

zenon driver manual

MODRTU32

v.8.10

© 2019 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely with

the written permission of the company COPA-DATA. Technical data is only used for product description

and are not guaranteed qualities in the legal sense. Subject to change, technical or otherwise.

Contents

1 Welcome to COPA-DATA help .. 5

2 MODRTU32 .. 5

3 MODRTU32 - data sheet .. 6

4 Driver history ... 7

5 Requirements .. 8

5.1 PC ... 8

6 Configuration .. 8

6.1 Creating a driver ... 9

6.2 Settings in the driver dialog ... 12

6.2.1 General .. 13

6.2.2 Com .. 17

6.2.3 Settings ... 19

6.2.4 Connection TCP/IP ... 24

7 Creating variables ... 27

7.1 Creating variables in the Editor ... 27

7.2 Addressing .. 31

7.3 Driver objects and datatypes ... 32

7.3.1 Driver objects ... 32

7.3.2 Mapping of the data types ... 36

7.4 Creating variables by importing ... 37

7.4.1 XML import ... 37

7.4.2 DBF Import/Export ... 38

7.5 Communication details (Driver variables) ... 44

8 Driver-specific functions... 50

9 Driver command function .. 50

10 Error analysis ... 55

10.1 Analysis tool ... 55

10.2 Error numbers .. 56

10.3 Check list ... 57

Welcome to COPA-DATA help

5 | 58

1 Welcome to COPA-DATA help

ZENON VIDEO-TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an

initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our Support Team, who you can

contact via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com.

2 MODRTU32

The MODRTU32 driver is a Modbus Master. (Process Gateway is available for Modbus slave).

The following protocols are not supported by the driver:

 Modbus ASCII

for serial connections

 Modbus RTU

for serial and TCP/IP connections

https://www.copadata.com/tutorial_menu

MODRTU32 - data sheet

6 | 58

 Open Modbus TCP

for TCP/IP connections.

3 MODRTU32 - data sheet

General:

Driver file name MODRTU32.exe

Driver name Modbus RTU und Open Modbus TCP

PLC types All controllers that support Modbus RTU, Open Modbus TCP or

Modbus ASCII (serial)

PLC manufacturer ABB; Gantner; GE Automation&Controls; Modbus RTU; Mondial;

Schiele; Telemecanique; Schneider; Wago; SE Elektronic; Areva;

GE Multilin; CIMON

Driver supports:

Protocol Modbus RTU - serial; Open Modbus TCP; Modbus RTU over

TCP; Modbus ASCII - serial

Addressing: Address-based Address based

Addressing: Name-based --

Spontaneous

communication

--

Polling communication X

Online browsing --

Offline browsing --

Real-time capable --

Blockwrite X

Modem capable --

RDA numerical X

RDA String --

Hysteresis X

Driver history

7 | 58

Driver supports:

extended API X

Supports status bit

WR-SUC

X

alternative IP address --

Requirements:

Hardware PC RS 232 interface or standard network card

Software PC --

Hardware PLC --

Software PLC --

Requires v-dll X

Platforms:

Operating systems Windows 10; Windows 7; Windows 8; Windows 8.1; Windows

Server 2008 R2; Windows Server 2012; Windows Server 2012 R2;

Windows Server 2016

4 Driver history

Date Driver version Change

07.07.08 4400 Created driver documentation

DRIVER VERSIONING

The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of

this version. This is the number in the 4th position of the file version,

For example: 7.10.0.4228 means: The driver is for version 7.10 service pack 0, and has the build number

4228.

Requirements

8 | 58

Expansions or error rectifications will be incorporated into a build in the future and are then available

from the next consecutive build number.

 Example

A driver extension was implemented in build 4228. The driver that you are using

is build number 8322. Because the build number of your driver is higher than

the build number of the extension, the extension is included. The version

number of the driver (the first three digits of the file version) do not have any

significance in relation to this. The drivers are version-agnostic

5 Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 PC

In order to establish a serial connection to the PLC, a serial COM port is required at the computer. The

port must not be used and therefore blocked by other software (e.g. modem drivers, PLC software, ...)

during Runtime.

This driver supports a connection via the standard network card of the PC. Make sure that the PLC and

the PC are in the same network range and that the subnet masks are set accordingly on both devices.

6 Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables

(main.chm::/15247.htm) of the online manual.

main.chm::/15247.htm

Configuration

9 | 58

6.1 Creating a driver

In the Create driver dialog, you create a list of the new drivers that you want to create.

Parameter Description

Available drivers List of all available drivers.

The display is in a tree structure:

[+] expands the folder structure and shows the

drivers contained therein.

[-] reduces the folder structure

Default: no selection

Driver name Unique Identification of the driver.

Default: Empty

The input field is pre-filled with the pre-defined

Identification after selecting a driver from the list

of available drivers.

Driver information Further information on the selected driver.

Default: Empty

The information on the selected driver is shown in

this area after selecting a driver.

Configuration

10 | 58

CLOSE DIALOG

Option Description

OK Accepts all settings and opens the driver configuration

dialog of the selected driver.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

 Information

The content of this dialog is saved in the file called Treiber_[Language].xml. You

can find this file in the following folder:

C:\ProgramData\COPA-DATA\zenon[version number].

CREATE NEW DRIVER

In order to create a new driver:

1. Right-click on Driver in the Project Manager and select New driver in the context menu.

Optional: Select the New driver button from the toolbar of the detail view of the Variables.

The Create driver dialog is opened.

Configuration

11 | 58

2. The dialog offers a list of all available drivers.

3. Select the desired driver and name it in the Driver name input field.

This input field corresponds to the Identification property. The name of the selected driver is

automatically inserted into this input field by default.

The following is applicable for the Driver name:

 The Driver name must be unique.

If a driver is used more than once in a project, a new name has to be given each time.

This is evaluated by clicking on the OK button. If the driver is already present in the project,

this is shown with a warning dialog.

 The Driver name is part of the file name.

Therefore it may only contain characters which are supported by the operating system.

Invalid characters are replaced by an underscore (_).

 Attention: This name cannot be changed later on.

4. Confirm the dialog by clicking on the OK button.

The configuration dialog for the selected driver is opened.

Note: The language of driver names cannot be switched. They are always shown in the language in

which they have been created, regardless of the language of the Editor. This also applies to driver object

types.

Configuration

12 | 58

DRIVER NAME DIALOG ALREADY EXISTS

If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by

clicking on the OK button. The driver can be named correctly.

ZENON PROJECT

The following drivers are created automatically for newly-created projects:

 Intern

 MathDr32

 SysDrv

 Information

Only the required drivers need to be present in a zenon project. Drivers can be

added at a later time if required.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

Configuration

13 | 58

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog later

for editing, double click on the driver in the list or click on the Configuration property.

Option Description

Mode Allows to switch between hardware mode and simulation

mode

 Hardware:

A connection to the control is established.

 Simulation - static:

No communication between to the control is

established, the values are simulated by the driver.

In this modus the values remain constant or the

variables keep the values which were set by zenon

Logic. Each variable has its own memory area. E.g.

two variables of the type marker with offset 79 can

have different values in the Runtime and do not

influence each other. Exception: The simulator

driver.

 Simulation - counting:

No communication between to the control is

established, the values are simulated by the driver.

In this modus the driver increments the values

Configuration

14 | 58

Option Description

within a value range automatically.

 Simulation - programmed:

No communication is established to the PLC. The

values are calculated by a freely programmable

simulation project. The simulation project is created

with the help of the zenon Logic Workbench and

runs in a zenon Logic Runtime which is integrated

in the driver.

For details see chapter Driver simulation

(main.chm::/25206.htm).

Keep update list in the memory Variables which were requested once are still requested

from the control even if they are currently not needed.

This has the advantage that e.g. multiple screen switches

after the screen was opened for the first time are

executed faster because the variables need not be

requested again. The disadvantage is a higher load for the

communication to the control.

Output can be written  Active:

Outputs can be written.

 Inactive:

Writing of outputs is prevented.

Note: Not available for every driver.

Variable image remanent This option saves and restores the current value, time

stamp and the states of a data point.

Fundamental requirement: The variable must have a valid

value and time stamp.

The variable image is saved in hardware mode if one of

these statuses is active:

 User status M1 (0) to M8 (7)

 REVISION(9)

 AUS(20)

 ERSATZWERT(27)

The variable image is always saved if:

 the variable is of the object type Driver variable

 the driver runs in simulation mode. (not

main.chm::/25206.htm

Configuration

15 | 58

Option Description

programmed simulation)

The following states are not restored at the start of the

Runtime:

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is

not a criterion in order to restore the remanent variable

image.

Stop on Standby Server Setting for redundancy at drivers which allow only one

communication connection. For this the driver is stopped

at the Standby Server and only started at the upgrade.

Attention: If this option is active, the gapless archiving is

no longer guaranteed.

 Active:

Sets the driver at the not-process-leading Server

automatically in a stop-like state. In contrast to

stopping via driver command, the variable does

not receive status switched off

(statusverarbeitung.chm::/24150.htm) but an empty

value. This prevents that at the upgrade to the

Server irrelevant values are created in the AML, CEL

and Historian.

Default: inactive

Note: Not available if the CE terminal serves as a data

server. You can find further information in the zenon

Operator manual in the CE terminal as a data server

chapter.

Global Update time Setting for the global update times in milliseconds:

 Active:

The set Global update time is used for all

variables in the project. The priority set at the

variables is not used.

 Inactive:

The set priorities are used for the individual

variables.

statusverarbeitung.chm::/24150.htm

Configuration

16 | 58

Option Description

Exceptions: Spontaneous drivers ignore this option.

They generally use the shortest possible update time.

For details, see the Spontaneous driver update time

section.

Priority The polling times for the individual priority classes are set

here. All variables with the according priority are polled in

the set time.

The variables are allocated separately in the settings of

the variable properties.

The communication of the individual variables can be

graded according to importance or required topicality

using the priority classes. Thus the communication load is

distributed better.

Attention: Priority classes are not supported by each

driver, e.g. spontaneously communicating zenon drivers.

CLOSE DIALOG

Option Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR SPONTANEOUS DRIVERS

With spontaneous drivers, for Set value, advising of variables and Requests, a read cycle is triggered

immediately - regardless of the set update time. This ensures that the value is immediately available for

visualization after writing. The update time is generally 100 ms.

Spontaneous drivers are ArchDrv, BiffiDCM, BrTcp32, DNP3, Esser32, FipDrv32, FpcDrv32, IEC850,

IEC870, IEC870_103, Otis, RTK9000, S7DCOS, SAIA_Slave, STRATON32 and Trend32.

Configuration

17 | 58

6.2.2 Com

In this dialog, you configure the connection parameters for the serial communication to the PLC.

Parameter Description

Com Selection of the serial interface (com port) on the computer.

Select from drop-down list:

COM 1 to COM 256

Default: 1

Baud rate Selection of the Baud rate for the communication to the PLC.

The Baud rate must be amended to the PLC.

Selection from drop-down list:

110 to 1152000

Default: 9600

Data bit Number of data bits (data word length in bits) for

communication to the PLC.

The data bit rate must be amended to the controller.

Select from drop-down list:

5, 6, 7, 8

Default: 8

Stop bit Selection of the stop bit for communication to the PLC.

The stop bit must be amended to the controller.

Select from drop-down list:

Configuration

18 | 58

Parameter Description

 1

 1.5

 2

Default: 1

Parity Selection of the parity for the communication to the PLC.

The parity must be amended to the controller. Amend to PLC.

Select from drop-down list:

 No

 Odd

 Even

Default: No

Protocol Selection of the protocol for communication to the PLC.

The protocol must be amended to the controller.

Select from drop-down list:

 No

 Rts/CTS

Default: No

CLOSE DIALOG

OK Applies all changes in all tabs and closes the dialog.

Only available if no connection is in the edit state.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

Configuration

19 | 58

6.2.3 Settings

CONNECTION

Parameter Description

Connection Definition of which connection is used.

Seriell For serial mode, both Modbus RTU and Modbus ASCII can

be selected.

ASCII  Active:

The driver communicates using the Modbus ASCII

protocol.

Inactive:

The driver communicates using Modbus RTU.

TCP/IP Requires a configuration file. This file stores the TCP/IP settings.

RTU Frame Active: Serial information is transferred to the TCP protocol

exactly.

Configuration

20 | 58

GENERAL

Parameter Description

General General settings.

TCP configuration file The name of the TCP configuration file is defined here.

Default: MODRTU32_[Treiberbezeichnung].txt

Maximum block size Maximum block size of a data telegram in WORDs.

Attention zenon before 5.50 SP6: Block size must be less

than 64. (1-125, Default 32)

RTS Handshake Some PLCs need the RTS handshake for

correct communication.

Offset 1 The "Offset 1" affects the addressing of all variables.

Active: The driver subtracts 1 when the variable addresses (coils,

register) are sent and adds 1 when they are received.

Skip non-existent tabs The driver reads data in a block. If there is no data between two

address areas close to each other, the driver will still try to access

these non-existent areas. This option will avoid that.

BYTE SEQUENCE FOR DWORD

Parameter Description

Byte sequence for DWORD Defines the sequence of lower-value and higher-value words for

double word objects (DINT/UDINT). You can choose between

Motorola (Big-Endian) and Intel (Little-Endian).

Motorola Format (Big-Endian) Active: DWORD ordering in accordance with Motorola format.

Intel Format (Little-Endian) Active: DWORD ordering in accordance with Intel format.

Note: The sequence of the sorting of low and high values for bytes within a WORD always corresponds

to the Motorola format.

BYTE SEQUENCE FOR FLOAT

Parameter Description

Byte sequence for FLOAT Defines the sequence of lower-value and higher-value words for

FLOAT objects (REAL). You can choose between Modbus

Standard (Big-Endian) and HB-Controller (Little-Endian).

Configuration

21 | 58

Parameter Description

Modbus Standard

(Big-Endian)

Active: Float ordering in accordance with Modbus standard.

HB Controller Float

(Little-Endian)

Active: Float ordering in accordance with HB PLC.

Note: The sequence of the sorting of low and high values for bytes within a WORD always corresponds

to the Motorola format.

BYTE SEQUENCE FOR STRING

Parameter Description

Byte sequence for STRING Defines display of the byte sequence.

Note: If there is relevant information in the documentation of a

PLC the following is usually applicable: MSB-first = Motorola =

Big-Endian = Modbus. And: Intel = Little-Endian = PC. This can

be handled differently in some documentation however.

Modbus Standard

(Big-Endian)

Active: Display in accordance with Modbus standard with

switched characters.

PC Format (Little-Endian) Active: Display in PC format with ascending sequence.

ERROR HANDLING

Parameter Description

Error handling

Connection timeout Time in milliseconds to wait for a response from the slave. A

communication error will be displayed if there is no response

within this time.

Only available with serial connection.

Note: The communication timeout time must at any rate be

higher than the maximum response time of the Modbus RTU

Slave. Otherwise misinterpretation of the responses can occur.

Default: 3000 ms

Retries on error Number of send repetitions when there is no answer from the

slave after the set communication timeout.

1: a connection attempt, no repetitions

Configuration

22 | 58

Parameter Description

0: constant repetition

Default: 6

Delay after connection

termination

Time in milliseconds to wait after a communication error has

occured before trying to re-establish the connection.

Default: 20000 ms

Send delay Time delay in milliseconds for "send" orders. Affects the whole

driver.

Can only be selected with a serial connection.

CLOSE DIALOG

OK Applies all changes in all tabs and closes the dialog.

Only available if no connection is in the edit state.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

TIME OUT BEHAVIOR

With TCP connections, the communication time out is predefined by the system-dependent property

Timeout [s].

After the timeout has expired, the driver attempts - with default settings - to send the request again up

to 5 times. If these 5 trials are not successful, no additional attempt to establish a connection is made

during the Reconnect timeout.

Configuration

23 | 58

With serial connection the times from the driver configuration are used for the time out behavior. The

sent delay time must pass before a request is sent. After a request has been sent, the time period which

is waited for an answer is as long as the connection timeout. If there is no answer in this time period, the

request is sent again up to 5 times. (a default of 6 means 5 additional attempts). After that no new

connection establishment is tried for the set reconnect time out. See also the following graphic.

Configuration

24 | 58

6.2.4 Connection TCP/IP

Parameter Description

Connection file Name of the file in which the settings for each of the TCP/IP

participants are saved.

Display only. Changes to the file name are made in the

Settings (on page 19) tab.

CONNECTION LIST

Settings of the connections.

Parameter Description

Connection list List of defined connections to PLCs.

 Connection name

Connection name, as configured in the connection

name.

 Net:

Net address of the connection, as configured in the Net

address property.

New Creates a new connection and unlocks the input fields in the

Connection parameters area.

Configuration

25 | 58

Parameter Description

Edit Unlocks the input fields in the Connection parameters area

for a selected connection.

Not active if no connection is selected in the connection list.

Delete Deletes a selected connection from the connection list.

Attention: The connection is deleted without requesting

confirmation.

Not active if no connection is selected in the connection list.

CONNECTION PARAMETERS

You configure the settings of a connection in this area.

The entry is validated. A corresponding warning dialog is shown in the event of an error.

Parameter Description

Net address Each connection is assigned a network address. This must

correspond to the settings in the Net address property of the

variable definition.

Default:1

Attention: The value 0 is reserved for broadcasts. The value

255 is reserved for the gateway.

Note: For MODBUS TCP communication via a gateway

(TCP/IP on RS485) the address of the destination station (the

Modbus unit ID or slave address) must be used.

With a direct MODBUS TCP connection, the Unit ID address

filed is ignored by some devices, because the TCP/IP address

of the PLC is sufficient in principle. In this case, any desired

value can be set.

Connection name Name of the connection as it is displayed in the connection list.

Default:Defaultname

Remote IP address Active: The PLC is addressed using the IP address. Entry in the

Address input field.

Remote hostname Active: The PLC is addressed using the host name. Entry in the

Address input field.

Configuration

26 | 58

Parameter Description

Entry of the address Entry of the address of the PLC. Depending on the settings of

the higher-level option field, input is as follows:

 IP address

Default: 192.168.0.1

 Host name

Default: localhost

Remote port Entry of the port address of the PLC. You can find details in the

manual of your PLC.

Standard port: 502

Ping Sends a ping to the IP address that is configured for this

connection. Allows the connection to the device to b tested. If

the ping is concluded negatively, check the IP address and

check to see if the device is online.

Save Accepts all changes for edited connection and closes editing

option.

Cancel Discards all changes for edited connection and closes editing

option.

CLOSE DIALOG

OK Applies all changes in all tabs and closes the dialog.

Only available if no connection is in the edit state.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

CREATE NEW CONNECTION

1. Click on the New button.

2. Enter the connection details.

3. Click on Save.

EDIT CONNECTION

1. Select the connection in the connection list.

Creating variables

27 | 58

2. Click on the Edit button

3. Change the connection parameters.

4. Finish with Save.

DELETE CONNECTION

1. Select the connection in the connection list.

2. Click on the button Delete.

3. The connection will be removed from the list

7 Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays (main.chm::/15262.htm)

 as structure variables (main.chm::/15278.htm)

VARIABLE DIALOG

To create a new variable, regardless of which type:

main.chm::/15262.htm
main.chm::/15278.htm

Creating variables

28 | 58

1. Select the New variable command in the Variables node in the context menu

The dialog for configuring variables is opened

2. Configure the variable

3. The settings that are possible depends on the type of variables

Creating variables

29 | 58

CREATE VARIABLE DIALOG

Property Description

Name Distinct name of the variable. If a variable with the same name

already exists in the project, no additional variable can be created

with this name.

Maximum length: 128 characters

Attention: the characters # and @ are not permitted in variable

names. If non-permitted characters are used, creation of variables

cannot be completed and the Finish button remains inactive.

Note: For some drivers, the addressing is possible over the

property Symbolic address, as well.

Drivers Select the desired driver from the drop-down list.

Note: If no driver has been opened in the project, the driver for

internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm))

is automatically loaded.

Driver Object Type

(cti.chm::/28685.htm)

Select the appropriate driver object type from the drop-down list.

Data Type Select the desired data type. Click on the ... button to open the

main.chm::/Intern.chm::/Intern.htm
cti.chm::/28685.htm

Creating variables

30 | 58

Property Description

selection dialog.

Array settings Expanded settings for array variables. You can find details in the

Arrays chapter.

Addressing options Expanded settings for arrays and structure variables. You can find

details in the respective section.

Automatic addressing Expanded settings for arrays and structure variables. You can find

details in the respective section.

SYMBOLIC ADDRESS

The Symbolic address property can be used for addressing as an alternative to the Name or

Identification of the variables. Selection is made in the driver dialog; configuration is carried out in the

variable property. When importing variables of supported drivers, the property is entered automatically.

Maximum length: 1024 characters.

The following drivers support the Symbolic address:

 3S_V3

 AzureDrv

 BACnetNG

 IEC850

 KabaDPServer

 OPCUA32

 Phoenix32

 POZYTON

 RemoteRT

 S7TIA

 SEL

 SnmpNg32

 PA_Drv

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

Creating variables

31 | 58

Note for signal range: If a change is made to a data type that does not support the set signal

range, the signal range is amended automatically. For example, for a change from INT to SINT, the

signal range is changed to 127. The amendment is also carried out if the signal range was not

inherited from the data type. In this case, the measuring range must be adapted manually.

7.2 Addressing

Property Description

Name Freely definable name.

Attention: For every zenon project the name must be unambiguous.

Identification Freely definable identification.

E.g. for Resources label, comments, ...

Net address Bus address (Slaveaddress) or net address of the variable.

This address relates to serial communication to the Modbus address of the

PLC - the address of the recipient.

For communication via Ethernet the net address relates to the connection

configuration in the driver as well as to the Modbus Unit ID. This defines the

PLC/connection on which the variable resides.

If a gateway (e.g. TCP/IP on RS485) is used for communicating with the

Modbus stations, you have to create a separate TCP/IP connection for each

Modbus station. Use the address of the gateway as the IP address. The

address of the Modbus station - Modbus Unit ID - is used for the net address

of the connection and in the variables.

The highest possible Modbus address, according to the protocol specification,

is 247.

The address 0 is used for Broadcast Messages (write only).

Data block not used for this driver

Offset Offset of variables. Equal to the memory address of the variable in the PLC.

Adjustable from 0 to 4294967295.

Alignment The driver uses word-based addressing (16 bit). If only one Byte is read, you

can configure here whether the HiByte or the LowByte will be addressed.

Bit number Number of the bit within the configured offset.

Possible entries: 0 to 65535.

Working range [0-15]

String length Only available for String variables.

Creating variables

32 | 58

Property Description

Maximum number of characters that the variable can take.

Driver

connection/Dri

ver Object Type

Object type of the variables. Depending on the driver used, is selected when

the variable is created and can be changed here.

Driver

connection/Dat

a Type

Data type of the variable. Is selected during the creation of the variable; the

type can be changed here.

Attention: If you change the data type later, all other properties of the

variable must be checked and adjusted, if necessary.

Driver

connection/Pri

ority

Setting the priority class. The variable of the priority class is thus assigned as it

was configured in the driver dialog in the General tab. The priority classes are

only used if the global update time is deactivated.

If the global update time option is activated and the priority classes are

used, there is an error entry in the log file of the system. The driver uses the

highest possible priority.

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out

which driver objects are provided by the driver and which IEC data types can be assigned to the

respective driver objects.

7.3.1 Driver objects

The following object types are available in this driver:

Driver-

object type

Channe

l type

Read:

Modbus

function

(Code

hex/dec)

Write:

Modbus

function

(Code

hex/dec)

Supported

data types

Comment

Alarm Stack 97 0x03/3 N/A STRING Read special events from

Secheron PLC.

Addressing:

 Event type = data

block

Creating variables

33 | 58

Driver-

object type

Channe

l type

Read:

Modbus

function

(Code

hex/dec)

Write:

Modbus

function

(Code

hex/dec)

Supported

data types

Comment

 Sub-type = offset.

Analog

Input

10 0x04/4 N/A REAL, LREAL,

BOOL, DINT,

UDINT,

USINT, INT,

UINT, SINT,

STRING

Class 1 - input register.

Linear addressing as with

holding register.

Byte

aligned Coil

69 0x01/1 0x0F/15 BOOL Class 1 - coil.

Linear addressing

one-step via offset.

Coil 65 0x01/1 0x05/5 BOOL Class 1 - coil.

Linear addressing

one-step via offset.

Device

Status

24 0x11/17 N/A BOOL, USINT PLC specific.

Device

Identificatio

n

68 0x2B/43 N/A STRING PLC specific.

Input Status 66 0x02/2 N/A BOOL Class 1 - input discretes.

Linear addressing

one-step via offset.

Holding

Register

8 0x03/3 0x10/16 REAL, LREAL,

BOOL, DINT,

UDINT,

USINT, INT,

UINT, SINT,

STRING,

WSTRING

Class 0 - multiple register.

Linear addressing:

 Bool (1 Bit):

one-step via

Offset and bit

number

 Byte (8 bits):

one-step via

Offset and

Creating variables

34 | 58

Driver-

object type

Channe

l type

Read:

Modbus

function

(Code

hex/dec)

Write:

Modbus

function

(Code

hex/dec)

Supported

data types

Comment

Orientation

 Word (16 bits)

Double word (32

bits)

Float (32 bits)

String(n*Byte):

one-step via

Offset

 WString (n*Word):

one-step via

Offset

Holding

Register 32

Bit

70 0x03/3 0x10/16 REAL 32 bits (4 bytes) are read

per offset.

Holding

Register 64

Bit

71 0x03/3 0x10/16 LREAL 64 bits (8 bytes) are read

per offset.

Preset

Single

Register (FC

6)

67 N/A 0x06/6 UINT Class 1 - single register.

Communicati

on details

35 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, REAL,

STRING

Variables for the static

analysis of the

communication; is

transferred between

driver and Runtime (not

to the PLC).

Note: The addressing

and the behavior is the

same for most zenon

drivers.

You can find detailed

Creating variables

35 | 58

Driver-

object type

Channe

l type

Read:

Modbus

function

(Code

hex/dec)

Write:

Modbus

function

(Code

hex/dec)

Supported

data types

Comment

information on this in the

Communication details

(Driver variables) (on

page 44) chapter.

Key:

X: supported

--: not supported

MODBUS FUNCTION CODES

Function

code

hex/dec

Modbus identifier Comment

0x01 / 1 Read coils This function code is used to read from 1 to 2000

contiguous status of coils (bits) in a remote device

0x02/2 Read discrete inputs This function code is used to read from 1 to 2000

contiguous status of discrete inputs (bits) in a remote

device

0x03 / 3 Read multiple registers This function code is used to read a block of

contiguous holding registers (1 to 125 words) in a

remote device.

0x04 / 4 Read input registers This function code is used to read a block of

contiguous input registers (1 to 125 words) in a remote

device.

0x05 / 5 Write coil This function code is used to write a single output

(one bit) to either ON or OFF in a remote device.

0x06 / 6 Write single register This function code is used to write a single (one word)

holding register in a remote device.

0x10 / 16 Write multiple registers This function code is used to write a block of

contiguous holding registers (1 to approx. 120 words)

in a remote device.

Creating variables

36 | 58

Function

code

hex/dec

Modbus identifier Comment

0x11 / 17 Report Slave ID This function code is used to read the description of

the type, the current status, and other information

specific to a remote device.

0x14/20 Read File Record This function code is used to perform a file record

read.

All Request Data Lengths are provided in terms of

number of bytes and all Record Lengths are provided

in terms of registers.

Note: This Functioncode is supported by the

MODBUS_ENERGY driver only.

0x15/21 Write File Record This function code is used to perform a file record

write.

All Request Data Lengths are provided in terms of

number of bytes and all Record Lengths are provided

in terms of the number of 16-bit words.

Note: This Functioncode is supported by the

MODBUS_ENERGY driver only.

0x2B/43 Read Device

Identification

This function code allows reading the identification

and additional information relative to the physical and

functional description of a remote device.

7.3.2 Mapping of the data types

All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes

with the datatypes of the PLC.

EXAMPLE FOR ALL POSSIBLE ZENON DATA TYPES:

PLC zenon Data type

BOOL BOOL 8

BYTE SINT 10

BYTE USINT 9

Creating variables

37 | 58

PLC zenon Data type

WORD INT 1

WORD UINT 2

DWORD DINT 3

DWORD UDINT 4

FLOAT REAL 5

FLOAT LREAL 6

STRING STRING 12

WSTRING WSTRING 21

DATA TYPE

The term data type is the internal numerical identification of the data type. It is also used for the

extended DBF import/export of the variables.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every

driver.

 Information

You can find details on the import and export of variables in the Import-Export

(main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section.

7.4.1 XML import

During XML import of variables or data types, these are first assigned to a driver and then analyzed.

Before import, the user decides whether and how the respective element (variable or data type) is to be

imported:

 Import:

The element is imported as a new element.

 Overwrite:

The element is imported and overwrites a pre-existing element.

main.chm::/13028.htm
main.chm::/13045.htm

Creating variables

38 | 58

 Do not import:

The element is not imported.

Note: The actions and their durations are shown in a progress bar during import. The import of

variables is described in the following documentation. Data types are imported along the same lines.

REQUIREMENTS

The following conditions are applicable during import:

 Backward compatibility

At the XML import/export there is no backward compatibility. Data from older zenon versions

can be taken over. The handover of data from newer to older versions is not supported.

 Consistency

The XML file to be imported has to be consistent. There is no plausibility check on importing

the file. If there are errors in the import file, this can lead to undesirable effects in the project.

Particular attention must be paid to this, primarily if not all properties exist in the XML file and

these are then filled with default values. E.g.: A binary variable has a limit value of 300.

 Structure data types

Structure data types must have the same number of structure elements.

Example: A structure data type in the project has 3 structure elements. A data type with the

same name in the XML file has 4 structure elements. Then none of the variables based on this

data type in the file are imported into the project.

 Hint

You can find further information on XML import in the Import - Export manual,

in the XML import (main.chm::/13046.htm) chapter.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable

settings, such as formulas. Use export/import via XML for this.

main.chm::/13046.htm

Creating variables

39 | 58

IMPORT DBF FILE

To start the import:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Import dBase command

3. follow the import assistant

The format of the file is described in the chapter File structure.

 Information

Note:

 Driver object type and data type must be amended to the target driver in

the DBF file in order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list

2. in the drop-down list of Extended export/import... select the Export dBase... command

3. follow the export assistant

 Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric

characters for name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file

name length including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

Creating variables

40 | 58

FILE STRUCTURE OF THE DBASE EXPORT FILE

The dBaseIV file must have the following structure and contents for variable import and export:

 Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with their name to the 8.3 DOS format (8 alphanumeric characters

for name, 3 characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Identification Typ

e

Field size Comment

KANALNAME Cha

r

128 Variable name.

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

KANAL_R C 128 The original name of a variable that is to be replaced by

the new name entered under "VARIABLENNAME”

(variable name) (field/column must be entered

manually).

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has

to be created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the

data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)

corresponds to the driver object type.

Creating variables

41 | 58

Identification Typ

e

Field size Comment

HWKANAL Nu

m

3 Net address

BAUSTEIN N 3 Datablock address (only for variables from the data area

of the PLC)

ADRESSE N 5 Offset

BITADR N 2 For bit variables: bit address

For byte variables: 0=lower, 8=higher byte

For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables

ATTENTION: Only the first variable is fully available. All

others are only available for VBA or the Recipegroup

Manager

LES_SCHR L 1 Write-Read-Authorization

0: Not allowed to set value.

1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object

comprises TREIBER-OBJEKTTYP and DATENTYP

SIGMIN Floa

t

16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values

(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one

decimal possible)

not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal

possible)

Creating variables

42 | 58

Identification Typ

e

Field size Comment

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

DRRATE F 19 Updating to the output (for zenon DDE server, in [s],

one decimal possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable

is not requested from the server but from the Standby

Server in redundant networks

RESOURCE C 128 Resources label.

Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry

in project.ini.

ADJWVBA R 1 Non-linear value adaption:

0: Non-linear value adaption is used

1: Non-linear value adaption is not used

ADJZENON C 128 Linked VBA macro for reading the variable value for

non-linear value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for

non-linear value adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

Creating variables

43 | 58

 Attention

When importing, the driver object type and data type must be amended to the

target driver in the DBF file in order for variables to be imported.

LIMIT VALUE DEFINITION

Limit definition for limit values 1 to 4, or status 1 to 4:

Identification Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for

a dynamic limit value (see VARIABLEx)

(if VARIABLEx is 1 and here it is -1, the existing

variable linkage is not overwritten)

SCHWWERT1 F 16 Threshold value for limit value

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking

the limit is defined by an absolute value (see field

GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function

(if “-1” is entered here, the existing function is not

overwritten during import)

A_GRUPPE1 N 10 Alarm/Event Group

A_KLASSE1 N 10 Alarm/Event Class

Creating variables

44 | 58

Identification Type Field size Comment

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

INVISIBLE1 R 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the

definition of variables. For more information, see chapter Variable definition.

7.5 Communication details (Driver variables)

The driver kit implements a number of driver variables. This variables are part of the driver object type

Communication details. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables implemented in the driver kit are available in the import file DRVVAR.DBF

and can be imported from there.

Path to file: %ProgramData%\COPA-DATA\zenon<Versionsnummer>\PredefinedVariables

Note: Variable names must be unique in zenon. If driver variables of the driver object type

Communication details are to be imported from DRVVAR.DBF again, the variables that were imported

beforehand must be renamed.

 Information

Not every driver supports all driver variables of the driver object type

Communication details.

For example:

 Variables for modem information are only supported by

modem-compatible drivers.

 Driver variables for the polling cycle are only available for pure polling

drivers.

 Connection-related information such as ErrorMSG is only supported for

drivers that only edit one connection at a a time.

Creating variables

45 | 58

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfe

r

BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

Creating variables

46 | 58

Name from import Type Offset Description

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

started, the variable has the value FALSE

and no OFF bit.

SimulRTState UDINT 60 Informs the status of Runtime for driver

simulation.

ConnectionStates STRING 61 Internal connection status of the driver to

the PLC.

Connection statuses:

0: Connection OK

1: Connection failure

2: Connection simulated

Formating:

<Netzadresse>:<Verbindungszustand>;…;…;

A connection is only known after a variable

has first signed in. In order for a connection

to be contained in a string, a variable of this

connection must be signed in once.

The status of a connection is only updated

if a variable of the connection is signed in.

Otherwise there is no communication with

the corresponding controller.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically

reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial

interface. Writing to this variable

immediately results in the method

SrvDrvVarApplyCom being called (which

currently has no further function).

Creating variables

47 | 58

Name from import Type Offset Description

ApplyModem BOOL 37 Apply changes in the settings of the

modem. Writing this variable immediately

calls the method SrvDrvVarApplyModem.

This closes the current connection and

opens a new one according to the settings

PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone

number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be

kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the

modem

ComPort UINT 9 Number of the serial interface.

Baudrate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial

interface

Value = 0 if the driver cannot establish any

serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be

established automatically for

reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone

number

Creating variables

48 | 58

Name from import Type Offset Description

RxIdleTime UINT 18 Modem is disconnected, if no data transfer

occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem

connection in milliseconds (ms).

RingCountSet UDINT 20 Number of ringing tones before a call is

accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a

connection.

STATISTICS

Name from import Type Offse

t

Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is

required for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is

required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required

to read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required

to read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to

read all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to

read all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNormal UDINT 56 Time since the last update of the priority group

Normal in milliseconds (ms).

Creating variables

49 | 58

Name from import Type Offse

t

Description

MaxUpdateTimeHigher UDINT 57 Time since the last update of the priority group

Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group

High in milliseconds (ms).

MaxUpdateTimeHighest UDINT 59 Time since the last update of the priority group

Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

ERROR MESSAGE

Name from import Type Offse

t

Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error

occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error

occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading

error occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error

occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading error

occurred.

RdErrHwAdresse DINT 45 Hardware address when the last reading error

occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

Driver-specific functions

50 | 58

8 Driver-specific functions

The driver supports the following functions:

BLOCKWRITE

For more efficient writing of set values (such as recipes) of variables of the Holding Register driver object

type, the Blockwrite property can be activated. Variables that are consecutive in the control memory are

thus described with a write telegram. With larger areas, the writing is combined into a few telegrams

instead of describing each variable individually.

ACTIVATING BLOCKWRITE

The following entry must be added in the project.ini:

[MODRTU32]

BLOCKWRITE=1

TRANSACTION IDENTIFICATION

The driver increases the Transaction Identifier for each packet sent and expects a response from the

slave with the same Transaction Identifier or 0.

9 Driver command function

The zenon Driver commands function is to influence drivers using zenon.

You can do the following with a driver command:

 Start

 Stop

 Shift a certain driver mode

 Instigate certain actions

Note: This chapter describes standard functions that are valid for most zenon drivers.

Not all functions described here are available for every driver. For example, a driver that does not,

according to the data sheet, support a modem connection also does not have any modem functions.

Driver command function

51 | 58

 Attention

The zenon Driver commands function is not identical to driver commands that

can be executed in the Runtime with Energy drivers!

CONFIGURATION OF THE FUNCTION

Configuration is carried out using the Driver commands function.

To configure the function:

1. Create a new function in the zenon Editor.

The dialog for selecting a function is opened

2. Navigate to the node Variable.

3. Select the Driver commands entry.

Driver command function

52 | 58

The dialog for configuration is opened

4. Select the desired driver and the required command.

5. Close the dialog by clicking on OK and ensure that the function is executed in the Runtime.

Heed the notices in the Driver command function in the network section.

DRIVER COMMAND DIALOG

Option Description

Driver Selection of the driver from the drop-down list.

It contains all drivers loaded in the project.

Current condition Fixed entry that is set by the system.

Has no function in the current version.

Driver command Selection of the desired driver command from a

drop-down list.

For details on the configurable driver commands, see

the available driver commands section.

Driver-specific command Entry of a command specific to the selected driver.

Driver command function

53 | 58

Option Description

Note: Only available if, for the driver command

option, the driver-specific command has been selected.

Show this dialog in the Runtime Configuration of whether the configuration can be

changed in the Runtime:

 Active: This dialog is opened in the Runtime

before executing the function. The configuration

can thus still be changed in the Runtime before

execution.

 Inactive: The Editor configuration is applied in the

Runtime when executing the function.

Default: inactive

CLOSE DIALOG

Options Description

OK Applies settings and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

AVAILABLE DRIVER COMMANDS

These driver commands are available - depending on the selected driver:

Driver command Description

<No command> No command is sent.

A command that already exists can thus be removed

from a configured function.

Start driver (online mode) Driver is reinitialized and started.

Note: If the driver has already been started, it must be

stopped. Only then can the driver be re-initialized and

started.

Stop driver (offline mode) Driver is stopped. No new data is accepted.

Note: If the driver is in offline mode, all variables that

were created for this driver receive the status switched

off (OFF; Bit 20).

Driver command function

54 | 58

Driver command Description

Driver in simulation mode Driver is set into simulation mode.

The values of all variables of the driver are simulated by

the driver. No values from the connected hardware (e.g.

PLC, bus system, ...) are displayed.

Driver in hardware mode Driver is set into hardware mode.

For the variables of the driver the values from the

connected hardware (e.g. PLC, bus system, ...) are

displayed.

Driver-specific command Entry of a driver-specific command. Opens input field in

order to enter a command.

Activate driver write set value Write set value to a driver is possible.

Deactivate driver write set value Write set value to a driver is prohibited.

Establish connection with modem Establish connection (for modem drivers)

Opens the input fields for the hardware address and for

the telephone number.

Disconnect from modem Terminate connection (for modem drivers)

Driver in counting simulation mode Driver is set into counting simulation mode.

All values are initialized with 0 and incremented in the

set update time by 1 each time up to the maximum

value and then start at 0 again.

Driver in static simulation mode No communication to the controller is established. All

values are initialized with 0.

Driver in programmed simulation

mode

The values are calculated by a freely-programmable

simulation project. The simulation project is created

with the help of the zenon Logic Workbench and runs

in the zenon Logic Runtime.

DRIVER COMMAND FUNCTION IN THE NETWORK

If the computer on which the Driver commands function is executed is part of the zenon network,

further actions are also carried out:

 A special network command is sent from the computer to the project server.

It then executes the desired action on its driver.

 In addition, the Server sends the same driver command to the project standby.

The standby also carries out the action on its driver.

Error analysis

55 | 58

This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby

both have a working and independent connection to the hardware.

10 Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display

them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also

installed with zenon. You can find it under Start/All programs/zenon/Tools 8.10 -> Diagviewer.

zenon driver log all errors in the LOG files.LOG files are text files with a special structure. The default

folder for the LOG files is subfolder LOG in the folder ProgramData. For example:

%ProgramData%\COPA-DATA\LOG.

Attention: With the default settings, a driver only logs error information. With the Diagnosis Viewer

you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the

driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 Follow newly-created entries in real time

 customize the logging settings

 change the folder in which the LOG files are saved

Note:

1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time.

2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more

columns activate property Add all columns with entry in the context menu of the column

header.

3. If you only use Error-Logging, the problem description is in the column Error text. For other

diagnosis level the description is in the column General text.

4. For communication problems many drivers also log error numbers which the PLC assigns to

them. They are displayed in Error text or Error code or Driver error parameter (1 and 2). Hints on

the meaning of error codes can be found in the driver documentation and the protocol/PLC

description.

5. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug and

Deep Debug there are a great deal of data for logging which are saved to the hard drive and

main.chm::/12464.htm

Error analysis

56 | 58

which can influence your system performance. They are still logged even after you close the

Diagnosis Viewer.

 Attention

In Windows CE errors are not logged per default due to performance reasons.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer

(main.chm::/12464.htm) manual.

10.2 Error numbers

The following error codes apply ONLY for the error messages

CallSPSread FAILED ! ERROR:' and

'CallSPSwrite FAILED ! ERROR:'

-1 Invalid function

-2 Invalid MW address

-3 Invalid date

-4 Slave error

-7 Slave cannot execute function

-8 Slave memory parity error

-10 Timeout while communicating with Slave

-11 Read request failed! Communication with PLC impossible.

The fields Para1 and Para2 contain additional information about the variable that cannot be read:

The number relate to the internal ID

Para1: Channel type (e.g.: 8=Holding Register)

8: Holding Register

10 Input Register

24 Status

65 COIL

main.chm::/12464.htm

Error analysis

57 | 58

66 Input Status

67 Preset Single Register

Para2: Data type (e.g: 2= Word, UINT)

1: INT

2: UINT

3: DINT

4: UDINT

5: REAL

8: BOOL

9: SINT

10: USINT

10.3 Check list

Problem Diagnostics Reason

Values can be read

or written by the

controller.

The controller can be

contacted by

'pinging'?

 The controller is not connected to the power

supply or the network.

 The PC is not connected to the network.

 The controller is connected but is in a

different subnetwork and the network

gateway is not entered in the controller or

the subnetmask is not set correctly.

 Is the firewall activated? Port 502 is used for

communication as standard; add it to the

exceptions. Enter accordingly for individual

port numbers.

 The controller can be

contacted by

'pinging'?

 The communication parameters are not set

correctly?

 The port must be set according to the

configuration of the controller (Modbus

Slave).

 The network address in the addressing of

the variable does not correspond to the

Error analysis

58 | 58

Problem Diagnostics Reason

network address of the connection in the

driver. Attention: Network address 0 must

not be used. Address 0 is reserved as a

broadcast address in Modbus.

 The driver configuration file was not

transferred to the target computer?

 The PLC is connected

serially

 The controller is not connected to the power

supply or the bus system.

 The serial cable is not connected to the

correct interface (COM1...64), or the

interface was set incorrectly.

 The serial interface is blocked by another

application.

 The network address in the addressing of

the variable does not correspond to the

Modbus address (device address).

 The cable is assigned incorrectly or

defective.

Certain values

cannot be read or

written by the

controller.

Has an analysis with

the Diagnosis Viewer

been carried out to

see which errors have

occurred?

See Analysis tool (on

page 55) chapter.

 See the following chapter: Error numbers

(on page 56)

 Are the variables correctly addressed?

 Are the correct object types used in the

variable? The object types determine the

function code to be used in the Modbus

telegram.

Incorrect values

are displayed.

Has an analysis with

the Diagnosis Viewer

been carried out to

see which errors have

occurred?

See Analysis tool (on

page 55) chapter.

 Are the variables correctly addressed?

 Are the correct data types used?

 Is the value calculation correct?

	1 Welcome to COPA-DATA help
	2 MODRTU32
	3 MODRTU32 - data sheet
	4 Driver history
	5 Requirements
	5.1 PC

	6 Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Com
	6.2.3 Settings
	6.2.4 Connection TCP/IP

	7 Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects
	7.3.2 Mapping of the data types

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export

	7.5 Communication details (Driver variables)

	8 Driver-specific functions
	9 Driver command function
	10 Error analysis
	10.1 Analysis tool
	10.2 Error numbers
	10.3 Check list

