

zenon manual
Controls

v.8.00

©2018 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely
with the written permission of the company COPA-DATA. Technical data is only used for product
description and are not guaranteed qualities in the legal sense. Subject to change, technical or
otherwise.

Contents

1. Welcome to COPA-DATA help .. 5

2. Controls .. 5

3. General ... 6

3.1 Access zenon API ... 6

3.2 Methods .. 8

3.2.1 CanUseVariables ... 8

3.2.2 MaxVariables .. 9

3.2.3 VariableTypes ... 9

3.2.4 zenonExit .. 10

3.2.5 zenonExitEd .. 10

3.2.6 zenonInit ... 10

3.2.7 zenonInitEd ... 10

4. ActiveX .. 10

4.1 Develop ActiveX elements .. 11

4.1.1 Methods ... 11

4.2 Example LatchedSwitch (C++) ... 14

4.2.1 Interface ... 14

4.2.2 Control .. 15

4.2.3 Methods ... 18

4.2.4 Operate and display ... 21

4.2.5 zenon Interface... 23

4.3 Example CD_SliderCtrl (C++) ... 24

4.3.1 Interface ... 24

4.3.2 Control .. 24

4.3.3 Methods ... 27

4.3.4 Operate and display ... 30

4.3.5 zenon Interface... 31

4.4 Example :NET control as ActiveX (C#) ... 31

4.4.1 Creat Windows Form Control ... 32

4.4.2 Change .NET User Control to dual control ... 35

4.4.3 Work via VBA with ActiveX in the Editor .. 39

4.4.4 Connect zenon variables with the .NET user control ... 40

5. .NET user controls .. 44

5.1 Different use .NET Control in Control Container or ActiveX ... 44

5.2 Example .NET control container.. 45

5.2.1 General ... 45

5.2.2 Create .NET user control .. 47

5.2.3 add a CD_DotNetControlContainer and a .NET User Control .. 55

5.2.4 Accessing the user control via VSTA or VBA ... 60

5.3 Example :NET control as ActiveX (C#) ... 64

5.3.1 Creat Windows Form Control ... 64

5.3.2 Change .NET User Control to dual control ... 67

5.3.3 Work via VBA with ActiveX in the Editor .. 71

5.3.4 Connect zenon variables with the .NET user control ... 72

6. WPF .. 76

Welcome to COPA-DATA help

5

1. Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel
(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an
initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you
would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can contact
via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email
sales@copadata.com.

2. Controls

In zenon you can integrate own controls. For this following is available:

 .NET user controls (on page 44) (For implementing in zenon see also .NET controls in manual
Screens.)

 ActiveX (on page 10) (For implementing in zenon see also ActiveX in manual Screens.)

 WPF

https://www.copadata.com/tutorial_menu

General

6

 Information

You can find information about how to use the zenon programming interfaces (PCE, VBA,
VSTA) in manual Programming Interfaces.

 Attention

Errors in applications such as ActiveX, PCE, VBA, VSTA, WPF and external applications
that access zenon via the API can also influence the stability of Runtime.

3. General

Controls for zenon can be implemented via ActiveX, .NET and WPF. Via VBA/VSTA you can access the
zenon API.

3.1 Access zenon API

Under zenon you can enhance an ActiveX control with special functions in order to access the zenon API.

ACCESS THE ZENON API

 Select, in Project References, via Add References..., the zenon Runtime object library

 add the enhanced functions to the class code of the control

ENHANCED ZENON ACTIVEX FUNCTIONS

// Is called during the initializing of the control in the zenon Runtime.

public bool zenon>Init(zenon.Element dispElement)…

// Is called during the destruction of the control in the zenon Runtime.

public bool zenonExit()

// Supports the control variable linking

public short CanUseVariables()…

// Com control supports data types.

public short VariableTypes()…

General

7

// Maximum number of variables which can be linked to the control.

public short MaxVariables()…

EXAMPLE

The COM object of a zenon variable is temporarily saved in a Member in order to access it later in the
Paint Event of the control.

zenon.Variable m_cVal = null;

public bool zenon>Init(zenon.Element dispElement)

{

if (dispElement.CountVariable > 0) {

try {

m_cVal = dispElement.ItemVariable(0);

if (m_cVal != null) {

object obRead = m_cVal.get_Value((object)-1);

UserText = obRead.ToString();

}

}catch { }

}

return true;

}

public bool zenonExit()

{

try {

if (m_cVal != null) {

System.Runtime.InteropServices.Marshal.ReleaseComObject(m_cVal);

m_cVal = null;

}

}

catch { }

return true;

}

public short CanUseVariables()

{

return 1; // the variables are supported

}

public short VariableTypes()

General

8

{

return short.MaxValue; // all data types are supported

}

public short MaxVariables()

{

return 1; // as maximum one variable should be linked to the control

}

private void SamplesControl_Paint(object sender, PaintEventArgs e)

{

// zenon Variables has changed

try {

if (m_cVal != null) {

object obRead = m_cVal.get_Value((object)-1);

UserText = obRead.ToString();

}

}catch { }

}

3.2 Methods

ActiveX and .NET controls which use zenon variables need certain methods.

3.2.1 CanUseVariables

Prototype: short CanUseVariables();

This method either returns 1 or 0

General

9

Valu
e

Description

1: The control can use zenon variables.

For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method VariableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

3.2.2 MaxVariables

Prototype: short MaxVariables();

Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

3.2.3 VariableTypes

Prototype: short VariableTypes();

The value returned by this method is used as a mask for the usable variable types in the variable list. The

value is an AND relation from the following values (defined in zenon32/dy_type.h):

Value 1 Value 2 Equivalent

WORD 0x0001 Position 0

BYTE 0x0002 Position 1

BIT 0x0004 Position 2

DWORD 0x0008 Position 3

FLOAT 0x0010 Position 4

DFLOAT 0x0020 Position 5

STRING 0x0040 Position 6

IN_OUTPUT 0x8000 Position 15

ActiveX

10

3.2.4 zenonExit

Prototype: boolean zenonExit();

This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

3.2.5 zenonExitEd

Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.

Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

3.2.6 zenonInit

Prototype: boolean zenonInit(IDispatch*dispElement);

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or Up.
The Element Input dialog appears after double-clicking the ActiveX element or after selecting property
ActiveX settings in the element properties in node Representation.

3.2.7 zenonInitEd

Equals zenonInit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4. ActiveX

With ActiveX the functionality of the zenon Runtime and Editor can be enhanced autonomously.

ActiveX

11

In this manual you can find:

 Develop ActiveX elements (on page 11)

 Example LatchedSwitch (C++) (on page 14)

 Example CD_SliderCtrl (C++) (on page 24)

 Example :NET control as ActiveX (C#) (on page 31)

You can find information about the dynamic element ActiveX in manual Screens in chapter ActiveX.

ACTIVEX FOR WINDOWS CE

If an ActiveX Control should run under Windows CE, the apartment model must be set to Threading. If
it is set to Free, the control will not run in zenon Runtime.

4.1 Develop ActiveX elements

The dynamic element ActiveX in zenon can forward variables to the ActiveX control without using VBA
to operate the control.

The control now defines by itself, how many zenon variables it can use and of what type they may be.
Additionally the properties of the control can also be defined by the dynamic element.

For this the interface (dispatch interface) of the control must support a number of certain methods (on
page 11) .

4.1.1 Methods

Each ActiveX control which can use zenon variables must contain the following methods:

 CanUseVariables (on page 8)

 MaxVariables (on page 9)

 VariableTypes (on page 9)

 zenonExit (on page 10)

 zenonExitEd (on page 10)

 zenonInit (on page 10)

 zenonInitEd (on page 10)

It does not matter, which dispatch ID the methods have in the interface. On calling the methods zenon
receives the correct ID from the interface.

ActiveX

12

CanUseVariables

Prototype: short CanUseVariables();

This method either returns 1 or 0

Valu
e

Description

1: The control can use zenon variables.

For the dynamic element (via button Variable) you can only state zenon variables with the type
stated via method VariableTypes (on page 9) in the number stated by method MaxVariables
(on page 9).

0: The control cannot use zenon variables or does not have the method.

You can state variables with all types without restricting the number. In the Runtime however they
only can be used with VBA.

MaxVariables

Prototype: short MaxVariables();

Here the number of variables is defined, that can be selected from the variable list.

If 1 is returned, multi-select is disabled in the variable list. A warning is displayed when several variables
are selected anyway.

VariableTypes

Prototype: short VariableTypes();

The value returned by this method is used as a mask for the usable variable types in the variable list. The

value is an AND relation from the following values (defined in zenon32/dy_type.h):

ActiveX

13

Value 1 Value 2 Equivalent

WORD 0x0001 Position 0

BYTE 0x0002 Position 1

BIT 0x0004 Position 2

DWORD 0x0008 Position 3

FLOAT 0x0010 Position 4

DFLOAT 0x0020 Position 5

STRING 0x0040 Position 6

IN_OUTPUT 0x8000 Position 15

zenonExit

Prototype: boolean zenonExit();

This method is called by the zenon Runtime when the ActiveX control is closed.

Here all dispatch pointers on variables should be released.

zenonExitEd

Equals zenonExit (on page 10) and is executed in closing the ActiveX in the Editor.

Therewith you can also react to changes in the ActiveX e.g. values changes in Editor.

Info: Currently only available for ActiveX.

zenonInit

Prototype: boolean zenonInit(IDispatch*dispElement);

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You define the sorting order of the handed over variables in the configuration of the ActiveX element
with the help of buttons Down or Up.
The Element Input dialog appears after double-clicking the ActiveX element or after selecting property
ActiveX settings in the element properties in node Representation.

ActiveX

14

zenonInitEd

Equals zenonInit (on page 10) and is executed on opening the ActiveX (double click the ActiveX) in the
Editor.

Info: Currently only available for ActiveX.

4.2 Example LatchedSwitch (C++)

The following example describes an ActiveX control, that realises a latched switch with two bit variables.
The first variable represents the switch, the second variable the lock. The value of the switching variable
of the ActiveX control can only be changed, if the locking variable has the value 0.

The status of the element is displayed with four bitmaps which can be selected in the properties dialog
of the control in the zenon Editor.

4.2.1 Interface

The control LatchedSwitch has the following dispatch interface:

[uuid(EB207159-D7C9-11D3-B019-080009FBEAA2),

helpstring(Dispatch interface for LatchedSwitch Control), hidden]

dispinterface _DLatchedSwitch

{

 properties:

 // NOTE - ClassWizard will maintain method information here.

 // Use extreme caution when editing this section.

 //{{AFX_ODL_PROP(CLatchedSwitchCtrl)

 [id(1)] boolean SollwertDirekt;

 [id(2)] IPictureDisp* SwitchOn; // container for the bitmaps

 [id(3)] IPictureDisp* SwitchOff;

 [id(4)] IPictureDisp* LatchedOn;

 [id(5)] IPictureDisp* LatchedOff;

 //}}AFX_ODL_PROP

methods:

// NOTE - ClassWizard will maintain method information here.

 // Use extreme caution when editing this section.

//{{AFX_ODL_METHOD(CLatchedSwitchCtrl)

//}}AFX_ODL_METHOD

[id(6)] short CanUseVariables();

[id(7)] short VariableTypes();

[id(8)] short MaxVariables();

ActiveX

15

[id(9)] boolean zenonInit(IDispatch* dispElement);

[id(10)] boolean zenonExit();

[id(DISPID_ABOUTBOX)] void AboutBox();

};

The properties SwitchOn to LatchedOff contain the bitmaps for displaying the four different states of the
control. The bitmaps themselves are stored in objects of the class CScreenHolder. The property
SollwertDirekt defines if the input of set values is done via a dialog or directly by clicking the control.

4.2.2 Control

Implementing the control is done with the class CLatchedSwitchCtrl. As members this class has the
CScreenHolder objects for the storage of the bitmaps. Additionally three dispatch drivers for the
dynamic element and the variables are generated:

class CLatchedSwitchCtrl : public COleControl

{

DECLARE_DYNCREATE(CLatchedSwitchCtrl)

// Constructor

public:

CLatchedSwitchCtrl();

// Overrides

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CLatchedSwitchCtrl)

public:

virtual void OnDraw (CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid);

virtual void DoPropExchange (CPropExchange* pPX);

virtual void OnResetState ();

virtual DWORD GetControlFlags();

//}}AFX_VIRTUAL

// Implementation

protected:

~CLatchedSwitchCtrl();

ActiveX

16

DECLARE_OLECREATE_EX(CLatchedSwitchCtrl) // Class factory and guid

DECLARE_OLETYPELIB(CLatchedSwitchCtrl) // GetTypeInfo

DECLARE_PROPPAGEIDS(CLatchedSwitchCtrl) // Property page IDs

DECLARE_OLECTLTYPE(CLatchedSwitchCtrl) // Type name and misc status

// Message maps

//{{AFX_MSG(CLatchedSwitchCtrl)

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

// Dispatch maps

//{{AFX_DISPATCH(CLatchedSwitchCtrl)

BOOL m_sollwertDirekt;

afx_msg void OnSollwertDirektChanged();

afx_msg LPPICTUREDISP GetSwitchOn();

afx_msg void SetSwitchOn(LPPICTUREDISP newValue);

afx_msg LPPICTUREDISP GetSwitchOff();

afx_msg void SetSwitchOff(LPPICTUREDISP newValue);

afx_msg LPPICTUREDISP GetLatchedOn();

afx_msg void SetLatchedOn(LPPICTUREDISP newValue);

afx_msg LPPICTUREDISP GetLatchedOff();

afx_msg void SetLatchedOff(LPPICTUREDISP newValue);

afx_msg short CanUseVariables();

afx_msg short VariableTypes();

afx_msg short MaxVariables();

afx_msg BOOL zenonInit(LPDISPATCH dispElement);

afx_msg BOOL zenonExit();

//}}AFX_DISPATCH

CScreenHolder m_SwitchOn;

CScreenHolder m_SwitchOff;

CScreenHolder m_LatchedOn;

CScreenHolder m_LatchedOff;

DECLARE_DISPATCH_MAP()

ActiveX

17

afx_msg void AboutBox();

// Event maps

//{{AFX_EVENT(CLatchedSwitchCtrl)

//}}AFX_EVENT

DECLARE_EVENT_MAP()

 double VariantToDouble(const VARIANT FAR *v);

 void VariantToCString(CString *c,const VARIANT FAR *v);

 BOOL IsVariantString(const VARIANT FAR *v);

 BOOL IsVariantValue(const VARIANT FAR *v);

// Dispatch and event IDs

public:

CString szVariable[2];

IElement m_dElement;

IVariable m_dLatchVar, m_dSwitchVar;

enum {

//{{AFX_DISP_ID(CLatchedSwitchCtrl)

dispidSollwertDirekt = 1L,

dispidSwitchOn = 2L,

dispidSwitchOff = 3L,

dispidLatchedOn = 4L,

dispidLatchedOff = 5L,

dispidCanUseVariables = 6L,

dispidVariableTypes = 7L,

dispidMaxVariables = 8L,

dispidZenOnInit = 9L,

dispidZenOnExit = 10L,

//}}AFX_DISP_ID

};

};

ActiveX

18

4.2.3 Methods

The following methods are used:

 CanUseVariables (on page 18)

 VariableTypes (on page 18)

 MaxVariables (on page 18)

 zenonInit (on page 19)

 zenonExit (on page 20)

CanUseVariables

This method returns 1, so zenon variables can be used.

short CLatchedSwitchCtrl::CanUseVariables()

{

return 1;

}

VariableTypes

The control only can work with bit variables, so 0x0004 is returned.

short CLatchedSwitchCtrl::VariableTypes()

{

return 0x0004; // Only bit variables

}

MaxVariables

Two variables can be used. Therfore 2 is returned.

short CLatchedSwitchCtrl::MaxVariables()

{

return 2; // 2 variables

}

ActiveX

19

zenonInit

This method gets the Dispatchdriver of the variables via the Dispatchpointer of the dynamic
element. With this Pointer the variable values are read and written when clicking and drawing the
control.

BOOL CLatchedSwitchCtrl::zenonInit(LPDISPATCH dispElement)

{

m_dElement = IElement(dispElement);

Element.m_lpDispatch->AddRef();

if (m_dElement.GetCountVariable() >= 2)

{

short iIndex = 0;

m_dSwitchVar = IVariable(m_dElement.ItemVariable(COleVariant(iIndex)));

m_dLatchVar = IVariable(m_dElement.ItemVariable(COleVariant(++iIndex)));

}

return TRUE;

}

ActiveX

20

 Information

Element.m_lpDispatch->AddRef();

Objects that are not used are automatically deleted from the memory. This must be carried
out by the programming. The programmer determines whether an object - based on a
reference counter - can be removed.

COM uses the IUnknow methods AddRef and Release to administer the number of

references of interfaces to an object.

The general rule for calling up these methods are:

 AddRef must always be called up on the interface if the client receives an interface
pointer.

 A Release must always be called up if the client ends the use of the interface pointer.

With a simple implementation, a counter variable in the object is increased with an AddRef

call. Each call of a Release reduces this counter in the object. If this counter is at ZERO
again, the interface can be removed from the memory.

A reference counter can also be implemented so that each reference to the object (and not
to an individual interface) is counted.

In this case, each AddRef and each Release substitute call up a central implementation to

the object. A Release then unlocks the complete object if the reference counter has

reached zero.

zenonExit

This method releases the dispatch driver.

BOOL CLatchedSwitchCtrl::zenonExit()

{

m_dElement.ReleaseDispatch();

m_dSwitchVar.ReleaseDispatch();

m_dLatchVar.ReleaseDispatch();

return TRUE;

}

ActiveX

21

4.2.4 Operate and display

Setting values

A value can be set by clicking the control with the left mouse button.

If m_iSollwertDirekt is 0, a dialog for the selection of the set value is opened, otherwise the current
value of the switching variable is inverted.

If the locking variable has the value 1, only a MessageBeep is executed. No value can be set via the
control.

void CLatchedSwitchCtrl::OnLButtonDown(UINT nFlags, CPoint point)

{

CRect rcBounds;

GetWindowRect(&rcBounds);

COleVariant coleValue((BYTE)TRUE);

BOOL bLatch = (BOOL)VariantToDouble((LPVARIANT)&m_dLatchVar.GetValue());

BOOL bSwitch = (BOOL)VariantToDouble((LPVARIANT)&m_dSwitchVar.GetValue());

if (bLatch) // Locked!!!

MessageBeep(MB_ICONEXCLAMATION);

else

{

if (m_sollwertDirekt)

{

bSwitch = !bSwitch;

}

else

{

CSollwertDlg dlg;

dlg.m_iSollwert = bSwitch ? 1 : 0;

if (dlg.DoModal() == IDOK)

{

ActiveX

22

if (dlg.m_iSollwert == 2) // Toggle

bSwitch = !bSwitch;

else

bSwitch = (BOOL)dlg.m_iSollwert;

}

}

coleValue = (double)bSwitch;

m_dSwitchVar.SetValue(coleValue);

}

COleControl::OnLButtonDown(nFlags, point);

}

Drawing

On drawing the control the values of the variables are read via their dispatch drivers, and accordingly
one of the four defined graphics is displayed. When the value of a variable changes, the control is
updated by the OnDraw routine.

void CLatchedSwitchCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{

CRect rcBitmap = rcBounds;

rcBitmap.NormalizeRect();

if (!m_dElement)

{

m_SwitchOn.Render(pdc, &rcBounds, &rcBounds);

return;

}

BOOL bVal1 = 0, bVal2 = 0;

VARIANT vRes;

if (m_dSwitchVar) // Variable exists?

{

vRes = m_dSwitchVar.GetValue();

ActiveX

23

bVal1 = (BOOL)VariantToDouble(&vRes);

}

if (m_dLatchVar) // Variable exists?

{

vRes = m_dLatchVar.GetValue();

bVal1 = (BOOL)VariantToDouble(&vRes);

}

if (bVal1 && bVal2)

m_SwitchOn.Render(pdc, rcBitmap, rcBitmap);

else if (!bVal1 && bVal2)

m_SwitchOff.Render(pdc, rcBitmap, rcBitmap);

else if (bVal1 && !bVal2)

m_LatchedOn.Render(pdc, rcBitmap, rcBitmap);

else

m_LatchedOff.Render(pdc, rcBitmap, rcBitmap);

}

4.2.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the
Class Wizard of the development environment (button Add Class, select From a type library, select
zenrt32.tlb).

For our control theses are the classes IElement and IVariable. They are defined in zenrt32.h and
zenrt32.cpp.

ActiveX

24

4.3 Example CD_SliderCtrl (C++)

The following example describes an ActiveX control which equals the Windows SliderCtrl. This
component can be linked with a zenon variable. The user can change the value of a variable with this
slider. If the value of the variable is changed with some other dynamic element, the slider is updated.

4.3.1 Interface

The control CD_SliderCtrl has the following dispatch interface:

[uuid(5CD1B01D-015E-11D4-A1DF-080009FD837F),

 helpstring(Dispatch interface for CD_SliderCtrl Control), hidden

]

dispinterface _DCD_SliderCtrl

{

properties: //*** Properties of the controls

[id(1)] short TickRaster;

[id(2)] boolean ShowVertical;

[id(3)] short LineSize;

methods: //*** method of the control (for zenon ActiveX)

[id(4)] boolean zenonInit(IDispatch* pElementInterface);

[id(5)] boolean zenonExit();

[id(6)] short VariableTypes();

[id(7)] short CanUseVariables();

[id(8)] short MaxVariables();

[id(DISPID_ABOUTBOX)] void AboutBox();

};

4.3.2 Control

Implementing the control is done with the class CD_SliderCtrlCtrl. This class has a standard Windows
CSliderCtrl as a member, with which the control is subclassed. The interfaces IVaribale and IElement
contain zenon interfaces which had to be integrated. These are deduced from COleDispatchDriver.

ActiveX

25

class CCD_SliderCtrlCtrl : public COleControl

{

DECLARE_DYNCREATE(CCD_SliderCtrlCtrl)

private: //*** member variables

BOOL m_bInitialized;

BOOL m_bShowVertical;

BOOL m_bTicksBoth;

long m_nRangeStart;

long m_nRangeEnd;

long m_nTickOrientation;

IVariable m_interfaceVariable;

IElement m_interfaceElement;

CSliderCtrl m_wndSliderCtrl;

public:

CCD_SliderCtrlCtrl();

//{{AFX_VIRTUAL(CCD_SliderCtrlCtrl)

public:

virtual void OnDraw (CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid);

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

virtual void DoPropExchange (CPropExchange* pPX);

virtual void OnResetState ();

//}}AFX_VIRTUAL

protected:

~CCD_SliderCtrlCtrl();

//*** methods for the conversion from variant

double VariantToDouble(const VARIANT FAR *vValue);

DECLARE_OLECREATE_EX(CCD_SliderCtrlCtrl) // Class factory and guid

DECLARE_OLETYPELIB (CCD_SliderCtrlCtrl) // GetTypeInfo

DECLARE_PROPPAGEIDS (CCD_SliderCtrlCtrl) // Property page IDs

DECLARE_OLECTLTYPE (CCD_SliderCtrlCtrl) // Type name and misc status

ActiveX

26

//*** methods for the functionality of the SliderCtrl

BOOL IsSubclassedControl ();

LRESULT OnOcmCommand (WPARAM wParam, LPARAM lParam);

//{{AFX_MSG(CCD_SliderCtrlCtrl)

afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

afx_msg void HScroll(UINT nSBCode, UINT nPos);

afx_msg void HScroll(UINT nSBCode, UINT nPos);

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

//{{AFX_DISPATCH(CCD_SliderCtrlCtrl)

afx_msg BOOL GetTickOnBothSides();

afx_msg void SetTickOnBothSides (short nNewValue);

afx_msg BOOL GetShowVertical();

afx_msg void SetShowVertical(BOOL bNewValue);

afx_msg short GetTickOrientation();

afx_msg void SetTickOrientation (short nNewValue);

afx_msg BOOL zenonInit(LPDISPATCH pElementInterface);

afx_msg BOOL zenonExit();

afx_msg short VariableTypes();

afx_msg short CanUseVariables();

afx_msg short MaxVariables();

//}}AFX_DISPATCH

DECLARE_DISPATCH_MAP()

afx_msg void AboutBox();

//{{AFX_EVENT(CCD_SliderCtrlCtrl)

//}}AFX_EVENT

DECLARE_EVENT_MAP()

public:

ActiveX

27

enum {

//{{AFX_DISP_ID(CCD_SliderCtrlCtrl)

dispidShowVertical = 1L,

dispidTicksOnBothSides = 2L,

dispidTickOrientation = 3L,

dispidZenOnInit = 4L,

dispidZenOnExit = 5L,

dispidVariableTypes = 6L,

dispidCanUseVariables = 7L,

dispidMaxVariables = 8L,

//}}AFX_DISP_ID

};

};

4.3.3 Methods

The following methods are used:

 CanUseVariables (on page 27)

 VariableTypes (on page 28)

 MaxVariables (on page 28)

 zenonInit (on page 28)

 zenonExit (on page 29)

CanUseVariables

This method returns 1 so zenon variables can be used.

short CCD_SliderCtrlCtrl::CanUseVariables()

{

return 1;

}

ActiveX

28

VariableTypes

The control can work with word, byte, doubleword and float variables. You will find a list of the possible
data types in the general description (on page 9) of this method.

short CCD_SliderCtrlCtrl::VariableTypes()

{

return 0x0001 | // Word

0x0002 | // Byte

0x0008 | // D-Word

0x0010 | // Float

0x0020; // D-Float

}

MaxVariables

Only one variable can be linked to this control.

short CCD_SliderCtrlCtrl::MaxVariables()

{

return 1; // 1 variables

}

zenonInit

The parameter dispElement contains the interface for the dynamic element. With this element the
linked zenon variable determined. If it is valid, the area of the SlideCtrl is set. Additionally the settings
for the display (number of ticks, …) are set. If no variable is linked, the display range is set to 0 to 0. Thus
the SliderCtrl cannot be changed. The variable m_bInitialized defines that values can be set from now
on.

BOOL CCD_SliderCtrlCtrl::zenonInit(LPDISPATCH dispElement)

{

//*** Determine the variable using the zenon element

m_interfaceElement = IElement(pElementInterface);

if (m_interfaceElement.GetCountVariable() > 0) {

short nIndex = 0;

ActiveX

29

m_interfaceVariable = IVariable

(m_interfaceElement.ItemVariable(COleVariant(nIndex)));

}

//*** Initialize the area of the Slider-Ctrl

if (m_interfaceVariable) {

//*** Define range

m_nRangeStart = (long) VariantToDouble(&m_interfaceVariable.GetRangeMin());

m_nRangeEnd = (long) VariantToDouble(&m_interfaceVariable.GetRangeMax());

m_wndSliderCtrl.SetRange(m_nRangeStart,m_nRangeEnd,TRUE);

//*** Define sub ticks

m_wndSliderCtrl.SetTicFreq(m_nTickCount);

m_wndSliderCtrl.SetPageSize(m_nTickCount);

m_wndSliderCtrl.SetLineSize(m_nLineSize);

} else {

m_wndSliderCtrl.SetRange(0,0,TRUE);

return FALSE;

}

m_bInitialized = TRUE;

return TRUE;

}

zenonExit

In this method the zenon interfaces are released again.

BOOL CCD_SliderCtrlCtrl::zenonExit()

{

m_interfaceElement.ReleaseDispatch();

m_interfaceVariable.ReleaseDispatch();

return TRUE;

}

ActiveX

30

4.3.4 Operate and display

Drawing

With DoSuperclassPaint the SliderCtrl is drawn (as is is a subclassed control). If at the moment of
drawing the slider is moved, the variable m_bInitialized gets the value FALSE. This makes sure that the
value can be changed. Normally the value of the variable is read and displayed with the method SetPos
of the SliderCtrl.

void CCD_SliderCtrlCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{

//*** update view

DoSuperclassPaint(pdc, rcBounds);

if (m_interfaceVariable && m_bInitialized) {

COleVariant cValue(m_interfaceVariable.GetValue());

int nValue = (int) VariantToDouble(&cValue.Detach());

m_wndSliderCtrl.SetPos(nValue);

}

}

Write set value

In the method LButtonDown the variable m_bInitialized is set to FALSE, and in the event LbuttonUp it
is set to TRUE again. This makes sure that the value can be changed. Otherwise the routine OnDraw
would be executed and the old value would be displayed.

void CCD_SliderCtrlCtrl::OnLButtonDown(UINT nFlags, CPoint point)

{

 m_bInitialized = FALSE;

 COleControl::OnLButtonDown(nFlags, point);

}

void CCD_SliderCtrlCtrl::OnLButtonUp(UINT nFlags, CPoint point)

{

 m_bInitialized = TRUE;

 COleControl::OnLButtonUp(nFlags, point);

}

ActiveX

31

A value is sent to the hardware, when the slider is moved. In the methods Hscroll or Vscroll the value is
sent to the hardware (depending if it is a horizontal or a vertical slider).

void CCD_SliderCtrlCtrl::HScroll(UINT nSBCode, UINT nPos)

{

switch (nSBCode) {

case TB_LINEUP:

case TB_PAGEUP:

case TB_LINEDOWN:

case TB_PAGEDOWN:

case TB_THUMBTRACK:

case TB_THUMBPOSITION:{

//*** Set value without dialog ?

int nValue = m_wndSliderCtrl.GetPos();

COleVariant cValue((short) nValue,VT_I2);

m_interfaceVariable.SetValue(cValue);

}

}

}

4.3.5 zenon Interface

Classes deduced from COleDispatchDriver have to be created for the element and the variables, so that
the dispatch interface of zenon can be used to set values. The easiest way to create these classes is the
Class Wizard of the development environment (button Add Class, select From a type library, select

zenrt32.tlb).

For our control theses are the classes IElement and IVariable. They are defined in zenrt32.h and
zenrt32.cpp.

4.4 Example :NET control as ActiveX (C#)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1. Create Windows Form Control (on page 32)

ActiveX

32

2. Change .NET User Control to dual control (on page 35)

3. Work via VBA with ActiveX in the Editor (on page 39)

4. Connect zenon variables with the .NET user control (on page 40)

 Attention

When using zenon COM objects with self-created user controls or external applications,
they must be enabled using the Marshal.ReleaseComObject method. Enabling by
means of the Marshal.FinalReleaseComObject method must not be used, because
this leads to a malfunction of zenon Add-ins.

 Information

The screenshots for this theme are only available in English.

4.4.1 Creat Windows Form Control

To create a Windows Form Control:

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

ActiveX

33

2. Rename the default control to the desired control name.
In our example: SampesControl.cs.

3. Open the Control Designer and add the desired control; in our case a text box:

ActiveX

34

4. Normally controls have properties. Open the Code Designer via View Code and ass the desired
properties which should be available externally.
In our example: Externally visible property „UserText" with get and set access which contains
the text of the text box:

5. Compile the project.

The Windows Forms Control can now be used in other Windows Forms projects.

ActiveX

35

Important: The control must be inserted manually in the control tool box via Choose Items.

4.4.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

ActiveX

36

1. Open the project and activate property Register for COM interop in the Build settings:

2. Open the file AssemblyInfo.cs and

 set attribute ComVisible to true

 add attribute ClassInterface

[assembly: ComVisible(true)]

ActiveX

37

[assembly: ClassInterface(ClassInterfaceType.AutoDual)]

3. Open the code designer via View Code and add the necessary ActiveX attributes and using
entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

ActiveX

38

4. For the control to be selectable as Active X user interface control, you must add the functions to
the following control classes:

 RegisterClass

 UnregisterClass

After that you can register the control in the registry.

5. Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenOnDotNetControl.tlb was created in the output directory.

6. To use the control on another computer:

a) copy the DLL file and the TLB file to the target computer

b) register the files via the command line:
%windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll

/tlb:zenOnDotNetControl.tlb

ActiveX

39

7. Add the extended Windows Form Control as ActiveX control to the zenon Editor:

4.4.3 Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

1. In the zenon Editor in node Programming interfaces/VBA macros create a new Init macro with
the name Init_ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

ActiveX

40

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX element.

EXAMPLE INIT MACRO

Public Sub Init_ActiveX(obElem As Element)

 obElem.AktiveX.Usertext = "Set the string to the control"

End Sub

4.4.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS

 public bool zenOnInit (on page 42) (Is called up during control initializing in the zenon Runtime.)

 public bool zenOnInitED (on page 42) (Is used in the Editor.)

 public bool zenOnExit() (on page 43) (Is called up during control destruction in the zenon
Runtime.)

 public bool zenOnExitED() (on page 43) (Is used in the Editor.)

ActiveX

41

 public short CanUseVariables() (on page 43) (Supports linking variables.)

 public short VariableTypes() (on page 43) (Supported data types by the control)

 public MaxVariables() (on page 44)(Maximum number of variables which can be linked to the
control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under Add References the zenon Runtime object library in
order to be able to access the zenon API in the control.

2. Add the enhanced functions in the class code of the control in order to access the whole zenon
API.

ActiveX

42

In our example the COM object of a zenon variable is temporarily saved in a Member in order to
access it later in the Paint event of the control.

public bool zenOnInit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

 you double click the ActiveX element or

 select Properties in the context menu or

 select the ActiveX settings property in the Representation node of the property window

public bool zenOnInitED(zenOn.Element dispElement)

Equals public bool zenOnInit (on page 42) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

ActiveX

43

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 43) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

 1: For the dynamic element (via button Variable) you can only state zenon variables with the
type stated via method VariableTypes in the number stated by method MaxVariables.

 0: If CanUseVariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0

BYTE 0x0002 corresponds to position 1

BIT 0x0004 corresponds to position 2

DWORD 0x0008 corresponds to position 3

FLOAT 0x0010 corresponds to position 4

DFLOAT 0x0020 corresponds to position 5

STRING 0x0040 corresponds to position 6

IN_OUTPUT 0x8000 corresponds to position 15

.NET user controls

44

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5. .NET user controls

With .NET control the functionality of the zenon Runtime and Editor can be enhanced autonomously.

In this manual you can find:

 Difference between control container and ActiveX (on page 44)

 Example .NET control container (on page 45)

 Example :NET control as ActiveX (C#) (on page 31)

You can find information about .NET controls in ActiveX in manual Screens in chapter .NET controls.

 Attention

When using zenon COM objects with self-created user controls or external applications,
they must be enabled using the Marshal.ReleaseComObject method. Enabling by
means of the Marshal.FinalReleaseComObject method must not be used, because
this leads to a malfunction of zenon Add-ins.

5.1 Different use .NET Control in Control Container or ActiveX

A .NET user control can:

 be integrated directly in the zenon ActiveX element via the CD_DotNetControlContainer control

 be used as ActiveX control and be integrated directly in the zenon ActiveX element

Above all the differences between container control and ActiveX control are:

CD_DotNetControlContainer control ActiveX control

 Does not have to be registered at the
computer.

 Must be registered as Active X at the computer
(regsrv32).

 For changes at the controller only the DLL
must be changed.

 For changes at the controller the TLB must be
registered again.

.NET user controls

45

 Access via VBA and VSTA only possible via
the CD_DotNetControlContainer method.

 Easy access via VBA and VSTA.

5.2 Example .NET control container

In this tutorial you get to know how to create a simple .NET user control in Visual Studio 2010
(programming language C#) and how to integrate it with the help of the zenon
CD_DotNetControlContainer control as ActiveX in a zenon ActiveX element.

5.2.1 General

The CD_DotNetControlContainer therefore acts as a wrapper between the user control and the zenon
ActiveX element. All methods used in the following example and all public methods and properties are
passed on via the CD_DotNetControlContainer from the user control to the ActiveX and can be used by
zenon; also in VBA and VSTA.

If there is a reference to the zenon programming interface in the user control, you can directly access
zenon objects.

In the following example we will:

 create .NET user control (on page 47)

 add a CD_DotNetControlContainer and a .NET User Control (on page 55)

 enable the access to the user control via VSTA (VBA) (on page 60)

.NET user controls

46

PATH FOR DLL IN EDITOR AND RUNTIME

The path to .Net DLL that is selected in the Editor is also used in Runtime. It is set as absolute and
cannot be changed.

Ensure that the same path is used on all computers in the zenon network for Editor and Runtime.
Hint: Select an absolute path, for example: C:\Controls. Enter the path as fixed in
Remote-Transport and in the .NET Control Container. Use Remote-Transport to harmonize this path
with all computers.

public bool zenOnInit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

 you double click the ActiveX element or

 select Properties in the context menu or

 select the ActiveX settings property in the Representation node of the property window

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

 1: For the dynamic element (via button Variable) you can only state zenon variables with the
type stated via method VariableTypes in the number stated by method MaxVariables.

 0: If CanUseVariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

.NET user controls

47

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0

BYTE 0x0002 corresponds to position 1

BIT 0x0004 corresponds to position 2

DWORD 0x0008 corresponds to position 3

FLOAT 0x0010 corresponds to position 4

DFLOAT 0x0020 corresponds to position 5

STRING 0x0040 corresponds to position 6

IN_OUTPUT 0x8000 corresponds to position 15

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

5.2.2 Create .NET user control

The user control is a simple control which can set a new value via an input field (text box). After clicking
the button, the value is written to the desired zenon variable.

An additional function should automatically detect the change of value of the variable in zenon and
display the new value automatically in the control.

 Information

The screenshots for this theme are only available in English.

.NET user controls

48

WORK STEPS

1. First you create a new project in VS and use project type „Windows Forms Control Library“

Important: Set framework to 3.5!

2. After that rename the CS file from "UserControl" to "zenon_CD_DotNetControlContainer.cs".
The files Designer.cs and the .resx are renamed automatically.

3. In the next step you create the user control. For this use two text boxes one each for the input
and the output and a button for writing new values to the zenon variable.
Name:

 the first text box "txtGetZenonVariable"

 the second text box "txtSetZenonVariable"

 the button "btnSetZenonVariable"

.NET user controls

49

4. In order to access zenon objects you need a reference to the <CD_PRODUCNAME> Programming
Interface. To do this:

 click on node "References" in the Solution Explorer

 open the context menu

 select Add References...

 switch to tab COM

 select zenon programming interface library

After that the "zenOn" reference should be visible in the reference list.

5. In the next step create a global variable of type zenon.variable in the code of the
zenon_CD_DotNetControlContainer.cs:

.NET user controls

50

6. This variable is initialized via public method zenOnInit:

and enabled via public method zenOnExit:

In the following methods we define whether zenon variables and data types are used and how
many variables may be handed over:

7. In the next step define in the Click-Event of button btnSetZenonVariable that when you click
the button the value of text box txtSetZenonVariable is written to the zenon variable and then
the content of the text box is deleted.

8. To react to a value change of the variable, you need the Paint Event of the control. The Paint

Event is also triggered if the value of the initialized zenon variable changes and it can therefore
be used to update values. As variables which are referenced in the zenon ActiveX element are

.NET user controls

51

automatically advised, you can generally refrain from using the zenon.OnlineVariable
container in the control.

THE CODE AT A GLANCE

Here is the whole code as review:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using zenOn;

namespace zenon_CD_DotNetControlContainer

{

public partial class zenon_CD_DotNetControlContainer : UserControl

{

 //This will be needed to get the zenon Variable Container

zenOn.Variable m_cVal = null;

 public zenon_CD_DotNetControlContainer()

{

InitializeComponent();

}

.NET user controls

52

 /// <summary>

 /// This public Method will be called by the initialization of the control during

 /// the zenon Runtime.

 /// </summary>

 /// <param name="dispElement"></param>

 /// <returns></returns>

public bool zenOnInit(zenOn.Element dispElement)

{

//Check if zenon Variables are added to the

 //Control

if (dispElement.CountVariable > 0)

{

try

{

 //Take the first zenon Variable and added

 //to the global Variable

m_cVal = dispElement.ItemVariable(0);

}

catch { }

}

return true;

}

 // <summary>

 /// This public Method will be called by the release of the control during

 /// the zenon Runtime.

 /// </summary>

 /// <returns></returns>

public bool zenOnExit()

{

try

.NET user controls

53

{

if (m_cVal != null)

{

//Release the zenon Variable (Com-Object)

System.Runtime.InteropServices.Marshal.ReleaseComObject(m_cVal);

m_cVal = null;

}

}

catch { }

return true;

}

 /// <summary>

 /// This public Method is needed to link zenon Variables

 /// to the control.

 /// </summary>

 /// <returns></returns>

public short CanUseVariables()

{

 return 1; // Only this Variable is supported

}

/// <summary>

/// This public Method returns the Type of

/// supported zenon Variables

/// </summary>

/// <returns></returns>

public short VariableTypes()

{

return short.MaxValue; // all Data Types supported

}

/// <summary>

.NET user controls

54

/// This public Method returns the number of

/// supported zenon Variables

/// </summary>

/// <returns></returns>

public short MaxVariables()

{

return 1; // Only 1 Variable should linked to the Control

}

/// <summary>

/// This will be triggered by clicking the Button. The new Value will

/// be set to the zenon Variable

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void btnSetZenonVariable_Click(object sender, EventArgs e)

{

//Set Value from TextBox to the zenon Variable

m_cVal.set_Value(0,txtSetZenonVariable.Text.ToString());

this.txtSetZenonVariable.Text = string.Empty;

}

/// <summary>

/// This will be triggered by painting the User Control or the Value of the Variable changed.

/// After the value of the Variable changed the Control will be new painted and the new

Value

/// will be set to the Textbox.

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void zenon_CD_DotNetControlContainer_Paint(object sender, PaintEventArgs e)

{

if (m_cVal != null)

.NET user controls

55

{

this.txtGetZenonVariable.Text = m_cVal.get_Value(0).ToString();

return;

}

else

{

this.txtGetZenonVariable.Text = "Variable Value";

return;

}

}

}

}

CREATE RELEASE

AT last create a Release in order to integrate the completed DLL in zenon or in the
CD_DotNetControlContainer.

For this it is necessary that you switch from Debug to Release in the settings.

5.2.3 add a CD_DotNetControlContainer and a .NET User Control

To prepare the zenon project and to add the CD_DotNetControlContainer and the .NET User Control,
carry out the following steps:

.NET user controls

56

1. Create an internal variable of type String and set the string length to 30.

2. In the zenon project node Project/Files/Others add the DLL of the created .NET user
controls. Here, the file is copied to the Additional file at file system level.

3.

The DLL is located in the Visual Studio Project output folder under
...\bin\Release\zenon_CD_DotNetControlContainer.dll.

4. In the project select the ActiveX element and drag it in a zenon screen.

 The dialog Configuration is opened

.NET user controls

57

 Select the CD_DotNetControlContainer.Container control.

5. To embed the .NET user control in the CD_DotNetControlContainer control:

 Click on button Properties

 A new dialog is opened

 Click on button Load in order to select the path of the project folder, for example:
C:\ProgramData\COPA-DATA\SQL\9888419d-251e-4595-b396-9be423679

97c\FILES\zenon\custom\additional\zenon_CD_DotNetControlContai

ner.dll

.NET user controls

58

Note: Controls should always be saved in the project's Additional folder. They are thus taken
into account during backups and transfers. In doing so, the path is to be defined as relatively
close to the save location. Alternatively, you can, for Path, use the Absolute option; however,
in doing so, it must be ensured that there is the same directory structure on the target system.

Now the .NET user control should be displayed.

Confirm the dialog by clicking on OK.

6. In the last step link a variable with the control via button Variables.

.NET user controls

59

The variable selected first is automatically linked with our globally defined variable (.NET
UserControl) via public method zenonInit. The linking with the control is carried out after the
Runtime start.

Then link the internal variable with a text element.

7. After the Runtime start the control is initially empty.

If you enter a value in the second text box and then confirm it with button Set zenon variable,
the value is written to the zenon variable. (The btnSetZenonVariable_Click event is carried out.)

.NET user controls

60

This is also displayed in the zenon text element.

If the value is directly changed in the zenon text element,

the value is directly written in the first text box via the Paint event of the .NET control.

5.2.4 Accessing the user control via VSTA or VBA

This examples shows the access via VSTA. The procedure is the same as with VBA.

1. Enhance the control with a label (label) and name it IblzenonInfo. In this label the value of
another zenon variable should be displayed. The new value should be set via a VSTA macro.

.NET user controls

61

2. Enhance the code by a property (Information) and add the properties get and set to the property.
They allow you to read and write the text of the label.

3. Create a new release for our user control and copy it to folder additional of the zenon
project.
Do not forget: zenon Editor must be closed before you do this!
Delete the old DLL and restart the zenon Editor. If the DLL is still in the folder, just delete it a
second time. Now you can import the changed DLL. The CD_DotNetContainerControl and the
ActiveX are updated automatically.

4. In the zenon Editor click on the ActiveX and open the property window.

.NET user controls

62

Now you can see the new property Information in the selection window of the control and you
can also set a value.

This value is also set in the control ("myInformation")

5. In order to able to work with the CD_DotNetControlContainer in VSTA or VBA, you first need the
reference to the control. After VSTA has been opened for the project (ProjectAddin), you must
add the reference of the CD_DotNetControlContainer.

.NET user controls

63

In addition you must also add the Assembly System.Windows.Forms.

6. With the following code you can set the value of our property Information anew.

7. Finally:

 create a new zenon function Execute VSTA macro

 link the function to a button

In the Runtime the label is changed from myInformation to New Information by clicking on the
button.

And back when you click the button again.

.NET user controls

64

5.3 Example :NET control as ActiveX (C#)

The following example describes a .NET control which is executed as ActiveX control in zenon.

The creation and integration is carried out in four steps:

1. Create Windows Form Control (on page 32)

2. Change .NET User Control to dual control (on page 35)

3. Work via VBA with ActiveX in the Editor (on page 39)

4. Connect zenon variables with the .NET user control (on page 40)

 Attention

When using zenon COM objects with self-created user controls or external applications,
they must be enabled using the Marshal.ReleaseComObject method. Enabling by
means of the Marshal.FinalReleaseComObject method must not be used, because
this leads to a malfunction of zenon Add-ins.

 Information

The screenshots for this theme are only available in English.

5.3.1 Creat Windows Form Control

To create a Windows Form Control:

1. Start Visual Studio 2008 and create a new Windows Form Control Library project:

.NET user controls

65

2. Rename the default control to the desired control name.
In our example: SampesControl.cs.

3. Open the Control Designer and add the desired control; in our case a text box:

.NET user controls

66

4. Normally controls have properties. Open the Code Designer via View Code and ass the desired
properties which should be available externally.
In our example: Externally visible property „UserText" with get and set access which contains
the text of the text box:

5. Compile the project.

The Windows Forms Control can now be used in other Windows Forms projects.

.NET user controls

67

Important: The control must be inserted manually in the control tool box via Choose Items.

5.3.2 Change .NET User Control to dual control

To change the .NET in a dual control, you must first activate the COM interface for ActiveX.

.NET user controls

68

1. Open the project and activate property Register for COM interop in the Build settings:

2. Open the file AssemblyInfo.cs and

 set attribute ComVisible to true

 add attribute ClassInterface

[assembly: ComVisible(true)]

.NET user controls

69

[assembly: ClassInterface(ClassInterfaceType.AutoDual)]

3. Open the code designer via View Code and add the necessary ActiveX attributes and using
entries. Via menu Tools/Create GUID create a new GUID for the GUID attribute:

.NET user controls

70

4. For the control to be selectable as Active X user interface control, you must add the functions to
the following control classes:

 RegisterClass

 UnregisterClass

After that you can register the control in the registry.

5. Compile the project again.

The Windows Form Control is now ActiveX-able and was registered automatically during the
rebuild. An additional typelib file zenOnDotNetControl.tlb was created in the output directory.

6. To use the control on another computer:

a) copy the DLL file and the TLB file to the target computer

b) register the files via the command line:
%windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe zenOnDotNetControl.dll

/tlb:zenOnDotNetControl.tlb

.NET user controls

71

7. Add the extended Windows Form Control as ActiveX control to the zenon Editor:

5.3.3 Work via VBA with ActiveX in the Editor

To access the properties of the control in the zenon Editor:

1. In the zenon Editor in node Programming interfaces/VBA macros create a new Init macro with
the name Init_ActiveX.

In this macro you can access all external properties via obElem.ActiveX.

.NET user controls

72

2. Assign his macro to the ActiveX control via properties VBA macros/Init of the ActiveX element.

EXAMPLE INIT MACRO

Public Sub Init_ActiveX(obElem As Element)

 obElem.AktiveX.Usertext = "Set the string to the control"

End Sub

5.3.4 Connect zenon variables with the .NET user control

In zenon you have the possibility to enhance an ActiveX control with special functions in order to access
the zenon API.

NECESSARY METHODS

 public bool zenOnInit (on page 42) (Is called up during control initializing in the zenon Runtime.)

 public bool zenOnInitED (on page 42) (Is used in the Editor.)

 public bool zenOnExit() (on page 43) (Is called up during control destruction in the zenon
Runtime.)

 public bool zenOnExitED() (on page 43) (Is used in the Editor.)

.NET user controls

73

 public short CanUseVariables() (on page 43) (Supports linking variables.)

 public short VariableTypes() (on page 43) (Supported data types by the control)

 public MaxVariables() (on page 44)(Maximum number of variables which can be linked to the
control.)

ADD REFERENCE

1. Select in Microsoft Visual Studio under Add References the zenon Runtime object library in
order to be able to access the zenon API in the control.

2. Add the enhanced functions in the class code of the control in order to access the whole zenon
API.

.NET user controls

74

In our example the COM object of a zenon variable is temporarily saved in a Member in order to
access it later in the Paint event of the control.

public bool zenOnInit(zenOn.Element dispElement)

With this method (in the Runtime) the ActiveX control gets a pointer to the dispatch interface of the
dynamic element. With this pointer zenon variables linked to the dynamic element can be accessed.

You can configure the sequence of the sent variables in the Enter Element dialog with the buttons down
or up. The dialog "element input" opens if:

 you double click the ActiveX element or

 select Properties in the context menu or

 select the ActiveX settings property in the Representation node of the property window

public bool zenOnInitED(zenOn.Element dispElement)

Equals public bool zenOnInit (on page 42) and is executed when opening the ActiveX in the Editor
(double click on ActiveX).

.NET user controls

75

public bool zenOnExit()

This method is called by the zenon Runtime when the ActiveX control is closed. Here all dispatch
pointers on variables should be released.

public bool zenOnExitED()

Equals public bool zenOnExit() (on page 43) and is executed in closing the ActiveX in the Editor. With this
you can react to changes, e.g. value changes, in the Editor.

public short CanUseVariables()

This method returns 1 if the control can use zenon variables and 0 if it cannot.

 1: For the dynamic element (via button Variable) you can only state zenon variables with the
type stated via method VariableTypes in the number stated by method MaxVariables.

 0: If CanUseVariables returns 0 or the control does not have this method, any number of
variables of all types can be defined without limitations. In the Runtime however they only can
be used with VBA.

public short VariableTypes()

The value returned by this method is used as a mask for the usable variable types in the variable list. The
value is an AND relation from the following values (defined in zenon32/dy_type.h):

Parameters Value Description

WORD 0x0001 corresponds to position 0

BYTE 0x0002 corresponds to position 1

BIT 0x0004 corresponds to position 2

DWORD 0x0008 corresponds to position 3

FLOAT 0x0010 corresponds to position 4

DFLOAT 0x0020 corresponds to position 5

STRING 0x0040 corresponds to position 6

IN_OUTPUT 0x8000 corresponds to position 15

WPF

76

public MaxVariables()

Here the number of variables is defined, that can be selected from the variable list:

1: Multi-select is disabled in the variable list. A warning is displayed when several variables are selected
anyway.

6. WPF

With the WPF dynamic element, valid WPF/XAML files in zenon can be integrated and displayed.

You can find extensive documentation about WPF elements in zenon and tutorials for designers,
developers and people configuring projects in the zenon WPF element manual.

This manual looks at the following topics:

 Basics

 Guidelines for designers

 Guidelines for developers

 Engineering in zenon

	1. Welcome to COPA-DATA help
	2. Controls
	3. General
	3.1 Access zenon API
	3.2 Methods
	3.2.1 CanUseVariables
	3.2.2 MaxVariables
	3.2.3 VariableTypes
	3.2.4 zenonExit
	3.2.5 zenonExitEd
	3.2.6 zenonInit
	3.2.7 zenonInitEd

	4. ActiveX
	4.1 Develop ActiveX elements
	4.1.1 Methods
	CanUseVariables
	MaxVariables
	VariableTypes
	zenonExit
	zenonExitEd
	zenonInit
	zenonInitEd

	4.2 Example LatchedSwitch (C++)
	4.2.1 Interface
	4.2.2 Control
	4.2.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.2.4 Operate and display
	Setting values
	Drawing

	4.2.5 zenon Interface

	4.3 Example CD_SliderCtrl (C++)
	4.3.1 Interface
	4.3.2 Control
	4.3.3 Methods
	CanUseVariables
	VariableTypes
	MaxVariables
	zenonInit
	zenonExit

	4.3.4 Operate and display
	Drawing
	Write set value

	4.3.5 zenon Interface

	4.4 Example :NET control as ActiveX (C#)
	4.4.1 Creat Windows Form Control
	4.4.2 Change .NET User Control to dual control
	4.4.3 Work via VBA with ActiveX in the Editor
	4.4.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5. .NET user controls
	5.1 Different use .NET Control in Control Container or ActiveX
	5.2 Example .NET control container
	5.2.1 General
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnExit()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	5.2.2 Create .NET user control
	5.2.3 add a CD_DotNetControlContainer and a .NET User Control
	5.2.4 Accessing the user control via VSTA or VBA

	5.3 Example :NET control as ActiveX (C#)
	5.3.1 Creat Windows Form Control
	5.3.2 Change .NET User Control to dual control
	5.3.3 Work via VBA with ActiveX in the Editor
	5.3.4 Connect zenon variables with the .NET user control
	public bool zenOnInit(zenOn.Element dispElement)
	public bool zenOnInitED(zenOn.Element dispElement)
	public bool zenOnExit()
	public bool zenOnExitED()
	public short CanUseVariables()
	public short VariableTypes()
	public MaxVariables()

	6. WPF

