides.

Data block not used for this driver

Offset Offset of variables. Equal to the memory address of the variable in the
PLC. Adjustable from 0 to 4294967295.

Bit number Number of the bit within the configured offset.

Possible entries: 0 to 65535.

Alignment not used for this driver

String length Only available for String variables.
Maximum number of characters that the variable can take.

PVI Address Address information for the B&R PVI driver.

PVI Type (VT) Variable type.
(List of types see table: PVI variable types.)

PVI Number of Elements (VN) Number of elements at field variables. Pre-allocation: VN=1.
For multi-dimensional field variables the number of the elements of all
field dimensions is quoted (Example: var[10][5] => VN =50).

PVI Length (VL) Variable length in bytes.
For single variables the variable length equals the process data length.
For field variables the variable length defines the element length.

Driver connection Position of the variable within the defined offset.

Drivers Selection of the driver

Driver Object Type Object type of the variables. Depending on the driver used, is selected
when the variable is created and can be changed here.

Data Type Data type of the variable. Is selected during the creation of the variable;
the type can be changed here.

 If you change the data type later, all other properties of the
variable must be checked and adjusted, if necessary.

PVI name Is automatically set during online import.

Creating variables

46

 Attention

Addressing of one-dimensional arrays:

If one-dimensional rays are addressed with a start index <> 0, a comma must be
attached to the index. For details see: Documentation B&R.

 zenon[3,]

PVI VARIABLE TYPE (VT)

Type Description

i8 8 bit integer with sign. Variable length: VL=1. Range of values: -128 ... 127.

i16 16 bit integer with sign. Variable length: VL=2. Range of values: -32768 ... 32767.

i32 32 bit integer with sign. Variable length: VL=4. Range of values: -2147483648 ... 2147483647.

u8 8 bit integer unsigned. Variable length: VL=1. Range of values: 0 ... 255.

u16 16 bit integer unsigned. Variable length: VL=2. Range of values: 0 ... 65535.

u32 32 bit integer unsigned. Variable length: VL=4. Range of values: 0 ... 4294967295.

f32 32 bit floating point (IEEE floating). Variable length: VL=4. Range of values: -3.402823466e+38 ...
-1.175494351e-38 / +1.175494351e-38 ... +3.402823466e+38.

f64 64 bit floating point (IEEE floating). Variable length: VL=8. Range of values:
-1.7976931348623158e+308 ... -2.2250738585072014e-308 / +2.2250738585072014e-308 ...
+1.7976931348623158e+308.

boolean Bit variable (flag) mapped on 1 byte. Variable length: VL=1. TRUE = value not equal to 0, FALSE =
value equal to 0.

string String with 1 byte character size and binary 0 (zero) ending. The length of the string buffer can be
defined via the variable length (parameter VL). The length of the string buffer is also the
maximum string length. The actual string length defined by the binary zero character. At reading
and writing process data with variable type string, take care that the data is only transferred up to
and including the zero character. All characters after the zero character are undefined.

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out
which driver objects are provided by the driver and which IEC data types can be assigned to the
respective driver objects.

Creating variables

47

7.3.1 Driver objects

The following object types are available in this driver:

Driver Object Type Channel
type

Read Write Supported
data types

Description

Reading in an

interrogation
36 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, REAL,

STRING

Read array polling as a
whole. For details, see
"Block reading of arrays"
section.

CPU status 9 X -- BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, REAL,

STRING

Status of CPU.

PLC marker 8 X X UINT,INT Read data points
polling/spontaneously.

Communication

details
35 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, REAL,

STRING

Variables for the static
analysis of the
communication; is
transferred between
driver and Runtime (not
to the PLC).

: The addressing
and the behavior is the
same for most zenon
drivers.

You can find detailed
information on this in the
Communication details
(Driver variables) (on
page 65) chapter.

X: supported

--: not supported

BLOCK READING OF ARRAYS

If many elements of an array change very often, block reading of arrays can offer better performance
than communication in the event of a value change. For this simple array variables and structures via
driver object type Read in an interrogation can be read as block. A block array is a large variable in zenon
that reads a complete block from the PLC. Many individual arrays are therefore read as a single array.

Creating variables

48

If only a few elements change in an array, communication in Event Mode usually provides better
performance.

The following applies for block reading:

 The complete array is always polled. Event-controlled communication is not possible.

 The priority selected must be the same for all elements.

 The PVI settings VN, VL and VT are only required for writing and ignored during reading. They
must be set identically to PLC marker.

 Settings for import are defined in the Global Settings (on page 18) of the driver configuration.

 Attention

For block reading, zenon data type and PVI type must be the same.

This means: BOOL -> Boolean works. BOOL -> Boolean does not work.

EVENT OPERATION

The defined update times also have an effect on the communication with the control in
Event mode.
This means: Events via value change never come more often than defined by the update time for the
variable.

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes
with the datatypes of the PLC.

Creating variables

49

Control zenon Data type

BOOL BOOL 8

USINT USINT 9

SINT SINT 10

UINT UINT 2

INT INT 1

UDINT UDINT 4

DINT DINT 3

LREAL LREAL 6

STRING STRING 12

 The property Data type is the internal numerical name of the data type. It is also used for the
extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every driver.

 Information

You can find details on the import and export of variables in the Import-Export
(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

7.4.1 XML import

During XML import of variables or data types, these are first assigned to a driver and then analyzed.
Before import, the user decides whether and how the respective element (variable or data type) is to be
imported:

 Import:
The element is imported as a new element.

 Overwrite:
The element is imported and overwrites a pre-existing element.

 Do not import:
The element is not imported.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

50

 The actions and their durations are shown in a progress bar during import.

REQUIREMENTS

The following conditions are applicable during import:

 Backward compatibility

At the XML import/export there is no backward compatibility. Data from older zenon versions
cannot be taken over. The handover of data from newer to older versions is not supported.

 Consistency

The XML file to be imported has to be consistent. There is no plausibility check on importing the
file. If there are errors in the import file, this can lead to undesirable effects in the project.

Particular attention must be paid to this, primarily if not all properties exist in the XML file and
these are then filled with default values. E.g.: A binary variable has a limit value of 300.

 Structure data types

Structure data types must have the same number of structure elements.
Example: A structure data type in the project has 3 structure elements. A data type with the
same name in the XML file has 4 structure elements. Then none of the variables based on this
data type in the file are imported into the project.

 Hint

You can find further information on XML import in the Import - Export manual, in the
XML import (main.chm::/13046.htm) chapter.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable settings, such
as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

main.chm::/13046.htm

Creating variables

51

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in the DBF file in
order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for
name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.
e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file name length
including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

FILE STRUCTURE OF THE DBASE EXPORT FILE

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

52

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with their name to the 8.3 DOS format (8 alphanumeric characters for name, 3
characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Identification Typ
e

Field size Comment

KANALNAME Char 128 Variable name.

The length can be limited using the MAX_LAENGE entry in
the project.ini file.

KANAL_R C 128 The original name of a variable that is to be replaced by the
new name entered under "VARIABLENNAME” (variable name)
(field/column must be entered manually).

The length can be limited using the MAX_LAENGE entry in
the project.ini file.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has to be
created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE entry in
the project.ini file.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)
corresponds to the driver object type.

HWKANAL Num 3 Net address

BAUSTEIN N 3 Datablock address (only for variables from the data area of the
PLC)

ADRESSE N 5 Offset

BITADR N 2 For bit variables: bit address
For byte variables: 0=lower, 8=higher byte
For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables
ATTENTION: Only the first variable is fully available. All others
are only available for VBA or the Recipegroup Manager

Creating variables

53

LES_SCHR L 1 Write-Read-Authorization
0: Not allowed to set value.
1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object
comprises TREIBER-OBJEKTTYP and DATENTYP

SIGMIN Float 16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values
(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one decimal
possible)
not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal
possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s], one
decimal possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable is not
requested from the server but from the Standby Server in
redundant networks

RESOURCE C 128 Resources label.
Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry in
project.ini.

ADJWVBA R 1 Non-linear value adaption:
0: Non-linear value adaption is used

Creating variables

54

1: Non-linear value adaption is not used

ADJZENON C 128 Linked VBA macro for reading the variable value for non-linear
value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for non-linear value
adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

 Attention

When importing, the driver object type and data type must be amended to the target
driver in the DBF file in order for variables to be imported.

LIMIT VALUE DEFINITION

Limit definition for limit values 1 to 4, or status 1 to 4:

Creating variables

55

Identification Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for a
dynamic limit value (see VARIABLEx)
(if VARIABLEx is 1 and here it is -1, the existing variable
linkage is not overwritten)

SCHWWERT1 F 16 Threshold value for limit value

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking
the limit is defined by an absolute value (see field
GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function
(if “-1” is entered here, the existing function is not
overwritten during import)

A_GRUPPE1 N 10 Alarm/Event Group

A_KLASSE1 N 10 Alarm/Event Class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the
definition of variables. For more information, see chapter Variable definition.

7.4.3 Import PVI variables from the driver

PVI variables can be imported offline via an OPCS XML file or via the online import of the driver.

Creating variables

56

At the import the variables are merged with existing ones. The key for this is the variable name.

 Variable designation

 The variable name consists of: Connection name.task name/variable name

 Address information:

 Address: Task name/variable name

 Data type: u16

 Connection allocation: Net address 0

To start the import:

 select Import variables from driver... from the context menu of the driver

Creating variables

57

Parameter Description

Offline Import from B & R OPC server

configuration file
Import via XML file which the BuR OPC server generated.

OPCS file... Selection of the OPCS XML file.

Click on button in order to open the explorer for selecting
the OPCS file.

Import to connection Selection of the connection.

A click opens the drop-down list with all available
connections.

All selected XML variables are connected during import to
the selected connection via the net address

Online import from device Variables are read online from the control.

Connection Selection of the connection for the online browse.

Task Selection of the task which is read out at the online
browse.

VARIABLE ADDRESSING

The addressing takes place via the properties of the applied PVI variable:

Creating variables

58

Parameter Description

Net address Determines the connection in the driver. Refers to the
net address of the connection in the driver configuration
dialog.

PVI Name The name of the PLC variable. The name is created from
Task name/variable name.

PVI Type (VT) Variable type.
A compilation of all variable types - see list below.

PVI Number of Elements (VN) Number of elements at field variables. Pre-allocation:
VN=1.
For multi-dimensional field variables the number of the
elements of all field dimensions is quoted (Example:
var[10][5] => VN =50).

PVI Length (VL) Variable length in bytes.
For single variables the variable length equals the process
data length. For field variables the variable length defines
the element length. s

GLOBAL VARIABLES

Global variables can only be used if they are integrated in a task. Global variables are therefore always
displayed with the task variables during online import and also addressed as task variables: Task
name/variable name.

Creating variables

59

PVI VARIABLE TYPE (VT)

Type Description

i8 8 bit integer with sign. Variable length: VL=1. Range of values: -128 ... 127.

i16 16 bit integer with sign. Variable length: VL=2. Range of values: -32768 ... 32767.

i32 32 bit integer with sign. Variable length: VL=4. Range of values: -2147483648 ... 2147483647.

u8 8 bit integer unsigned. Variable length: VL=1. Range of values: 0 ... 255.

u16 16 bit integer unsigned. Variable length: VL=2. Range of values: 0 ... 65535.

u32 32 bit integer unsigned. Variable length: VL=4. Range of values: 0 ... 4294967295.

f32 32 bit floating point (IEEE floating). Variable length: VL=4. Range of values: -3.402823466e+38 ...
-1.175494351e-38 / +1.175494351e-38 ... +3.402823466e+38.

f64 64 bit floating point (IEEE floating). Variable length: VL=8. Range of values:
-1.7976931348623158e+308 ... -2.2250738585072014e-308 / +2.2250738585072014e-308 ...
+1.7976931348623158e+308.

boolean Bit variable (flag) mapped on 1 byte. Variable length: VL=1. TRUE = value not equal to 0, FALSE =
value equal to 0.

string String with 1 byte character size and binary 0 (zero) ending. The length of the string buffer can be
defined via the variable length (parameter VL). The length of the string buffer is also the
maximum string length. The actual string length defined by the binary zero character. At reading
and writing process data with variable type string, take care that the data is only transferred up to
and including the zero character. All characters after the zero character are undefined.

Creating variables

60

Offline import

PREPARATIONS IN THE AUTOMATION STUDIO

1. got to the desired file

2. select Add Object... in the context menu.

3. in folder OPC select template New OPC Tag Declaration

Creating variables

61

4. assign a file name with extension .opct

5. open the OPC tag list in Automation Studio

6. Add the variable you want to read out by means of drag & drop

Creating variables

62

7. To be able to import structures and arrays offline too, the items of the structures must be
removed.

8. at compiling the Automation Studio Project creates the OPCS file

9. the OPCS file is stored in the project folder of the Automation Studio in a subfolder; e.g.
\Temp\Objects\Config1\PLC1\AsOPCS.opcs

IMPORT INTO ZENON

1. Select the Import variables from driver command from the context menu of the driver

2. in the import dialog select Offline import from B&R OPC server configuration file

Creating variables

63

3. click on PPCS file... and select the OPVS file.

4. select the connection for which the import should be carried out

5. Confirm the dialog by clicking on OK

6. select the desired variable with the help of a double click or click on button Add (multi-selection
is possible)

7. click on button OK in order to import the variable into zenon

Creating variables

64

8. an info box informs you about imported variables, changed variables and errors

Online import

The driver also supports, for online import, multidimensional arrays and arrays with a start index <> 0
and creates variables with names that correspond to the original array index.

 Attention

Addressing of one-dimensional arrays:

If one-dimensional rays are addressed with a start index <> 0, a comma must be attached
to the index. For details see: Documentation B&R.

 zenon[3,]

For the online import:

1. select command Import variables from driver from the context menu of the driver

2. select Online Browse in the import dialog

3. select the connection type and the desired task

4. confirm the dialog by clicking OK

Creating variables

65

5. select the desired variable with the help of a double click or click on button Add (multi-selection
is possible)

6. click on button OK in order to import the variable into zenon

7. an info box informs you about imported variables, changed variables and errors

7.5 Communication details (Driver variables)

The driver kit implements a number of driver variables. This variables are part of the driver object type
Communication details. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables implemented in the driver kit are available in the import file drvvar.dbf

(on the installation medium in the \Predefined\Variables folder) and can be imported from
there.

Creating variables

66

 Variable names must be unique in zenon. If driver variables of the driver object type
Communication details are to be imported from drvvar.dbf again, the variables that were imported
beforehand must be renamed.

 Information

Not every driver supports all driver variables of the driver object type Communication

details.

For example:

 Variables for modem information are only supported by modem-compatible drivers

 Driver variables for the polling cycle only for pure polling drivers

 Connection-related information such as ErrorMSG only for drivers that only edit one
connection at a a time

Creating variables

67

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfer BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE and no

OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver
simulation.

Creating variables

68

ConnectionStates STRING 61 Internal connection status of the driver to the
PLC.

Connection statuses:

0: Connection OK

1: Connection failure

2: Connection simulated

Formating:

<Netzadresse>:<Verbindungszustand

>;…;…;

A connection is only known after a variable
has first signed in. In order for a connection
to be contained in a string, a variable of this
connection must be signed in once.

The status of a connection is only updated if
a variable of the connection is signed in.
Otherwise there is no communication with
the corresponding controller.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically
reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial
interface. Writing to this variable
immediately results in the method
SrvDrvVarApplyCom being called (which
currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the
modem. Writing this variable immediately
calls the method SrvDrvVarApplyModem.
This closes the current connection and
opens a new one according to the settings
PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone
number

Creating variables

69

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be
kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the
modem

ComPort UINT 9 Number of the serial interface.

Baudrate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial
interface

Value = 0 if the driver cannot establish any
serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be
established automatically for
reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone
number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer
occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem
connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is
accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a
connection.

Creating variables

70

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is
required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is
required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required
to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required
to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read
all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read
all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group
Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group
Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group
High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group
Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

ERROR MESSAGE

Name from import Type Offset Description

Driver-specific functions

71

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error
occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error
occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading error
occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error
occurred.

RdErrHwAdresse DINT 45 Hardware address when the last reading error occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8. Driver-specific functions

The driver supports the following functions:

 Block arrays for structures and arrays

 For Online Import: Multi-dimensional arrays and arrays with a start index <> 0

 Blockwrite

 RDA

RDA

A linear memory area in the control unit is needed for RDA archiving. This is implemented by means of
an array. This array must contain the appropriate RDA header plus archive data. Only the Index [0] of

Driver command function

72

this array may be activated and marked as an RDA variable. If the array Index [0] is set to 1, the
corresponding values are read out from the PLC.

 Variables configured with "Only request from Standby Server" are not supported in RDA
archives.

You can find more information on RDA archiving in the zenon manual Archiving
(Archivserver.chm::/28257.htm).

9. Driver command function

The zenon Driver commands function is to influence drivers using zenon.
You can do the following with a driver command:

 Start

 Stop

 Shift a certain driver mode

 Instigate certain actions

 The zenon Driver commands function is not identical to driver commands that can be
executed in Runtime with Energy drivers!

 Information

This chapter describes standard functions that are valid for most zenon drivers.
However, not all functions described here are available for every driver. For example, a
driver that does not, according to the data sheet, support a modem connection also does
not have any modem functions.

CONFIGURATION OF THE FUNCTION

Configuration is carried out using the Driver commands function.
To do this:

1. Create a new function in the zenon Editor.

2. Navigate to the node Variable.

3. Select the Driver commands entry.

The dialog for configuration is opened.

4. Select the desired driver and the required command.

5. Close the dialog by clicking on OK and ensure that the function is executed in Runtime.
Heed the notices in the Driver command function in the network section.

archivserver.chm::/28257.htm

Driver command function

73

DRIVER COMMAND DIALOG

Driver command function

74

Option Description

Drivers Selection of the driver from the drop-down list.
It contains all drivers loaded in the project.

Current status Fixed entry which has no function in the current version.

Driver command Drop-down list for the selection of the command:

<No command> No command is sent.
A command that already exists can thus be removed from a
configured function.

Start driver (online mode) Driver is reinitialized and started.

Stop driver (offline mode) Driver is stopped. No new data is accepted.

 If the driver is in offline mode, all variables that were
created for this driver receive the status switched off (OFF;

Bit 20).

Driver in simulation mode Driver is set into simulation mode.
The values of all variables of the driver are simulated by the
driver. No values from the connected hardware (e.g. PLC, bus
system, ...) are displayed.

Driver in hardware mode Driver is set into hardware mode.
For the variables of the driver the values from the connected
hardware (e.g. PLC, bus system, ...) are displayed.

Driver-specific command Enter driver-specific commands. Opens input field in order to
enter a command.

Activate driver write set

value
Write set value to a driver is allowed.

Deactivate driver write set

value
Write set value to a driver is prohibited.

Establish connection with

modem
Establish connection (for modem drivers) Opens the input fields
for the hardware address and for the telephone number.

Disconnect from modem Terminate connection (for modem drivers)

Driver in counting

simulation mode
Driver is set into counting simulation mode.
All values are initialized with 0 and incremented in the set

update time by 1 each time up to the maximum value and then

start at 0 again.

Driver in static simulation

mode
Driver is set into counting simulation mode.
All values are initialized with 0.

Driver in programmed

simulation mode
Driver is set into counting simulation mode.
The values are calculated by a freely-programmable simulation
project. The simulation project is created with the help of the
zenon Logic Workbench and runs in the zenon Logic Runtime.

Show this dialog in the Runtime The dialog is shown in Runtime so that changes can be made.

Error analysis

75

DRIVER COMMAND FUNCTION IN THE NETWORK

If the computer on which the Driver commands function is executed is part of the zenon network,
further actions are also carried out. A special network command is sent from the computer to the
project server, which then executes the desired action on its driver. In addition, the Server sends the
same driver command to the project standby. The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby
both have a working and independent connection to the hardware.

10. Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display
them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also
installed with zenon. You can find it under Start/All programs/zenon/Tools 8.00 -> Diagviewer.

zenon driver log all errors in the LOG files.LOG files are text files with a special structure. The default
folder for the LOG files is subfolder LOG in the folder ProgramData. For example:

%ProgramData%\COPA-DATA\LOG.

 With the default settings, a driver only logs error information. With the Diagnosis Viewer
you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the
driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 Follow newly-created entries in real time

 customize the logging settings

 change the folder in which the LOG files are saved

1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more
columns activate property Add all columns with entry in the context menu of the column
header.

main.chm::/12464.htm

Error analysis

76

3. If you only use Error-Logging, the problem description is in the column Error text. For other
diagnosis level the description is in the column General text.

4. For communication problems many drivers also log error numbers which the PLC assigns to
them. They are displayed in Error text or Error code or Driver error parameter (1 and 2). Hints
on the meaning of error codes can be found in the driver documentation and the protocol/PLC
description.

5. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and
Deep Debug there are a great deal of data for logging which are saved to the hard drive and
which can influence your system performance. They are still logged even after you close the
Diagnosis Viewer.

 Attention

In Windows CE errors are not logged per default due to performance reasons.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer
(main.chm::/12464.htm) manual.

10.2 Check list

Checks after communication errors:

 Is the PLC connected to the power supply?

 Are the participants available in the TCP/IP network?

 Can the PLC be reached via the Ping command?

 Can the PLC be reached at the respective port via TELNET?

 Are the PLC and the PC connected with the right cable?

 Was the right COM port selected?

 Do the communication parameters match (Baud rate, parity, start/stop bits, ...)?

 Is the COM port blocked by another application?

 Did you configure the net address correctly, both in the driver dialog and in the address
properties of the variables?

 Did you use the right object type for the variable?

 Does the offset addressing of the variable match the one in the PLC?

 Analysis with the Diagnosis Viewer: Which messages are displayed?

main.chm::/12464.htm

Error analysis

77

10.3 Error messages

Errors are documented in the output window or in the log file of the Diagnosis Viewer
(main.chm::/12464.htm):

Entry Debug Level Meaning

Block array item XY: Array index

[Index] exceeds actual dimenstions

[Limit].

ERROR Given index (Address) overwrites the actual
array limits.

Block array item XY: Incompatible

data types. (Data type size [Zahl]

differs from actual data type size

[Zahl])

ERROR zenon data types do not correspond to PVI
type.

Block item XY: Offset '%u' exceeds

actual size of the object '%u'.
ERROR Given index (Address) overwrites the actual

array/structure limits.

Block item XY: Incompatible data

types. (Data type size [Typel] differs

from actual data type size [Type])

ERROR zenon data types do not correspond to PVI
type.

Block item XY: Struct element

[Index] does not exist.
ERROR Indicated structure element (address) does not

exist.

main.chm::/12464.htm

	1. Welcome to COPA-DATA help
	2. BURPVI
	3. BURPVI - Data sheet
	4. Driver history
	5. Requirements
	5.1 PC
	5.2 Control

	6. Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Global settings
	6.2.3 Connections
	INA2000 communication
	Device parameter - INA2000 device object

	6.2.4 Configuration file in redundant operation

	7. Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export
	7.4.3 Import PVI variables from the driver
	Offline import
	Online import

	7.5 Communication details (Driver variables)

	8. Driver-specific functions
	9. Driver command function
	10. Error analysis
	10.1 Analysis tool
	10.2 Check list
	10.3 Error messages

