

zenon driver manual

S7TCP32

v.8.10

© 2019 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely with

the written permission of the company COPA-DATA. Technical data is only used for product description

and are not guaranteed qualities in the legal sense. Subject to change, technical or otherwise.

Contents

1 Welcome to COPA-DATA help .. 5

2 S7TCP32 .. 5

3 S7TCP32 - data sheet .. 6

4 Driver history ... 7

5 Requirements .. 8

5.1 PC ... 8

5.2 PLC ... 8

6 Configuration .. 9

6.1 Creating a driver ... 10

6.2 Settings in the driver dialog ... 13

6.2.1 General .. 14

6.2.2 S7-TCP ... 18

6.2.3 Connection TCP/IP ... 19

7 Creating variables ... 27

7.1 Creating variables in the Editor ... 27

7.2 Addressing .. 30

7.3 Driver objects and datatypes ... 32

7.3.1 Driver objects ... 32

7.3.2 Mapping of the data types ... 36

7.4 Creating variables by importing ... 36

7.4.1 XML import ... 37

7.4.2 DBF Import/Export ... 38

7.5 Communication details (Driver variables) ... 43

8 Driver-specific functions... 49

8.1 Configuration file ... 51

9 Driver command function .. 53

10 Error analysis ... 57

10.1 Analysis tool ... 57

10.2 Error numbers .. 58

10.3 Check list ... 68

11 Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P 69

11.1 Configuration of driver and variables for Alarm_8 messages ... 70

11.2 Example project .. 73

11.3 Triggering an ALARM_8 message .. 75

11.4 Triggering an ALARM_8P message.. 76

11.5 Configuration details of the example ... 77

Welcome to COPA-DATA help

5 | 79

1 Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an

initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can

contact via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com.

2 S7TCP32

Driver for S7 TCP/IP connection using standard network card without additional software.

The driver also supports Simatic PDiag error messages.

https://www.copadata.com/tutorial_menu

S7TCP32 - data sheet

6 | 79

3 S7TCP32 - data sheet

General:

Driver file name S7TCP32.exe

Driver name S7 TCP-IP Treiber

PLC types Siemens S7 200, 300, 400 and S7 1200, S7 1500 or VIPA 200V,

300V, 300S and 500S

PLC manufacturer Inat; Siemens; Vipa; Process-Informatik

Driver supports:

Protocol TCP/IP - RFC1006

Addressing: Address-based Address based

Addressing: Name-based --

Spontaneous

communication

X

Polling communication X

Online browsing --

Offline browsing X

Real-time capable --

Blockwrite X

Modem capable --

RDA numerical X

RDA String --

Hysteresis X

extended API X

Supports status bit

WR-SUC

X

alternative IP address X

Driver history

7 | 79

Requirements:

Hardware PC Standard network card

Software PC No additional Siemens communication software required

Hardware PLC Siemens: CP 343-1 or CP 443-1; INAT: S7 Ethernet adapter; Vipa:

CP 443; Process-Informatik: S7 LAN adapter (MPI to TCP/IP

converter); Helmholz NetLink PRO; INAT "ECHOLINK" serial

Ethernet converter; Simatic CPU S7 31x PN/DP (Ethernet

onboard)

Software PLC --

Requires v-dll --

Platforms:

Operating systems Windows 10; Windows 7; Windows 8; Windows 8.1; Windows

Server 2008 R2; Windows Server 2012; Windows Server 2012 R2;

Windows Server 2016

4 Driver history

Date Driver version Change

7/7/2008 5900 Created driver documentation

4/14/201

5

 Addressing by means of host name or IP address

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of

this version. This is the number in the 4th position of the file version,

For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build number

4228.

Expansions or error rectifications will be incorporated into a build in the future and are then available

from the next consecutive build number.

Requirements

8 | 79

 Example

A driver extension was implemented in build 4228. The driver that you are using

is build number 8322. Because the build number of your driver is higher than

the build number of the extension, the extension is included. The version

number of the driver (the first three digits of the file version) do not have any

significance in relation to this. The drivers are version-agnostic

5 Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 PC

This driver supports a connection via the standard network card of the PC. Make sure that the PLC and

the PC are in the same network range and that the subnet masks are set accordingly on both devices.

5.2 PLC

The driver uses S7 communication via the TCP/IP transport protocol.

An Ethernet interface with ISO protocol RFC 1006 is required at the PLC (for so-called open IE

communication). The communication interface should support these communication services (S7

communication and TCP/IP).

Here are some examples for this:

 Siemens: S7 CP 343-1, CP 443-1, CP243-1, S7 CPU 31x PN/DP

 Vipa: CP443; Speed7 PLC

 Helmholz NetLink PRO

 INAT: S7 Ethernet Adapter;'ECHOLINK' Serial Ethernet converter

 Process informatics: S7–LAN Adapter (MPI to TCP/IP converter)

TIA SETTINGS FOR COMMUNICATION WITH S7 1511

The following settings are necessary for communication with an S7 1511 PLC:

TIA:

Configuration

9 | 79

 PLC -> General -> Protection:

Allow access by remote partner via PUT/GET communication: active

 PLC -> Data block -> General -> Attributes:

Optimized block access: Inactive

zenon Driver, TCP/IP connection (on page 19) tab:

 Remote TSAP: 02.01

The controller expects direct addresses, no Symbolic address.

6 Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables

(main.chm::/15247.htm) of the online manual.

main.chm::/15247.htm

Configuration

10 | 79

6.1 Creating a driver

In the Create driver dialog, you create a list of the new drivers that you want to create.

Parameter Description

Available drivers List of all available drivers.

The display is in a tree structure:

[+] expands the folder structure and shows the

drivers contained therein.

[-] reduces the folder structure

Default: no selection

Driver name Unique Identification of the driver.

Default: Empty

The input field is pre-filled with the pre-defined

Identification after selecting a driver from the list

of available drivers.

Driver information Further information on the selected driver.

Default: Empty

The information on the selected driver is shown in

this area after selecting a driver.

Configuration

11 | 79

CLOSE DIALOG

Option Description

OK Accepts all settings and opens the driver configuration

dialog of the selected driver.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

 Information

The content of this dialog is saved in the file called Treiber_[Language].xml. You

can find this file in the following folder:

C:\ProgramData\COPA-DATA\zenon[version number].

CREATE NEW DRIVER

In order to create a new driver:

1. Right-click on Driver in the Project Manager and select New driver in the context menu.

Optional: Select the New driver button from the toolbar of the detail view of the Variables.

The Create driver dialog is opened.

Configuration

12 | 79

2. The dialog offers a list of all available drivers.

3. Select the desired driver and name it in the Driver name input field.

This input field corresponds to the Identification property. The name of the selected driver is

automatically inserted into this input field by default.

The following is applicable for the Driver name:

 The Driver name must be unique.

If a driver is used more than once in a project, a new name has to be given each time.

This is evaluated by clicking on the OK button. If the driver is already present in the project,

this is shown with a warning dialog.

 The Driver name is part of the file name.

Therefore it may only contain characters which are supported by the operating system.

Invalid characters are replaced by an underscore (_).

 Attention: This name cannot be changed later on.

4. Confirm the dialog by clicking on the OK button.

The configuration dialog for the selected driver is opened.

Note: The language of driver names cannot be switched. They are always shown in the language in

which they have been created, regardless of the language of the Editor. This also applies to driver object

types.

Configuration

13 | 79

DRIVER NAME DIALOG ALREADY EXISTS

If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by

clicking on the OK button. The driver can be named correctly.

ZENON PROJECT

The following drivers are created automatically for newly-created projects:

 Intern

 MathDr32

 SysDrv

 Information

Only the required drivers need to be present in a zenon project. Drivers can be

added at a later time if required.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

Configuration

14 | 79

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later

for editing, double click on the driver in the list or click on the Configuration property.

Option Description

Mode Allows to switch between hardware mode and simulation

mode

 Hardware:

A connection to the control is established.

 Simulation - static:

No communication between to the control is

established, the values are simulated by the driver.

In this modus the values remain constant or the

variables keep the values which were set by zenon

Logic. Each variable has its own memory area. E.g.

two variables of the type marker with offset 79 can

have different values in the Runtime and do not

influence each other. Exception: The simulator

driver.

 Simulation - counting:

No communication between to the control is

established, the values are simulated by the driver.

In this modus the driver increments the values

Configuration

15 | 79

Option Description

within a value range automatically.

 Simulation - programmed:

No communication is established to the PLC. The

values are calculated by a freely programmable

simulation project. The simulation project is created

with the help of the zenon Logic Workbench and

runs in a zenon Logic Runtime which is integrated

in the driver.

For details see chapter Driver simulation

(main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested

from the control even if they are currently not needed.

This has the advantage that e.g. multiple screen switches

after the screen was opened for the first time are

executed faster because the variables need not be

requested again. The disadvantage is a higher load for the

communication to the control.

Output can be written Active:

Outputs can be written.

 Inactive:

Writing of outputs is prevented.

Note: Not available for every driver.

Variable image remanent This option saves and restores the current value, time

stamp and the states of a data point.

Fundamental requirement: The variable must have a valid

value and time stamp.

The variable image is saved in hardware mode if one of

these statuses is active:

 User status M1 (0) to M8 (7)

 REVISION(9)

 AUS(20)

 ERSATZWERT(27)

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not

main.chm::/25206.htm

Configuration

16 | 79

Option Description

programmed simulation)

The following states are not restored at the start of the

Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is

not a criterion in order to restore the remanent variable

image.

Stop on Standby Server Setting for redundancy at drivers which allow only one

communication connection. For this the driver is stopped

at the Standby Server and only started at the upgrade.

Attention: If this option is active, the gapless archiving is

no longer guaranteed.

 Active:

Sets the driver at the not-process-leading Server

automatically in a stop-like state. In contrast to

stopping via driver command, the variable does

not receive status switched off

(statusverarbeitung.chm::/24150.htm) but an empty

value. This prevents that at the upgrade to the

Server irrelevant values are created in the AML, CEL

and Historian.

Default: inactive

Note: Not available if the CE terminal serves as a data

server. You can find further information in the zenon

Operator manual in the CE terminal as a data server

chapter.

Global Update time Setting for the global update times in milliseconds:

 Active:

The set Global update time is used for all

variables in the project. The priority set at the

variables is not used.

 Inactive:

The set priorities are used for the individual

variables.

statusverarbeitung.chm::/24150.htm

Configuration

17 | 79

Option Description

Exceptions: Spontaneous drivers ignore this option.

They generally use the shortest possible update time.

For details, see the Spontaneous driver update time

section.

Priority The polling times for the individual priority classes are set

here. All variables with the according priority are polled in

the set time.

The variables are allocated separately in the settings of

the variable properties.

The communication of the individual variables can be

graded according to importance or required topicality

using the priority classes. Thus the communication load is

distributed better.

Attention: Priority classes are not supported by each

driver, e.g. spontaneously communicating zenon drivers.

CLOSE DIALOG

Option Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR SPONTANEOUS DRIVERS

With spontaneous drivers, for Set value, advising of variables and Requests, a read cycle is triggered

immediately - regardless of the set update time. This ensures that the value is immediately available for

visualization after writing. The update time is generally 100 ms.

Spontaneous drivers are ArchDrv, BiffiDCM, BrTcp32, DNP3, Esser32, FipDrv32, FpcDrv32, IEC850,

IEC870, IEC870_103, Otis, RTK9000, S7DCOS, SAIA_Slave, STRATON32 and Trend32.

Configuration

18 | 79

6.2.2 S7-TCP

Parameter Description

Configuration file The configuration file must be in the current project directory. The file

name can be freely defined.

Default: S7TCP32_S7 TCP-IP driver.txt

Note: The proposed name of the file consists of the driver names and

their description.

A change in this input field also has effects on the list of connections

and its configuration in the TCP/IP connection tab.

Delay after connection

termination (ms)

If the connection fails, the driver will take the set amount of time

between re-attempts to establish communication.

Default: 20000 ms

Char string without

header

The type of String variables in the PLC

S7 strings with or without header information:

 Inactive: STRING

 Active: ARRAY (CHAR)

Default: inactive

Configuration

19 | 79

6.2.3 Connection TCP/IP

Parameter Description

Configuration file The configuration file must be in the current project directory. The file

name can be freely defined.

Default: S7TCP32_S7 TCP-IP driver.txt

Note: The proposed name of the file consists of the driver names and

their description.

A change in this input field also has effects on the list of connections and

its configuration in the TCP/IP connection tab.

CONNECTIONS

Configuration of the connections.

Parameter Description

Connection list List with all configured connections.

Displays the connection names with the corresponding Net addresses.

The connection parameters are displayed when the connection name is

selected.

New Creates a new connection.

The connection can be configured in the Edit connection section.

Configuration

20 | 79

Parameter Description

Delete The selected connection will be deleted from the list without requesting

confirmation.

Edit Unlocks the configuration of the selected connection in the edit

connection area.

EDIT CONNECTION

Settings for a selected connection. If there is no connection selected in the connection list, this area is

grayed out.

Parameter Description

Net address Corresponds to the Net address property in variable configuration.

Default: 0

A unique net address must be issued foe each connection. The

uniqueness is validated by clicking on the Save button.

Connection name Freely definable name.

Default: Default name

Primary connection Configuration of the primary connection.

When Runtime is started, the driver first attempts to establish a

connection to the PLC using this address. If this connection fails, a

substitute connection - if configured - is established using the secondary

connection.

Note: The entry is checked by clicking on the Save button.

IP address/host name Addressing of the primary connection to the PLC via IP address or host

name.

Depends on the settings of the S7 TCP Runtime.

Communication is performed via port 102.

IP port

Local TSAP TSAP for this station.

It consists of two groups (bytes). Each group is built from two

hexadecimal characters, and the two groups are separated by a blank or

a dot.

 First group:

Configuration

21 | 79

Parameter Description

can contain a device identification

 Second group:

 always 00

Default: 01.00

Recommended setting: 01.00

Example:

01.00 = PD communicates directly with the connected SIMATIC

components

Remote TSAP TSAP for the partner station (S7 CPU).

It consists of two groups (bytes). Each group is built from two

hexadecimal characters, and the two groups are separated by a blank or

a dot.

 First group:

Contains a device identification, for which resources are reserved

in the SIMATIC-S7. Possible device identifications:

01 = PD

02 = OM (Operating & Monitoring)

03 = Other

 Second group:

Contains the addressing of the SIMATIC station, with which

communication should be established.

Divided into:

(Bit 7...5) = Rack (subsystem)

(Bit 4...0) = CPU slot

Attention: Not the communication processor slot, but the CPU

on which the PLC program also runs. Usually: Slot 2.

Default: 02.02

Sample configuration:

OS communicates via the SIMATIC with the assembly group in rack 2,

slot 3.

Help rule for rack/slot group:

Left character = rack * 2

Right character = slot

Special case:

If the device connected to the net is addressed directly, the group

contains 00.

Configuration

22 | 79

Parameter Description

The remote TSAP can be read directly in the Hardware Manager. (avoids

misinterpretations due to the writing on the device itself.)

Communication with S7 200:

In order to be able to also use the S7TCP driver for the S7 200 PLCs (via

CP243), a configured connection must be created in the PLC. (this is

possible using "MicroWIN" configuration software). The TSAP settings in

the driver must then be selected according to this connection.

For CPUs of the company Vipa:

Speed 7 CPU 315 2AG10:

RemoteTSAP: 02.02

Communication with series 1200 and 1500 S7:

RemoteTSAP: 2.01

Note the TIA settings (on page 8) too!

Secondary connection Alternative connection parameters if primary configuration does not

work.

IP address/host name Addressing of the secondary connection to the PLC by means of IP

address or host name.

If this field has been completed, the driver attempts to connect to this

address after each failed attempt to establish a connection. The

connection to this alternative address remains until Runtime is restarted

or the secondary address can no longer be reached.

Example: For a network with redundancy with two communication

processors in one PLC and two network cards in the zenon computer.

Note: The entry is checked by clicking on the Save button.

Local TSAP Alternative TSAP local.

Configuration the same as for the primary connection.

Remote TSAP Alternative TSAP remote.

Configuration the same as for the primary connection.

Switch if CPU status is

STOP

Checkbox for a reaction to CPU STOP status:

 Active:

As soon as the CPU has the status STOP, a switch to the

alternative connection is made.

Configuration

23 | 79

Parameter Description

 Inactive:

With the CPU STOP status, there is no switch to an alternative

connection.

Default: inactive

Alarm_x options Settings for Alarm_S and ALARM_8

CPU uses, for

ALARM_x GMT

Checkbox for a possible activation of the time in GMT:

 Active:

The transferred time of the ALARM_S or ALARM_8 object is

considered as GMT. Activate this option if the PLC sends the

time stamp of the ALARM-S/8 message GMT format.

 Inactive:

The transferred time of the ALARM_S or ALARM_8 object is not

additionally converted.

Default: inactive

CPU supports

ALARM_S

Checkbox for a possible activation of ALARM_S:

 Active:

CPU supports ALARM_S.

 Inactive:

no support of ALARM_S.

Default: active

For more details see chapter Driver-specific functions (on page 49).

CPU supports

ALARM_8

Checkbox for a possible activation of ALARM_S:

 Active:

CPU supports ALARM_8.

 Inactive:

no support of ALARM_8.

Default: inactive

For more details see chapter Driver-specific functions (on page 49).

Save Saves the configuration of the connection.

Cancel Discards all changes to the selected connection. No changes are saved.

The Edit connection area is deactivated.

Configuration

24 | 79

CLOSE DIALOG

Option Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

CREATE NEW CONNECTION

1. click on the button New

2. Enter the connection details.

3. Click on Save

EDIT CONNECTION

1. select the connection in the connection list

2. Click on the Edit button

3. change the connection parameters

4. finish with Save

DELETE CONNECTION

1. select the connection in the connection list

2. click on the button Delete

3. the connection will be removed from the list

SHOW CONNECTION DETAILS

Highlight the desired connection in the connection list.

6.2.3.1 Validation of connection configuration

Inputs for the IP address/host name are validated when a connection is configured. The validation is

carried out by clicking on the Save button.

Validation rules:

 The properties of the primary connection must not be empty.

Error message: Primary IP address must not be empty!

Configuration

25 | 79

 The following characters are not permitted for input: {}|&~\"';=#

Error message: The input for [Primary/Secondary] IP address contains invalid characters!

 If there are only figures and period(s) present in the entry, a valid IP address is expected for

validation.

 The following is applicable for the input of IP addresses:

 The format of the IP address entered must correspond to the standard:

There must be precisely 4 numerical fields included in the entry.

These fields must be separated by a period.

Error message: The input for [Primary/Secondary] IP address contains an invalid number of

address fields!

 No field value can be greater that 255

Error message: The input for [Primary/Secondary] IP address contains an invalid address

field!

VALIDATION - ERROR DIALOG

Note: This dialog is only available in English.

The buttons are displayed in the system language of the computer.

Missing addressing:

Invalid characters

Invalid IP address format

Configuration

26 | 79

IP ADDRESS higher than 255

6.2.3.2 Configuration of Helmholz NETLinkPRO adapter

To create a connection for a Helmholz NETLinkPRO adapter:

1. Click on the New button in the configuration dialog in the TCP/IP connection tab

2. Enter the Network address and Name

3. Enter, under Remote IP, the IP address of the NETLinkPRO

4. Enter 01.00 for Local TSAP

5. Enter 01.00 for Local TSAP

6. Click on Save

7. Configure further properties as required

8. click on OK

Creating variables

27 | 79

 Information

You can find a detailed description of the input fields in the TCP/IP connection

(on page 19) chapter.

7 Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

28 | 79

The dialog for configuring variables is opened

2. Configure the variable

3. The settings that are possible depends on the type of variables

CREATE VARIABLE DIALOG

Property Description

Name Distinct name of the variable. If a variable with the same name

already exists in the project, no additional variable can be created

with this name.

Maximum length: 128 characters

Attention: the characters # and @ are not permitted in variable

names. If non-permitted characters are used, creation of variables

cannot be completed and the Finish button remains inactive.

Note: For some drivers, the addressing is possible over the

property Symbolic address, as well.

Drivers Select the desired driver from the drop-down list.

Note: If no driver has been opened in the project, the driver for

internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm))

main.chm::/Intern.chm::/Intern.htm

Creating variables

29 | 79

Property Description

is automatically loaded.

Driver Object Type

(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

Data Type Select the desired data type. Click on the ... button to open the

selection dialog.

Array settings Expanded settings for array variables. You can find details in the

Arrays chapter.

Addressing options Expanded settings for arrays and structure variables. You can find

details in the respective section.

Automatic addressing Expanded settings for arrays and structure variables. You can find

details in the respective section.

SYMBOLIC ADDRESS

The Symbolic address property can be used for addressing as an alternative to the Name or

Identification of the variables. Selection is made in the driver dialog; configuration is carried out in the

variable property. When importing variables of supported drivers, the property is entered automatically.

Maximum length: 1024 characters.

The following drivers support the Symbolic address:

 3S_V3

 AzureDrv

 BACnetNG

 IEC850

 KabaDPServer

 OPCUA32

 Phoenix32

 POZYTON

 RemoteRT

 S7TIA

 SEL

 SnmpNg32

 PA_Drv

cti.chm::/28685.htm

Creating variables

30 | 79

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

Note for signal range: If a change is made to a data type that does not support the set signal

range, the signal range is amended automatically. For example, for a change from INT to SINT, the

signal range is changed to 127. The amendment is also carried out if the signal range was not

inherited from the data type. In this case, the measuring range must be adapted manually.

7.2 Addressing

The address resolution of the driver is BYTE-based, therefore SINT. When addressing INT and UINT

variables, address in steps of two, for DINT and UDINT in steps of four. You can address single bits by

adding the bit number.

SETTINGS FOR THE UNIQUE ADDRESSING OF VARIABLES

Property Description

Name Freely definable name.

Attention: For every zenon project the name must be unambiguous.

Identification Freely definable identification.

E.g. for Resources label, comments, ...

Net address Network address of variables.

This address refers to the bus address in the connection configuration of

the driver. This defines the PLC, on which the variable resides.

Data block For variables of object type Extended data block, enter the datablock

number here.

Adjustable from 0 to 4294967295.

You can take the exact maximum area for data blocks from the manual

of the PLC.

Offset Offset of variables. Equal to the memory address of the variable in the

PLC. Adjustable from 0 to 4294967295.

Most S7 controllers support a maximum offset of 65535. You can look up

the exact maximum range for each data block in the manual of the PLC.

Alignment not used for this driver

Creating variables

31 | 79

Property Description

Bit number Number of the bit within the configured offset.

Possible entries: 0 to 65535.

Working range [0..7]

String length Only available for String variables.

Maximum number of characters that the variable can take.

Driver

connection/Driver

Object Type

Object type of the variables. Depending on the driver used, is selected

when the variable is created and can be changed here.

Driver

connection/Data Type

Data type of the variable. Is selected during the creation of the variable;

the type can be changed here.

Attention: If you change the data type later, all other properties of the

variable must be checked and adjusted, if necessary.

Driver

connection/Priority

Setting the priority class. The variable of the priority class is thus assigned

as it was configured in the driver dialog in the General tab. The priority

classes are only used if the global update time is deactivated.

If the global update time option is activated and the priority classes are

used, there is an error entry in the log file of the system. The driver uses

the highest possible priority.

EXAMPLE

- For addressing double word (DINT/UDINT) variables:

The connection was configured with net address 2. Two double words in data block 33 in a row starting

from offset 20.

Addressing double word 1:

Net address: 2

Data block: 33

Offset: 20

Driver object type: Ext. Data block

Data type: UDINT (DINT)

Addressing double word 2:

Creating variables

32 | 79

Net address: 2

Data block: 33

Offset: 24

Driver object type: Ext. Data block

Data type: UDINT (DINT)

- For addressing bit (BOOL) variables:

The connection was configured with bus address 2. One marker bit with offset 79, the fourth bit.

Net address: 2

Data block: not used

Offset: 79

Bit number: 3 (bits are counted from 0)

Driver object type: SPS marker

Data type: BOOL

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out

which driver objects are provided by the driver and which IEC data types can be assigned to the

respective driver objects.

7.3.1 Driver objects

The following object types are available in this driver:

DRIVER OBJECT TYPES AND SUPPORTED IEC DATA TYPES FOR PROCESS

VARIABLES IN ZENON

Driver Object

Type

Channel

type

Read Write Supported

data types

Comment

ALARM_S

Associated value

65 X -- BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT

Variables of the type

ALARM_S associated value

contain the associated

values received with a

Creating variables

33 | 79

Driver Object

Type

Channel

type

Read Write Supported

data types

Comment

message, if they exist. Also

here the offset contains the

S7 message number. The

addressing of the

associated value in the

associated value record is

realized via the bit number.

If e.g. 3 associated values of

the type byte are received,

the first one has bit number

0, the second bit number 8

and the third bit number 16.

If it is 3 words, the bit

numbers are 0, 16 and 32.

ALARM_S

Message

9 X -- BOOL,

UDINT

With the datatype

ALARM_S bit, spontaneous

realtime-stamped alarm

messages of the S7 can be

received (e.g. from PDiag).

This variable only has a

value, when the S7 sends

an ALARM_S telegram. No

initial image or similar thing

is read. The offset here is

the S7 message number.

A variable of type ALARM_S

message doubleword

always contains the last

received message number.

The offset is not used here

and has to be 0.

Output 11 X X BOOL, SINT,

USINT, INT,

UINT

If you want outputs to be

written, you have to

activate this in the general

section of the driver

settings.

Input 10 X -- BOOL, SINT,

USINT, INT,

UINT

Creating variables

34 | 79

Driver Object

Type

Channel

type

Read Write Supported

data types

Comment

Extended data

block

34 X X BOOL,

DATE_AND_

TIME, INT,

SINT, USINT,

UINT, DINT,

UDINT, LINT,

ULINT, REAL,

LREAL,

STRING,

WSTRING,

STRING: max. 210

characters

DATE_AND_TIME: 8 bytes

time*

S5Time data

block

97 X X REAL Only times in seconds will

be read and written.

Attention: 32 bits of data

will be read, but in the S7,

S5Time has only 16 bits; you

should therefore make sure

that there are still 16 bits left

after the last S5Time object

in a data block.

PLC marker 8 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, LINT,

ULINT, REAL,

LREAL

Counter 4 X X UDINT

Time 5 X -- REAL

Communication

details

35 X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, REAL,

STRING

Variables for the static

analysis of the

communication; is

transferred between driver

and Runtime (not to the

PLC).

Note: The addressing and

the behavior is the same for

most zenon drivers.

Creating variables

35 | 79

Driver Object

Type

Channel

type

Read Write Supported

data types

Comment

You can find detailed

information on this in the

Communication details

(Driver variables) (on page

43) chapter.

Key:

X: supported

--: not supported

*)The data type DATE_AND_TIME in detail:

For each offset the following structure is read or written:

Byte Contents Value Possible value

range

BCD code

0 Year 0 - 99 1990 - 1999

2000 - 2089

90h - 99h

00h - 89h

1 Month 1 - 12 1 - 12 01h – 12h

2 Day 1 - 31 1 - 31 01h – 31h

3 Hour 0 - 23 0 - 23 00h - 23h

4 Minute 0 - 59 0 - 59 00h - 59h

5 Second 0 - 59 0 - 59 00h - 59h

6 Millisecond

HT

0 - 990 ms Bit 4

- 7 Hundreds,

0 - 3 Tens

0 - 999 00h - 999h

7 Milliseconds

O, Data

0 - 9 Bit 4 - 7

millisec. Ones, 0

- 15 Bit 0 - 3

Data

Creating variables

36 | 79

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes

with the datatypes of the PLC.

MAPPING OF THE DATA TYPES FROM THE PLC TO ZENON DATA TYPES

PLC zenon Data type

BOOL BOOL 8

SINT SINT 10

BYTE USINT 9

INT INT 1

WORD UINT 2

DINT DINT 3

DWORD UDINT 4

DATE_AND_TIME DATE_AND_TIME 20

REAL REAL 5

STRING STRING 12

The channel type or the data type is used in the driver for mapping the correct object types or data

types. This information is also used for the "Extended variable import/export" via DBF files.

DATA TYPE

The term data type is the internal numerical identification of the data type. It is also used for the

extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every

driver.

Creating variables

37 | 79

 Information

You can find details on the import and export of variables in the Import-Export

(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

7.4.1 XML import

During XML import of variables or data types, these are first assigned to a driver and then analyzed.

Before import, the user decides whether and how the respective element (variable or data type) is to be

imported:

 Import:

The element is imported as a new element.

 Overwrite:

The element is imported and overwrites a pre-existing element.

 Do not import:

The element is not imported.

Note: The actions and their durations are shown in a progress bar during import. The import of

variables is described in the following documentation. Data types are imported along the same lines.

REQUIREMENTS

The following conditions are applicable during import:

 Backward compatibility

At the XML import/export there is no backward compatibility. Data from older zenon versions

can be taken over. The handover of data from newer to older versions is not supported.

 Consistency

The XML file to be imported has to be consistent. There is no plausibility check on importing

the file. If there are errors in the import file, this can lead to undesirable effects in the project.

Particular attention must be paid to this, primarily if not all properties exist in the XML file and

these are then filled with default values. E.g.: A binary variable has a limit value of 300.

 Structure data types

Structure data types must have the same number of structure elements.

Example: A structure data type in the project has 3 structure elements. A data type with the

same name in the XML file has 4 structure elements. Then none of the variables based on this

data type in the file are imported into the project.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

38 | 79

 Hint

You can find further information on XML import in the Import - Export manual,

in the XML import (main.chm::/13046.htm) chapter.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable

settings, such as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in

the DBF file in order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

main.chm::/13046.htm

Creating variables

39 | 79

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric

characters for name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file

name length including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

FILE STRUCTURE OF THE DBASE EXPORT FILE

The dBaseIV file must have the following structure and contents for variable import and export:

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with their name to the 8.3 DOS format (8 alphanumeric characters

for name, 3 characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Identification Typ

e

Field size Comment

KANALNAME Cha

r

128 Variable name.

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

KANAL_R C 128 The original name of a variable that is to be replaced by

the new name entered under "VARIABLENNAME”

(variable name) (field/column must be entered

Creating variables

40 | 79

Identification Typ

e

Field size Comment

manually).

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has

to be created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the

data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)

corresponds to the driver object type.

HWKANAL Nu

m

3 Net address

BAUSTEIN N 3 Datablock address (only for variables from the data area

of the PLC)

ADRESSE N 5 Offset

BITADR N 2 For bit variables: bit address

For byte variables: 0=lower, 8=higher byte

For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables

ATTENTION: Only the first variable is fully available. All

others are only available for VBA or the Recipegroup

Manager

LES_SCHR L 1 Write-Read-Authorization

0: Not allowed to set value.

1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object

comprises TREIBER-OBJEKTTYP and DATENTYP

Creating variables

41 | 79

Identification Typ

e

Field size Comment

SIGMIN Floa

t

16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values

(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one

decimal possible)

not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal

possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s],

one decimal possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable

is not requested from the server but from the Standby

Server in redundant networks

RESOURCE C 128 Resources label.

Free string for export and display in lists.

Creating variables

42 | 79

Identification Typ

e

Field size Comment

The length can be limited using the MAX_LAENGE entry

in project.ini.

ADJWVBA R 1 Non-linear value adaption:

0: Non-linear value adaption is used

1: Non-linear value adaption is not used

ADJZENON C 128 Linked VBA macro for reading the variable value for

non-linear value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for

non-linear value adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

 Attention

When importing, the driver object type and data type must be amended to the

target driver in the DBF file in order for variables to be imported.

LIMIT VALUE DEFINITION

Limit definition for limit values 1 to 4, or status 1 to 4:

Identification Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for

a dynamic limit value (see VARIABLEx)

(if VARIABLEx is 1 and here it is -1, the existing

variable linkage is not overwritten)

SCHWWERT1 F 16 Threshold value for limit value

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

Creating variables

43 | 79

Identification Type Field size Comment

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking

the limit is defined by an absolute value (see field

GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function

(if “-1” is entered here, the existing function is not

overwritten during import)

A_GRUPPE1 N 10 Alarm/Event Group

A_KLASSE1 N 10 Alarm/Event Class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the

definition of variables. For more information, see chapter Variable definition.

7.5 Communication details (Driver variables)

The driver kit implements a number of driver variables. This variables are part of the driver object type

Communication details. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

Creating variables

44 | 79

The definitions of the variables implemented in the driver kit are available in the import file DRVVAR.DBF

and can be imported from there.

Path to file: %ProgramData%\COPA-DATA\zenon<Versionsnummer>\PredefinedVariables

Note: Variable names must be unique in zenon. If driver variables of the driver object type

Communication details are to be imported from DRVVAR.DBF again, the variables that were imported

beforehand must be renamed.

 Information

Not every driver supports all driver variables of the driver object type

Communication details.

For example:

 Variables for modem information are only supported by

modem-compatible drivers.

 Driver variables for the polling cycle are only available for pure polling

drivers.

 Connection-related information such as ErrorMSG is only supported for

drivers that only edit one connection at a a time.

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

Creating variables

45 | 79

Name from import Type Offset Description

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfe

r

BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE

and no OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver

simulation.

ConnectionStates STRING 61 Internal connection status of the driver to

the PLC.

Connection statuses:

0: Connection OK

1: Connection failure

2: Connection simulated

Formating:

<Netzadresse>:<Verbindungszustand>;…;…;

Creating variables

46 | 79

Name from import Type Offset Description

A connection is only known after a variable

has first signed in. In order for a connection

to be contained in a string, a variable of this

connection must be signed in once.

The status of a connection is only updated

if a variable of the connection is signed in.

Otherwise there is no communication with

the corresponding controller.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically

reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial

interface. Writing to this variable

immediately results in the method

SrvDrvVarApplyCom being called (which

currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the

modem. Writing this variable immediately

calls the method SrvDrvVarApplyModem.

This closes the current connection and

opens a new one according to the settings

PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone

number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be

kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Creating variables

47 | 79

Name from import Type Offset Description

Device STRING 8 Name of the serial interface or name of the

modem

ComPort UINT 9 Number of the serial interface.

Baudrate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial

interface

Value = 0 if the driver cannot establish any

serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be

established automatically for

reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone

number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer

occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem

connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is

accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a

connection.

STATISTICS

Name from import Type Offse

t

Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is

required for writing.

Creating variables

48 | 79

Name from import Type Offse

t

Description

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is

required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required

to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required

to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to

read all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to

read all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group

Normal in milliseconds (ms).

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group

Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group

High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group

Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

ERROR MESSAGE

Name from import Type Offse

t

Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error

occurred.

Driver-specific functions

49 | 79

Name from import Type Offse

t

Description

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error

occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading

error occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error

occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error

occurred.

RdErrHwAdresse DINT 45 Hardware address when the last reading error

occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8 Driver-specific functions

The driver supports the following functions:

INAT BOARD (OPTIONAL)

This card can replace an original Siemens CP-443-1/TCP.

The requests are handled via RFC 1006. The definition of the send/receive orders is done in the INAT

configurator.

On the zenon side, you have to enter the same own and remote TSAPs have as on the according board.

Several simultaneous and parallel connections are possible.

If several independent zenon servers communicate with one card, a separate connection for each server

has to be defined on the INAT-CP.

The card can handle S5 and S7 protocols simultaneously.

Driver-specific functions

50 | 79

The configuration on the PLC is realized by creating a configuration block in OB 100 or 101 (for restart),

i.e. synchronizing the CPU with the board.

In a cyclically called block the block NET_ALL is called (like in an S5 Send-All/Receive-All), which handles

the data communication with the CPU.

F&S (FISCHER & SCHMIDT)

In order to be able to use the datatypes for F&S, they must be activated explicitly. This activation is

carried out with the following entry in the project.ini file:

[S7TCP]

FS=1

ALARM-S

With the datatype ALARM_S message bit, spontaneous realtime-stamped alarm messages of the S7 can

be received (e.g. from PDiag). This variable only has a value, when the S7 sends an ALARM_S telegram.

No initial image or similar thing is read. The offset here is the S7 message number.

A variable of type ALARM_S message doubleword always contains the last received message number.

The offset is not used here and has to be 0.

Variables of the type 'ALARM_S associated value' contain the associated values received with a message,

if they exist. Also here the offset contains the S7 message number. The addressing of the associated

value in the associated value record is realized with the bit number. If e.g. 3 associated values of the

type byte are received, the first one has bit number 0, the second bit number 8 and the third bit number

16. If it is 3 words, the bit numbers are 0, 16 and 32. On transmitting PDiag associated values always a

doubleword is sent. In the doubleword the low byte and the high byte are permuted; this has to be

cared of in the addressing of the bit number.

EXAMPLES:

 Associated value = bit: offset = message number / bit number = 24

 associated value = byte offset = message number / bit number = 24

 associated value = word offset = message number / bit number = 16

 associated value = doubleword offset = message number / bit number = 0

ALARM-8

Configuration is similar to ALARM_S.

Differences:

 The index of the message at the ALARM_8 block must also be given in the database.

Driver-specific functions

51 | 79

 For ALARM_8, 8 bit messages are transferred for each message number. The 10 associated

values are packed and processed consecutively as Dump.

Maximum size of all associated values together per message: 32 bytes

 The initial stack, which is read after the connection is established, contains in contrast to

ALARM_S neither associated values nor time stamps.

LIMITATIONS

In projects with the S7 TCP driver, note that S7 PLCs only have limited communication resources. This

becomes noticeable with the S7 300 types, that particularly for the smaller models allow only a few

(6-12) simultaneous communications.

Example:

S7 312C only allows 6 connections, where as a default 4 are reserved, so that only 2 simultaneous

connections are possible.

All reserved connections with the exception of the PD communication and an OP communication can

be released, so for a S7 312C a maximum of 4 free connections is available.

S7 414-2 allows 32 connections, 4 reserved as a default, and 28 additional possible.

Access to S7-200 via CP243, in S7 200 only DB 1 exists.

PROJECT.INI ENTRIES

[S7TCP]

BLOCKWRITE=1 Activates blockwrite

8.1 Configuration file

The configuration file must be in the current project directory. The file name can be freely defined.

Save path:

C:\ProgramData\COPA-DATA\SQL2012\54af8312-0a04-46c9-ba32-16093eefc323\FILES\zenon\custom\d

rivers\[driver name]_[driver identification].txt

FILE STRUCTURE

Entry Description

[FETCH_HWn] Entry of a connection configuration. A [FETCH_HW] entry for

each configured connedtion will be created.

n represents the net address of the connection.

Driver-specific functions

52 | 79

Entry Description

VERB_NAME= Configured name of the connection.

FREMD_IP= IP address or host name of the primary connection

FREMDE_IP2= IP address or host name of the secondary connection.

Empty if no secondary connection is configured.

EIGENE_TSAP= Configuration for the Local TSAP property for the primary

connection.

FREMDE_TSAP= Configuration for the Remote TSAP for the primary

connection.

EIGENE_TSAP2= Configuration for the Local TSAP property for the secondary

connection.

FREMDE_TSAP2= Configuration for the Remote TSAP property for the

secondary connection.

USES_GMT= Configuration of the CPU uses, for ALARM_x GMT property

0: Not activated

1: activated

USES_ALARM_S= Configuration of the CPU supports ALARM_S property

0: Not activated

1: activated

USES_ALARM_8= Configuration of the CPU supports ALARM_8 property

0: Not activated

1: activated

SWITCHONSTOP=0 Configuration of the Switch if CPU status is STOP property:

0: Not activated

1: activated

Driver command function

53 | 79

9 Driver command function

The zenon Driver commands function is to influence drivers using zenon.

You can do the following with a driver command:

 Start

 Stop

 Shift a certain driver mode

 Instigate certain actions

Note: This chapter describes standard functions that are valid for most zenon drivers.

Not all functions described here are available for every driver. For example, a driver that does not,

according to the data sheet, support a modem connection also does not have any modem functions.

 Attention

The zenon Driver commands function is not identical to driver commands that

can be executed in the Runtime with Energy drivers!

CONFIGURATION OF THE FUNCTION

Configuration is carried out using the Driver commands function.

To configure the function:

1. Create a new function in the zenon Editor.

Driver command function

54 | 79

The dialog for selecting a function is opened

2. Navigate to the node Variable.

3. Select the Driver commands entry.

The dialog for configuration is opened

4. Select the desired driver and the required command.

5. Close the dialog by clicking on OK and ensure that the function is executed in the Runtime.

Heed the notices in the Driver command function in the network section.

Driver command function

55 | 79

DRIVER COMMAND DIALOG

Option Description

Driver Selection of the driver from the drop-down list.

It contains all drivers loaded in the project.

Current condition Fixed entry that is set by the system.

Has no function in the current version.

Driver command Selection of the desired driver command from a

drop-down list.

For details on the configurable driver commands, see

the available driver commands section.

Driver-specific command Entry of a command specific to the selected driver.

Note: Only available if, for the driver command

option, the driver-specific command has been selected.

Show this dialog in the Runtime Configuration of whether the configuration can be

changed in the Runtime:

 Active: This dialog is opened in the Runtime

before executing the function. The configuration

can thus still be changed in the Runtime before

execution.

 Inactive: The Editor configuration is applied in the

Runtime when executing the function.

Default: inactive

Driver command function

56 | 79

CLOSE DIALOG

Options Description

OK Applies settings and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

AVAILABLE DRIVER COMMANDS

These driver commands are available - depending on the selected driver:

Driver command Description

<No command> No command is sent.

A command that already exists can thus be removed

from a configured function.

Start driver (online mode) Driver is reinitialized and started.

Note: If the driver has already been started, it must be

stopped. Only then can the driver be re-initialized and

started.

Stop driver (offline mode) Driver is stopped. No new data is accepted.

Note: If the driver is in offline mode, all variables that

were created for this driver receive the status switched

off (OFF; Bit 20).

Driver in simulation mode Driver is set into simulation mode.

The values of all variables of the driver are simulated by

the driver. No values from the connected hardware (e.g.

PLC, bus system, ...) are displayed.

Driver in hardware mode Driver is set into hardware mode.

For the variables of the driver the values from the

connected hardware (e.g. PLC, bus system, ...) are

displayed.

Driver-specific command Entry of a driver-specific command. Opens input field in

order to enter a command.

Activate driver write set value Write set value to a driver is possible.

Deactivate driver write set value Write set value to a driver is prohibited.

Establish connection with modem Establish connection (for modem drivers)

Error analysis

57 | 79

Driver command Description

Opens the input fields for the hardware address and for

the telephone number.

Disconnect from modem Terminate connection (for modem drivers)

Driver in counting simulation mode Driver is set into counting simulation mode.

All values are initialized with 0 and incremented in the

set update time by 1 each time up to the maximum

value and then start at 0 again.

Driver in static simulation mode No communication to the controller is established. All

values are initialized with 0.

Driver in programmed simulation

mode

The values are calculated by a freely-programmable

simulation project. The simulation project is created

with the help of the zenon Logic Workbench and runs

in the zenon Logic Runtime.

DRIVER COMMAND FUNCTION IN THE NETWORK

If the computer on which the Driver commands function is executed is part of the zenon network,

further actions are also carried out:

 A special network command is sent from the computer to the project server.

It then executes the desired action on its driver.

 In addition, the Server sends the same driver command to the project standby.

The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby

both have a working and independent connection to the hardware.

10 Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display

them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also

installed with zenon. You can find it under Start/All programs/zenon/Tools 8.10 -> Diagviewer.

main.chm::/12464.htm

Error analysis

58 | 79

zenon driver log all errors in the LOG files.LOG files are text files with a special structure. The default

folder for the LOG files is subfolder LOG in the folder ProgramData. For example:

%ProgramData%\COPA-DATA\LOG.

Attention: With the default settings, a driver only logs error information. With the Diagnosis Viewer

you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the

driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 Follow newly-created entries in real time

 customize the logging settings

 change the folder in which the LOG files are saved

Note:

1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more

columns activate property Add all columns with entry in the context menu of the column

header.

3. If you only use Error-Logging, the problem description is in the column Error text. For other

diagnosis level the description is in the column General text.

4. For communication problems many drivers also log error numbers which the PLC assigns to

them. They are displayed in Error text or Error code or Driver error parameter (1 and 2). Hints on

the meaning of error codes can be found in the driver documentation and the protocol/PLC

description.

5. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and

Deep Debug there are a great deal of data for logging which are saved to the hard drive and

which can influence your system performance. They are still logged even after you close the

Diagnosis Viewer.

 Attention

In Windows CE errors are not logged per default due to performance reasons.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer

(main.chm::/12464.htm) manual.

10.2 Error numbers

Example of a log entry:

Error Read - HW:0 Kennung:132 DB:10 OFF:599 Count:4 Error:wrong length

main.chm::/12464.htm

Error analysis

59 | 79

Error Read

Read error

HW:0

Net address of the PLC (according to driver configuration)

Identification 132

(Internal Siemens ID)

· 129 Input

· 130 Output

· 131 Marker

· 132 Data block

DB:10

Number of the data block as defined in the variable configuration

OFF:599

Offset as defined in variable configuration

Count 4

The block size to be read, usually in bytes. The driver optimizes this size automatically. Attention: Hint:

Size must also be readable from the PLC, i.e. it must exist !! (in the case of Offset 599 and Count 4, the

data block must be configured until Offset 603)

Error:wrong length

Error source - if known

Error analysis

60 | 79

Remote Error Code (e.g.: 0xA) Para1 Para2

Error codes not disclosed by Siemens !

ERROR CODES IN THE API

The following is a list of possible error codes returned by the WSAGetLastError call, along with their

ex-tended explanations. Errors are listed in alphabetical order by error macro. Some error codes defined

in Winsock2.h are not returned from any function-these are not included in this topic.

Error (Code) Meaning Description

WSAEACCES

(10013)

Permission

denied.

An attempt was made to access a socket in a way

forbidden by its access permissions. An example is using

a broadcast address for sendto without broadcast

permission being set using

set-sockopt(SO_BROADCAST).

Another possible reason for the WSAEACCES error is

that when the bind function is called (on Windows NT 4

SP4 or later), another application, service, or kernel

mode driver is bound to the same address with

exclusive access. Such exclusive access is a new feature

of Windows NT 4 SP4 and later, and is imple-mented by

using the SO_EXCLUSIVEADDRUSE option.

WSAEADDRINUSE

(10048)

Address

already in use.

Typically, only one usage of each socket address

(protocol/IP address/port) is permitted. This error

oc-curs if an application attempts to bind a socket to an

IP address/port that has already been used for an

existing socket, or a socket that was not closed properly,

or one that is still in the process of closing. For server

applications that need to bind multiple sockets to the

same port number, consider using

set-sockopt(SO_REUSEADDR). Client applications usually

need not call bind at all-connect chooses an unused

port automatically. When bind is called with a wildcard

address (involving ADDR_ANY), a WSAEADDRINUSE

error could be delayed until the specific address is

committed. This could happen with a call to another

function later, including connect, listen, WSAConnect, or

WSAJoinLeaf.

WSAEADDRNOTAVA

IL
Cannot assign

requested

The requested address is not valid in its context. This

normally results from an attempt to bind to an address

Error analysis

61 | 79

Error (Code) Meaning Description

(10049) address. that is not valid for the local machine. This can also

result from connect, sendto, WSAConnect,

WSAJoinLeaf, or WSASendTo when the remote address

or port is not valid for a remote machine (for example,

address or port 0).

WSAEAFNOSUPPOR

T

(10047)

Address family

not supported

by protocol

family.

An address incompatible with the requested protocol

was used. All sockets are created with an associ-ated

address family (that is, AF_INET for Internet Protocols)

and a generic protocol type (that is, SOCK_STREAM).

This error is returned if an incorrect protocol is explicitly

requested in the socket call, or if an address of the

wrong family is used for a socket, for example, in

sendto.

WSAEALREADY

(10037)

Operation

already in

progress.

An operation was attempted on a nonblocking socket

with an operation already in progress-that is, calling

connect a second time on a nonblocking socket that is

already connecting, or canceling an asynchronous

request (WSAAsyncGetXbyY) that has already been

canceled or completed.

WSAECONNABORTE

D

(10053)

Software

caused

connection

abort.

An established connection was aborted by the software

in your host machine, possibly due to a data

transmission time-out or protocol error.

WSAECONNREFUSE

D

(10061)

Connection

refused.

No connection could be made because the target

machine actively refused it. This usually results from

trying to connect to a service that is inactive on the

foreign host-that is, one with no server application

running.

WSAECONNRESET

(10054)

Connection

reset by peer.

An existing connection was forcibly closed by the

remote host. This normally results if the peer application

on the remote host is suddenly stopped, the host is

rebooted, or the remote host uses a hard close (see

setsockopt for more information on the SO_LINGER

option on the remote socket.) This error may also result

if a connection was broken due to keep-alive activity

detecting a failure while one or more operations are in

progress. Operations that were in progress fail with

WSAENETRESET. Subsequent operations fail with

WSAECONNRESET.

Error analysis

62 | 79

Error (Code) Meaning Description

WSAEDESTADDRREQ

(10039)

Destination

address

required.

A required address was omitted from an operation on a

socket. For example, this error is returned if sendto is

called with the remote address of ADDR_ANY.

WSAEFAULT

(10014)

Bad address. The system detected an invalid pointer address in

attempting to use a pointer argument of a call. This

error occurs if an application passes an invalid pointer

value, or if the length of the buffer is too small. For

instance, if the length of an argument, which is a

SOCKADDR structure, is smaller than the

sizeof(SOCKADDR).

WSAEHOSTDOWN

(10064)

Host is down. A socket operation failed because the destination host is

down. A socket operation encountered a dead host.

Networking activity on the local host has not been

initiated. These conditions are more likely to be

indicated by the error WSAETIMEDOUT.

WSAEHOSTUNREAC

H

(10065)

No route to

host.

A socket operation was attempted to an unreachable

host. See WSAENETUNREACH.

WSAEINPROGRESS

(10036)

Operation now

in progress.

A blocking operation is currently executing. Windows

Sockets only allows a single blocking operation-per-

task or thread-to be outstanding, and if any other

function call is made (whether or not it references that

or any other socket) the function fails with the

WSAEINPROGRESS error.

WSAEINTR

(10004)

Interrupted

function call.

A blocking operation was interrupted by a call to

WSACancelBlockingCall.

WSAEINVAL

(10022)

Invalid

argument.

Some invalid argument was supplied (for example,

specifying an invalid level to the setsockopt function). In

some instances, it also refers to the current state of the

socket-for instance, calling accept on a socket that is not

listening.

WSAEISCONN

(10056)

Socket is

already

connected.

A connect request was made on an already-connected

socket. Some implementations also return this error if

sendto is called on a connected SOCK_DGRAM socket

(for SOCK_STREAM sockets, the to pa-rameter in sendto

is ignored) although other implementations treat this as

a legal occurrence.

Error analysis

63 | 79

Error (Code) Meaning Description

WSAEMFILE

(10024)

Too many

open files.

Too many open sockets. Each implementation may have

a maximum number of socket handles avail-able, either

globally, per process, or per thread.

WSAEMSGSIZE

(10040)

Message too

long.

A message sent on a datagram socket was larger than

the internal message buffer or some other network limit,

or the buffer used to receive a datagram was smaller

than the datagram itself.

WSAENETDOWN

(10050)

Network is

down.

A socket operation encountered a dead network. This

could indicate a serious failure of the network sys-tem

(that is, the protocol stack that the Windows Sockets

DLL runs over), the network interface, or the local

network itself.

WSAENETRESET

(10052)

Network

dropped

connection on

reset.

The connection has been broken due to keep-alive

activity detecting a failure while the operation was in

progress. It can also be returned by setsockopt if an

attempt is made to set SO_KEEPALIVE on a con-nection

that has already failed.

WSAENETUNREACH

(10051)

Network is

unreachable.

A socket operation was attempted to an unreachable

network. This usually means the local software knows no

route to reach the remote host.

WSAENOBUFS

(10055)

No buffer

space

available.

An operation on a socket could not be performed

because the system lacked sufficient buffer space or

because a queue was full.

WSAENOPROTOOPT

(10042)

Bad protocol

option.

An unknown, invalid or unsupported option or level was

specified in a getsockopt or setsockopt call.

WSAENOTCONN

(10057)

Socket is not

connected.

A request to send or receive data was disallowed

because the socket is not connected and (when

send-ing on a datagram socket using sendto) no

address was supplied. Any other type of operation

might also return this error-for example, setsockopt

setting SO_KEEPALIVE if the connection has been reset.

WSAENOTSOCK

(10038)

Socket

operation on

nonsocket.

An operation was attempted on something that is not a

socket. Either the socket handle parameter did not

reference a valid socket, or for select, a member of an

fd_set was not valid.

WSAEOPNOTSUPP Operation not The attempted operation is not supported for the type

Error analysis

64 | 79

Error (Code) Meaning Description

(10045) supported. of object referenced. Usually this occurs when a socket

descriptor to a socket that cannot support this operation

is trying to accept a connection on a datagram socket.

WSAEPFNOSUPPORT

(10046)

Protocol family

not supported.

The protocol family has not been configured into the

system or no implementation for it exists. This mes-sage

has a slightly different meaning from

WSAEAFNOSUPPORT. However, it is interchangeable in

most cases, and all Windows Sockets functions that

return one of these messages also specify

WSAEAFNOSUPPORT.

WSAEPROCLIM

(10067)

Too many

processes.

A Windows Sockets implementation may have a limit on

the number of applications that can use it

simul-taneously. WSAStartup may fail with this error if

the limit has been reached.

WSAEPROTONOSUP

PORT

(10043)

Protocol not

supported.

The requested protocol has not been configured into

the system, or no implementation for it exists. For

example, a socket call requests a SOCK_DGRAM socket,

but specifies a stream protocol.

WSAEPROTOTYPE

(10041)

Protocol

wrong type for

socket.

A protocol was specified in the socket function call that

does not support the semantics of the socket type

requested. For example, the ARPA Internet UDP

protocol cannot be specified with a socket type of

SOCK_STREAM.

WSAESHUTDOWN

(10058)

Cannot send

after socket

shutdown.

A request to send or receive data was disallowed

because the socket had already been shut down in that

direction with a previous shutdown call. By calling

shutdown a partial close of a socket is requested, which

is a signal that sending or receiving, or both have been

discontinued.

WSAESOCKTNOSUP

PORT

(10044)

Socket type

not supported.

The support for the specified socket type does not exist

in this address family. For example, the optional type

SOCK_RAW might be selected in a socket call, and the

implementation does not support SOCK_RAW sockets at

all.

WSAETIMEDOUT

(10060)

Connection

timed out.

A connection attempt failed because the connected

party did not properly respond after a period of time, or

the established connection failed because the

Error analysis

65 | 79

Error (Code) Meaning Description

connected host has failed to respond.

WSATYPE_NOT_FOU

ND

(10109)

Class type not

found.

The specified class was not found.

WSAEWOULDBLOCK

(10035)

Resource

temporarily

unavailable.

This error is returned from operations on nonblocking

sockets that cannot be completed immediately, for

example recv when no data is queued to be read from

the socket. It is a nonfatal error, and the operation

should be retried later. It is normal for

WSAEWOULDBLOCK to be reported as the result from

calling connect on a nonblocking SOCK_STREAM socket,

since some time must elapse for the connection to be

established.

WSAHOST_NOT_FOU

ND

(11001)

Host not

found.

No such host is known. The name is not an official host

name or alias, or it cannot be found in the data-base(s)

being queried. This error may also be returned for

protocol and service queries, and means that the

specified name could not be found in the relevant

database.

WSA_INVALID_HAN

DLE

(OS dependent)

Specified event

object handle

is invalid.

An application attempts to use an event object, but the

specified handle is not valid.

WSA_INVALID_PARA

METER

(OS dependent)

One or more

parameters are

invalid.

An application used a Windows Sockets function which

directly maps to a Win32 function. The Win32 function is

indicating a problem with one or more parameters.

WSAINVALIDPROCT

ABLE

(OS dependent)

Invalid

procedure

table from

service

provider.

A service provider returned a bogus procedure table to

Ws2_32.dll. (Usually caused by one or more of the

function pointers being null.)

WSAINVALIDPROVID

ER

(OS dependent)

Invalid service

provider

version

number.

A service provider returned a version number other

than 2.0.

WSA_IO_INCOMPLET

E
Overlapped

I/O event

object not in

The application has tried to determine the status of an

overlapped operation which is not yet completed.

Applications that use WSAGetOverlappedResult (with

Error analysis

66 | 79

Error (Code) Meaning Description

(OS dependent) signaled state. the fWait flag set to FALSE) in a polling mode to

determine when an overlapped operation has

completed, get this error code until the operation is

com-plete.

WSA_IO_PENDING

(OS dependent)

Overlapped

operations will

complete later.

The application has initiated an overlapped operation

that cannot be completed immediately. A comple-tion

indication will be given later when the operation has

been completed.

WSA_NOT_ENOUGH_

MEMORY

(OS dependent)

Insufficient

memory

available.

An application used a Windows Sockets function that

directly maps to a Win32 function. The Win32 func-tion

is indicating a lack of required memory resources.

WSANOTINITIALISED

(10093)

Successful

WSAStartup

not yet

performed.

Either the application has not called WSAStartup or

WSAStartup failed. The application may be access-ing a

socket that the current active task does not own (that is,

trying to share a socket between tasks), or WSACleanup

has been called too many times.

WSANO_DATA

(11004)

Valid name, no

data record of

requested

type.

The requested name is valid and was found in the

database, but it does not have the correct associated

data being resolved for. The usual example for this is a

host name-to-address translation attempt (using

gethostbyname or WSAAsyncGetHostByName) which

uses the DNS (Domain Name Server). An MX record is

returned but no A record-indicating the host itself exists,

but is not directly reachable.

WSANO_RECOVERY

(11003)

This is a

nonrecoverabl

e error.

This indicates some sort of nonrecoverable error

occurred during a database lookup. This may be

be-cause the database files (for example,

BSD-compatible HOSTS, SERVICES, or PROTOCOLS

files) could not be found, or a DNS request was

returned by the server with a severe error.

WSAPROVIDERFAILE

DINIT

(OS dependent)

Unable to

initialize a

service

provider.

Either a service provider's DLL could not be loaded

(LoadLibrary failed) or the provider's

WSPStartup/NSPStartup function failed.

WSASYSCALLFAILUR

E
System call

failure.

Returned when a system call that should never fail does.

For example, if a call to WaitForMultipleObjects fails or

Error analysis

67 | 79

Error (Code) Meaning Description

(OS dependent) one of the registry functions fails trying to manipulate

the protocol/name space catalogs.

WSASYSNOTREADY

(10091)

Network

subsystem is

unavailable.

This error is returned by WSAStartup if the Windows

Sockets implementation cannot function at this time

because the underlying system it uses to provide

network services is currently unavailable. Users should

check:

That the appropriate Windows Sockets DLL file is in the

current path.

That they are not trying to use more than one Windows

Sockets implementation simultaneously. If there is more

than one Winsock DLL on your system, be sure the first

one in the path is appropriate for the network

subsystem currently loaded.

The Windows Sockets implementation documentation

to be sure all necessary components are currently

installed and configured correctly.

WSATRY_AGAIN

(11002)

Nonauthoritati

ve host not

found.

This is usually a temporary error during host name

resolution and means that the local server did not

receive a response from an authoritative server. A retry

at some time later may be successful.

WSAVERNOTSUPPO

RTED

(10092)

Winsock.dll

version out of

range.

The current Windows Sockets implementation does not

support the Windows Sockets specification ver-sion

requested by the application. Check that no old

Windows Sockets DLL files are being accessed.

WSAEDISCON

(10101)

Graceful

shutdown in

progress.

Returned by WSARecv and WSARecvFrom to indicate

that the remote party has initiated a graceful shut-down

sequence.

WSA_OPERATION_A

BORTED

(OS dependent)

Overlapped

operation

aborted.

An overlapped operation was canceled due to the

closure of the socket, or the execution of the SIO_FLUSH

command in WSAIoctl.

Error analysis

68 | 79

10.3 Check list

Problem Diagnostics Reason

Values can be read

or written by the

controller.

The controller can be

contacted by 'pinging'?

 The controller is not connected to the

power supply or the network.

 The PC is not connected to the

network.

 The controller is connected but is in a

different subnetwork and the network

gateway is not entered in the

controller or the subnetmask is not

set correctly.

 Is the firewall activated? Port 102 is

used for communication; add it to the

exceptions.

 The controller can be

contacted by 'pinging'?

 Have the communication parameters

been set correctly?

- Remote TSAP for example 02.02 if the S7

CPU is in the second slot.

or 02.01 in the first slot, such as with 1200

and 1500 series controllers.

 The network address in the

addressing of the variable does not

correspond to the network address of

the connection in the driver.

 The driver configuration file was not

transferred to the target computer.

Certain values

cannot be read or

written by the

controller.

Has an analysis with the

Diagnosis Viewer been carried

out to see which errors have

occurred?

See Analysis tool (on page 57)

chapter.

 See the following chapter: Error

numbers (on page 58)

 Are the used datablocks defined

correctly in the PLC?

 Are the variables correctly

addressed?

 Is the 'Write outputs' checkbox set? (if

outputs are to be written to the

output terminals)

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

69 | 79

Problem Diagnostics Reason

Incorrect values

are displayed.

Has an analysis with the

Diagnosis Viewer been carried

out to see which errors have

occurred?

See Analysis tool (on page 57)

chapter.

 Are the variables correctly

addressed?

 Are the correct data types used?

 Is the value calculation correct?

11 Example: spontaneous communication ALARM_S,

ALARM_8 and ALARM_8P

In this example, you find out how you can use spontaneous communication with ALARM_S, ALARM_8

and ALARM-8P.

ALARM_8 AND ALARM_8P

In the driver configuration, it is possible to activate ALARM_S messages and ALARM_8 message for each

connection. The ALARM_8 messages and the associated values are to be configured in the same way as

ALARM_S. Except that, in addition, the index of the message on the ALARM_8 block is to be given in the

database, because 8 bit messages are transferred per message number with ALARM_8. The 10

associated values are packed and processed consecutively as Dump. The maximum size of all associated

values together per message is set at 32 bytes. With ALARM_8 messages, the initial Stack that is read

after the connection has been established has, in contrast to ALARM_S, neither associated values nor a

time stamp.

GENERAL INFORMATION ON ALARM_S

Variable object types:

 ALARM_S associated value

Variables of the type ALARM_S associated value contain the associated values received with a

message, if they exist. Also here the offset contains the S7 message number. The addressing of

the associated value in the associated value record is realized via the bit number. If e.g. 3

associated values of the type Byte are received, the first one has bit number 0, the second bit

number 8 and the third bit number 16. If it is 3 words, the bit numbers are 0, 16 and 32.

 Message ALARM_S

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

70 | 79

With the datatype ALARM_S bit, spontaneous realtime-stamped alarm messages of the S7 can

be received, e.g. from PDiag. This variable only has a value, when the S7 sends an ALARM_S

telegram. No initial image or similar thing is read. The offset here is the S7 message number. A

variable of type ALARM_S message doubleword always contains the last received message

number. The offset is not used here and has to be 0.

11.1 Configuration of driver and variables for Alarm_8 messages

For the receipt of Alarm_8 messages, the following parameters must be set in the TCP/IP connection tab

in the ALARM_x options section:

Note: This dialog is only available in English.

The driver thus sends the initialization for the receipt of ALARM_8.

VALIDATE CONFIGURATION

You can check to see that messages are received using an information variable:

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

71 | 79

1. Create a new variable with the Alarm-S Message object type.

2. Enter the following address settings:

In the Runtime, you then get the last-received ALARM_S message number in this variable.

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

72 | 79

ALARM_8 MESSAGE

The message numbers are important for the actual messages.

The message itself is configured as an Alarm-S Message BOOL variable. You enter the message number

in the addressing in the Offset property:

For Alarm_8 messages, the index of the message must also be entered in the Data block property. This

corresponds to the index of the Alarm_8 module input to which the message is generated (0 -7).

ALARM_8P ASSOCIATED VALUE

Associated values can be evaluated for each alarm message. These are offered in the driver as a

separate object type. Assignment is as for the message via the address parameters:

Properties to be configured:

 Offset: Message number from the S7 project configuration.

 Data block: Index of the signal from the ALARM_8P block.

 Bit number: Start address (in bits) of the ALARM_8P associated value.

Offers a maximum of 10 associated values, depending on the data types used.

Maximum: 32 bytes = maximum 255 bits

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

73 | 79

11.2 Example project

The following hardware is used for this example:

 PLC: S7_412 CPU using Firmware V 3.1.3

 Communication processor: CP 434

 PC: HP EliteBook 8560w (Core i7) with Windows 8

STEP 7 PROJECT

The Step 7 project contains the following calls for Alarm_8- and Alarm_8P-generation in OB1. The

program-defined method was selected for issuing the Event ID.

ALARM_8

ALARM_8P

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

74 | 79

THE USER INTERFACE OF THE ZENON TEST PROJECT:

Key:

1. The trigger variables are set as PLC markers from zenon.

2. The Alarm_8 messages are created as an Alarm-S message in zenon.

In this example, the Alarm-8 block has the message number 1 (see also the following in S7

code: EV_ID:=DW#16#1).

3. The ALARM_8P messages are created in a similar way to the Alarm_8 messages (Item 2).

In this example, the Alarm-8P block has the message number 2 (see also the following in the S7

code: EV_ID:=DW#16#1).

4. The associated values are set from zenon using the PLC marker (MD420..MD456).

5. The associated values for ALARM_8P messages are created as Alarm-S Attribute in zenon. The

offset is configured using the Bit address setting. Whereby the first associated value starts at bit

0, the second (because it is a double word) starts at bit 32 and the third starts at bit 64.

Attention: Total length of the associated value DUMP is 32 BYTES.

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

75 | 79

11.3 Triggering an ALARM_8 message

In our example, the marker M401.0 triggers the ALARM_8 message:

View in the Alarm Message List:

To demonstrate the time stamp, a different time was set on the PLC. The Alarm8Trigger1 variable is a

PLC marker that triggers the Alarm-8 messageSignal1.

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

76 | 79

11.4 Triggering an ALARM_8P message

In our example, the marker M411.0 triggers the ALARM_8P message:

The associated value of the Alarm-8P block is sent with the message and displayed using the associated

variables (attributes).

The associated value is inserted in the alarm text as dynamic limit value text.

To do this, the following text is entered in the Limit value text property:

$Alarm8PSig1with Attribute: ;%ALARM_8P_Attribute1;

Meaning of the control characters:

 $: Notice that a dynamic limit value text will follow.

 ;: Separates the individual instructions.

 %: Key symbol to reference a variable whose value is to be inserted.

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

77 | 79

Display in the Alarm Message List

The associated value is also displayed in the alarm text.

11.5 Configuration details of the example

This example is based on the following project configuration details for ALARM_8 and ALARM_8P

messages and associated values for for Offset, Data block and Bit number:

ALARM-8 MESSAGES

 ALARM8_Sig1:

 Offset: 1 (=message number from S7)

 Data block: 0 (=index of the signal on the ALARM_8 block)

 ALARM8_Sig2:

 Offset: 1 (=message number from S7)

 Data block: 1 (=index of the signal on the ALARM_8 block)

 ALARM8_Sig3:

 Offset: 1 (=message number from S7)

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

78 | 79

 Data block: 2 (=index of the signal on the ALARM_8 Block)

ALARM-8P MESSAGE

 ALARM8P_Sig1:

 Offset: 2 (=message number from S7)

 Data block: 0 (=index of the signal on the ALARM_8P block)

 ALARM8_Sig2:

 Offset: 2 (=message number from S7)

 Data block: 1 (=index of the signal on the ALARM_8P block)

 ALARM8_Sig3:

 Offset: 2 (=message number from S7)

 Data block: 2 (=index of the signal on the ALARM_8P Block)

ALARM-8P ASSOCIATED VALUE

 ALARM8P_Attribute1:

 Offset: 2 (=message number from S7)

Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P

79 | 79

 Data block: 0 (=index of the signal on the ALARM_8P block)

 Bit number: 0 (bit addressing from the 32-byte Dump)

 ALARM8_Attribute2:

 Offset: 2 (=message number from S7)

 Data block: 1 (=index of the signal on the ALARM_8P block)

 Bit number: 32 (bit addressing from the 32-byte Dump)

 ALARM8_Attribute3:

 Offset: 2 (=message number from S7)

 Data block: 2 (=index of the signal on the ALARM_8P Block)

 Bit number: 64 (bit addressing from the 32-byte Dump)

	1 Welcome to COPA-DATA help
	2 S7TCP32
	3 S7TCP32 - data sheet
	4 Driver history
	5 Requirements
	5.1 PC
	5.2 PLC

	6 Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 S7-TCP
	6.2.3 Connection TCP/IP
	6.2.3.1 Validation of connection configuration
	6.2.3.2 Configuration of Helmholz NETLinkPRO adapter

	7 Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export

	7.5 Communication details (Driver variables)

	8 Driver-specific functions
	8.1 Configuration file

	9 Driver command function
	10 Error analysis
	10.1 Analysis tool
	10.2 Error numbers
	10.3 Check list

	11 Example: spontaneous communication ALARM_S, ALARM_8 and ALARM_8P
	11.1 Configuration of driver and variables for Alarm_8 messages
	11.2 Example project
	11.3 Triggering an ALARM_8 message
	11.4 Triggering an ALARM_8P message
	11.5 Configuration details of the example

