© 2019 Ing. Punzenberger COPA-DATA GmbH All rights reserved. Distribution and/or reproduction of this document or parts thereof in any form are permitted solely with the written permission of the company COPA-DATA. Technical data is only used for product description and are not guaranteed qualities in the legal sense. Subject to change, technical or otherwise. # Contents | 1 | Welcome to COPA-DATA help | 5 | |-----|----------------------------------------------|------------| | 2 | RemoteRT | 5 | | 3 | RemoteRT - data sheet | 6 | | 4 | Driver history | 7 | | 5 | Requirements | | | | 5.1 Installation and procedure | 3 | | | 5.2 Connector | 10 | | 6 | Configuration | 13 | | | 6.1 Creating a driver | 12 | | | 6.2 Settings in the driver dialog | 17 | | | 6.2.1 General | | | | 6.2.2 Remote Runtime connections | | | 7 | Creating variables | 26 | | | 7.1 Creating variables in the Editor | 26 | | | 7.2 Addressing | 30 | | | 7.3 Driver objects and datatypes | 31 | | | 7.3.1 Driver objects | | | | 7.3.2 Mapping of the data types | | | | 7.4 Creating variables by importing | | | | 7.4.1 XML import | | | | 7.4.2 DBF Import/Export | 35 | | | 7.5 Communication details (Driver variables) | 41 | | 8 | Polling in Runtime | 47 | | 9 | Driver-specific functions | 47 | | 10 | O Driver command function | 48 | | | l Error analysis | | | • • | 11.1 Analysis tool | | | | 11.2 Check list | 52 | | | II ZU NACK IIST | <b>5</b> - | # 1 Welcome to COPA-DATA help #### ZENON VIDEO-TUTORIALS You can find practical examples for project configuration with zenon in our YouTube channel (https://www.copadata.com/tutorial\_menu). The tutorials are grouped according to topics and give an initial insight into working with different zenon modules. All tutorials are available in English. ### **GENERAL HELP** If you cannot find any information you require in this help chapter or can think of anything that you would like added, please send an email to documentation@copadata.com. ### PROJECT SUPPORT You can receive support for any real project you may have from our Support Team, who you can contact via email at support@copadata.com. #### LICENSES AND MODULES If you find that you need other modules or licenses, our staff will be happy to help you. Email sales@copadata.com. ## 2 RemoteRT With the **Remote Runtime Driver** (**RemoteRT.exe**), it is possible to read variable values in a running Runtime and to have these read and adopted by a different Runtime. The connection is made using a connector: The values are read block by block. If blockwise reading is not possible, the values are read individually (one value after the other). The driver is fundamentally different from other zenon drivers in terms of its connector concept. The requesting of data from the source Runtime roughly corresponds to the teaching of a recipe. The driver only addresses on the basis of names via the **Symbolic address**. ## Information An application of the **Remote Runtime driver** is connections to older Runtimes, without changing the existing project configuration. # 3 RemoteRT - data sheet | General: | | |------------------|--------------------------------| | Driver file name | RemoteRT.exe | | Driver name | Remote Runtime Treiber | | PLC types | Remote Runtime | | PLC manufacturer | zenon system driver; COPA-DATA | | Driver supports: | | |---------------------------|-------------| | Protocol | proprietary | | Addressing: Address-based | Name based | | Addressing: Name-based | | | Spontaneous communication | | | Polling communication | X | | Online browsing | | | Offline browsing | | | Real-time capable | | | Blockwrite | | | Modem capable | | | RDA numerical | | | RDA String | | | Driver supports: | | |----------------------------|--| | Hysteresis | | | extended API | | | Supports status bit WR-SUC | | | alternative IP address | | | Requirements: | | |----------------|-------------------------------------------------------------------------------------------------------| | Hardware PC | | | Software PC | | | Hardware PLC | | | Software PLC | SCADA connector container - can be found in the Additional Software folder on the installation medium | | Requires v-dll | X | | Platforms: | | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------| | Operating systems | Windows 10; Windows 7; Windows 8; Windows 8.1; Windows Server 2008 R2; Windows Server 2012; Windows Server 2012 R2; Windows Server 2016 | # 4 Driver history | Date | Build number | Change | |----------|--------------|-------------------------------| | 9/4/2014 | 7.20.0.14252 | Created driver documentation | | | | Support for blockwise reading | ### **DRIVER VERSIONING** The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of this version. This is the number in the 4th position of the file version, For example: **7.10.0.4228** means: The driver is for version **7.10** service pack **0**, and has the build number **4228**. Expansions or error rectifications will be incorporated into a build in the future and are then available from the next consecutive build number. # Example A driver extension was implemented in build **4228**. The driver that you are using is build number **8322**. Because the build number of your driver is higher than the build number of the extension, the extension is included. The version number of the driver (the first three digits of the file version) do not have any significance in relation to this. The drivers are version-agnostic # 5 Requirements This chapter contains information on the requirements that are necessary for use of this driver. # 5.1 Installation and procedure ### **INSTALLATION** All necessary files are installed with the installation of zenon. ## **Attention** In order for the driver to be able to be started, the **zrsProvider.dll** must be installed. The Connector Container may need to be installed manually on the source computer. To do this, there is a separate setup available on the zenon installation medium. Path: **AdditionalSoftware\COPA-DATA SCADA Runtime Connector\setup86\_connectors.exe**. ## Information The Connector Container is entered as an Autostart application during setup. It is started in this context when a user is logged in. It must also correspond to the user context in which Runtime is running. If Runtime as a service is started, the Connector Container must also be started as a service using the **Startup Tool**. ### PROCEDURE: - Systems involved: - ▶ Local Runtime (SCADA): The Remote Runtime driver runs here. - ▶ Remote Runtime (PLC): The connector container runs here. - Addressing: - ▶ Local Runtime (SCADA): **Symbolic address**. - ▶ Remote Runtime (SPS): **Name** of the variable. - The variable on the local Runtime gives the driver all information that it needs: - Net address: Is mapped to the IP address and project name of Remote Runtime in the driver configuration. - **Symbolic address**: Must correspond to the **Name** of the variables in the zenon project that runs on Remote Runtime. ### **Attention** For the Remote Runtime driver, the **Symbolic address** property must be configured on the local system for each desired variable. The variable is ignored if this is empty. #### CONNECTION AND UPDATE TIME The driver establishes a connection to the connector container on the respective target computer, to TCP port 50778. This port must be contactable and enabled in the firewall. There is one read attempt per **Net address** in each update cycle. A connection is established for each read attempt, the query is handled and the connection is closed. Depending on the basic load of the target system, and the number of variables requested or the cycle of queried values, it is possible that there is a considerable load placed on the source system. **Recommendation:** The **Global update time** should be greater than 1000 ms. **Note:** The polling driver connection with update times of 1 second or more needs time accordingly. Plan slower reactions. ## 5.2 Connector A connector acts as the link between the data source. Connectors can consist of: - Connector stub - Connector container - ▶ Connector plug-in A distinction is made between: - ▶ SQL-based connectors: These are executed in the connector stub directly. - ▶ C++ DLLs: These work as plugins for the connector container. External Runtime data are requested by the source system via a TCP connection. This connection is established between the connector stub at the SQL server or the connector container for plugins. #### **REQUIREMENTS** For the use of connector, the following requirements must be fulfilled: In zenon Runtime, the event mechanism of the COM interface must be activated. To do this, the following entry must be set in **zenon6.ini**: [VBA] EVENT=1 ▶ Port 50778 must be free and open (e.g. in the firewall configuration). ## Information Connectors cannot be started multiple times. The connector is ended if one of the following events occurs when the network connection is made: - ▶ Error when creating the socket - Error when opening the listening port - Error when starting the listening - Error when accepting a client connection ### LIMITATIONS AND PERFORMANCE The following is applicable for the SCADA Runtime connector: - Timeout: is independent of the report timeout. Default: 5 minutes (can be configured) - Variables: Only variables that are listed in metadata are requested - ▶ String variable: maximum of 4000 characters The performance of a connector depends on the: - Performance of the Analyzer server - Performance of the Runtime server. - ▶ Load of the Runtime servers (connector runs with low priority) - Network performance and network load #### **RULES FOR TIME FILTER** Time filters are applied as follows: - Time stamp: - ▶ Start time: set filter time plus one millisecond - ▶ End time: set filter time - Aggregation archives: Value at the start of an interval always represents the aggregation value of the previous interval. - Time stamp in basis archives: Lag behind archive cycle in millisecond range. ### Example time stamp: - Filter 10:00 to 11:00: is interpreted as 10:00:001 to 11:00:000. - Filter 1 day: starts one millisecond after midnight. ### **CONNECTOR STUB** The connector stub is a DLL which is used by the **Table Valued User Defined Functions** in SQL Server in order to request data from the connector container from a source computer. It - reads in necessary metadata (project name, server, standby, etc.) from SQL server - establishes a TCP connection to the connector container at queries - sends a request - receives the answer Several queries from different threads can be carried out at the same time. The connector stub is able to establish a TCP connection to an alternative source computer if the primary source computer cannot be reached. The names of the primary and alternative source computers are entered in the project table in column *SERVER* and *STANDBY*. ### **CONNECTOR CONTAINER** The connector container is an application (EXE) which runs at the source system and which loads and executes the connector plug-ins (DLLs). The connector container is a normal user process (no service) which is normally started together with the application which should deliver the data. The connector container opens a TCP port and waits for query requests from the connector stub whereon it loads the requested connector plug-in and invokes the fitting access function for the request. The return data is then sent to the connector stub. Several queries from different TCP connections can be executed in parallel if the source system supports this. In normal operation the connector container is displayed as icon in the task tray and does not have an own main window. Additional status information can be displayed via a status dialog. #### **DIALOG** | Option | Description | |-----------------------------|----------------------------------------------------------| | Number of connected Clients | Displays the number of clients connected. | | Minimize | Minimizes the dialog into the info area of the task bar. | | Exit | Closes the connector container. | #### **RESTART** If the connector container has been closed, it can be restarted by: - ▶ Restarting the computer. - Manual start. - From Windows 8: Task-Manager -> Tab -> Autostart -> Connector-Container -> Open file path-> Double-click on zrsConnector.exe. - ► Other operating systems: **Open file path-> Double-click on zrsConnector.exe**. 32-bit path: %*Program Files* (x86)%\Common Files\COPA-DATA\Connectors ## **CONNECTOR PLUG-IN** Connector plug-ins create the link between stub and container. The **SCADA Runtime** connector plug-in uses the zenon API to connect to zenon Runtime and can query runtime data from there. Historical shift data and recipes cannot be queried. /References: Project reference: zenon project name Variable reference: zenon variable name # 6 Configuration In this chapter you will learn how to use the driver in a project and which settings you can change. # Information Find out more about further settings for zenon variables in the chapter Variables (main.chm::/15247.htm) of the online manual. # 6.1 Creating a driver In the Create driver dialog, you create a list of the new drivers that you want to create. | Parameter | Description | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------| | Available drivers | List of all available drivers. | | | The display is in a tree structure: [+] expands the folder structure and shows the drivers contained therein. [-] reduces the folder structure | | | Default: no selection | | Driver name | Unique <b>Identification</b> of the driver. | | | Default: <i>Empty</i> The input field is pre-filled with the pre-defined <b>Identification</b> after selecting a driver from the list of available drivers. | | Driver information | Further information on the selected driver. Default: <i>Empty</i> The information on the selected driver is shown in this area after selecting a driver. | ### **CLOSE DIALOG** | Option | Description | |--------|----------------------------------------------------------------------------------------| | ОК | Accepts all settings and opens the driver configuration dialog of the selected driver. | | Cancel | Discards all changes and closes the dialog. | | Help | Opens online help. | # Information The content of this dialog is saved in the file called Treiber\_[Language].xml. You can find this file in the following folder: C:\ProgramData\COPA-DATA\zenon[version number]. ## **CREATE NEW DRIVER** In order to create a new driver: Right-click on **Driver** in the Project Manager and select **New driver** in the context menu. Optional: Select the **New driver** button from the toolbar of the detail view of the **Variables**. The **Create driver** dialog is opened. 2. The dialog offers a list of all available drivers. 3. Select the desired driver and name it in the **Driver name** input field. This input field corresponds to the **Identification** property. The name of the selected driver is automatically inserted into this input field by default. The following is applicable for the **Driver name**: - ▶ The **Driver name** must be unique. - If a driver is used more than once in a project, a new name has to be given each time. This is evaluated by clicking on the **OK** button. If the driver is already present in the project, this is shown with a warning dialog. - ► The **Driver name** is part of the file name. Therefore it may only contain characters which are supported by the operating system. Invalid characters are replaced by an underscore (\_). - ▶ **Attention:** This name cannot be changed later on. - Confirm the dialog by clicking on the **OK** button. The configuration dialog for the selected driver is opened. **Note:** The language of driver names cannot be switched. They are always shown in the language in which they have been created, regardless of the language of the Editor. This also applies to driver object types. #### DRIVER NAME DIALOG ALREADY EXISTS If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by clicking on the **OK** button. The driver can be named correctly. #### **ZENON PROJECT** The following drivers are created automatically for newly-created projects: - Intern - MathDr32 - SysDrv # Information Only the required drivers need to be present in a zenon project. Drivers can be added at a later time if required. # 6.2 Settings in the driver dialog You can change the following settings of the driver: # 6.2.1 General The configuration dialog is opened when a driver is created. In order to be able to open the dialog later for editing, double click on the driver in the list or click on the **Configuration** property. | Option | Description | |--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Mode | Allows to switch between hardware mode and simulation mode | | | <ul> <li>Hardware:</li> <li>A connection to the control is established.</li> </ul> | | | No communication between to the control is established, the values are simulated by the driver. In this modus the values remain constant or the variables keep the values which were set by zenon Logic. Each variable has its own memory area. E.g. two variables of the type marker with offset 79 can have different values in the Runtime and do not influence each other. Exception: The simulator driver. | | | <ul> <li>Simulation - counting:</li> <li>No communication between to the control is established, the values are simulated by the driver.</li> <li>In this modus the driver increments the values</li> </ul> | | Option | Description | |--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | within a value range automatically. | | | Simulation - programmed:<br>No communication is established to the PLC. The values are calculated by a freely programmable simulation project. The simulation project is created with the help of the zenon Logic Workbench and runs in a zenon Logic Runtime which is integrated in the driver.<br>For details see chapter Driver simulation (main.chm::/25206.htm). | | Keep update list in the memory | Variables which were requested once are still requested from the control even if they are currently not needed. This has the advantage that e.g. multiple screen switches after the screen was opened for the first time are executed faster because the variables need not be requested again. The disadvantage is a higher load for the communication to the control. | | Output can be written | <ul> <li>Active: Outputs can be written.</li> <li>Inactive: Writing of outputs is prevented.</li> </ul> | | | <b>Note</b> : Not available for every driver. | | Variable image remanent | This option saves and restores the current value, time stamp and the states of a data point. | | | Fundamental requirement: The variable must have a valid value and time stamp. | | | The variable image is saved in hardware mode if one of these statuses is active: | | | ▶ User status M1 (0) to M8 (7) | | | ► REVISION(9) | | | ► AUS(20) | | | ► ERSATZWERT(27) | | | The variable image is always saved if: | | | • the variable is of the object type <b>Driver variable</b> | | | ▶ the driver runs in simulation mode. (not | | Option | Description | |------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | programmed simulation) | | | The following states are not restored at the start of the Runtime: | | | ► SELECT(8) | | | ▶ WR-ACK(40) | | | ▶ WR-SUC(41) | | | The mode <b>Simulation - programmed</b> at the driver start is not a criterion in order to restore the remanent variable image. | | Stop on Standby Server | Setting for redundancy at drivers which allow only one communication connection. For this the driver is stopped at the Standby Server and only started at the upgrade. | | | <b>Attention:</b> If this option is active, the gapless archiving is no longer guaranteed. | | | Active:<br>Sets the driver at the not-process-leading Server<br>automatically in a stop-like state. In contrast to<br>stopping via driver command, the variable does<br>not receive status switched off<br>(statusverarbeitung.chm::/24150.htm) but an empty<br>value. This prevents that at the upgrade to the<br>Server irrelevant values are created in the AML, CEL<br>and Historian. | | | Default: inactive | | | <b>Note:</b> Not available if the CE terminal serves as a data server. You can find further information in the zenon Operator manual in the CE terminal as a data server chapter. | | Global Update time | Setting for the global update times in milliseconds: | | | <ul> <li>Active: The set Global update time is used for all variables in the project. The priority set at the variables is not used. </li> <li>Inactive:</li> </ul> | | | The set priorities are used for the individual variables. | | Option | Description | |----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | <b>Exceptions:</b> Spontaneous drivers ignore this option. They generally use the shortest possible update time. For details, see the <b>Spontaneous driver update time</b> section. | | Priority | The polling times for the individual priority classes are set here. All variables with the according priority are polled in the set time. | | | The variables are allocated separately in the settings of the variable properties. The communication of the individual variables can be graded according to importance or required topicality using the priority classes. Thus the communication load is distributed better. | | | <b>Attention:</b> Priority classes are not supported by each driver, e.g. spontaneously communicating zenon drivers. | ## **CLOSE DIALOG** | Option | Description | |--------|---------------------------------------------------------| | ОК | Applies all changes in all tabs and closes the dialog. | | Cancel | Discards all changes in all tabs and closes the dialog. | | Help | Opens online help. | ## **UPDATE TIME FOR SPONTANEOUS DRIVERS** With spontaneous drivers, for **Set value**, **advising** of variables and **Requests**, a read cycle is triggered immediately - regardless of the set update time. This ensures that the value is immediately available for visualization after writing. The update time is generally 100 ms. Spontaneous drivers are ArchDrv, BiffiDCM, BrTcp32, DNP3, Esser32, FipDrv32, FpcDrv32, IEC850, IEC870, IEC870\_103, Otis, RTK9000, S7DCOS, SAIA\_Slave, STRATON32 and Trend32. # 6.2.2 Remote Runtime connections Configuration of the connections to Remote Runtime: ## LIST OF CONFIGURED CONNECTIONS | Parameter | Description | |-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Remote Runtime projects | List of defined connections. | | | For each connection, the respective <b>network address</b> , the <b>IP address</b> and the <b>project name</b> are displayed. The project is configured in the input fields in the input area. | | | Selection of the connection to edit or delete by clicking on the entry. | | | Maximum: 256 connections | | New | Button to create a new connection. | | | Clicking on the button allows entry in the input area. | | | Only active if the dialog is not in edit mode and less than 256 connections are contained in the list. | | Edit | Button for switching to edit mode. Clicking on the button enables you to edit an existing connection in the input area. | | | Only active if the dialog is not in edit mode and a | | Parameter | Description | |-----------|--------------------------------------------------------------------------------------------------| | | connection in the list has been selected. | | Delete | Button to delete an existing connection. Clicking deletes the selected connection from the list. | | | Only active if the dialog is not in edit mode and a connection in the list has been selected. | | | <b>Attention:</b> The selected connection is deleted without requesting confirmation. | ## **CREATE OR EDIT A CONNECTION** These properties are unlocked by clicking on the **New** or **Edit** button. | Parameter | Description | |------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Net address | zenon <b>Net address</b> of the connection. | | | Only active if the dialog is in edit mode. | | | Default: Lowest free net address | | IP address | IP address of the connection. | | | Only active if the dialog is in edit mode. | | | Default: Lowest free net address | | Project name | Entry of the project name for the connection. The name is automatically displayed in capital letters. | | | Only active if the dialog is in edit mode. | | | Default: 127.0.0.1 | | Spontaneous mode | Checkbox for the activation of spontaneous communication. | | | <ul> <li>Active: The driver receives values spontaneously (in the event of a value change) Reading of the values is block by block. If blockwise reading is not possible, the values are read individually (one value after the other). </li> </ul> | | | <ul><li>inactive:</li><li>The driver receives the values on a polling basis.</li></ul> | | Parameter | Description | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Default: Not activated | | User name | Input field for the user names for encrypted communication. Note: Only active if spontaneous mode has been activated. | | Password | Input field for the password for encrypted communication. Note: Only active if spontaneous mode has been activated. | | Save | Saves the configuration of the net address. Clicking on<br>the button checks the entries. If validation is successful,<br>the changes are accepted and shown in the list of<br>connections. | | | <ul> <li>Validations:</li> <li>▶ Net address: Positive whole number less than 256.</li> <li>▶ IP address: Formal valid IP address.</li> <li>▶ Project name: not empty.</li> </ul> Only active if the dialog is in edit mode. | | Cancel | Discards all changes and ends edit mode. Only active if the dialog is in edit mode. | # **CLOSE DIALOG** | Option | Description | |--------|---------------------------------------------------------| | ОК | Applies all changes in all tabs and closes the dialog. | | Cancel | Discards all changes in all tabs and closes the dialog. | ## Information Encrypted communication for connectors is configured in the **Startup Tool** in the **Network configuration** tab with the **Encrypt Runtime Connector communication** property. ### **CONFIGURATION OF A CONNECTION** #### CREATE NEW CONNECTION - Click on the **New** button. The input fields of the input area can be configured. - 2. Enter the connection details. - 3. Click on **Save**. The connection is shown in the list of configured connections. #### **EDIT CONNECTION** - 1. Select the connection in the connection list. - Click on the Edit button. The input fields of the input area can be configured. - 3. Change the connection parameters. - 4. Click on Save. #### **DELETE CONNECTION** - 1. Select the connection in the connection list. - 2. Click on the button **Delete**. - 3. The connection will be removed from the list. **Attention:** The connection is deleted without an additional request for confirmation. ### **WARNING DIALOG** A warning dialog is shown in the event of an incorrect entry. Incorrect entry: No project name entered: # 7 Creating variables This is how you can create variables in the zenon Editor: # 7.1 Creating variables in the Editor Variables can be created: - as simple variables - in arrays (main.chm::/15262.htm) - as structure variables (main.chm::/15278.htm) ## **VARIABLE DIALOG** To create a new variable, regardless of which type: 1. Select the **New variable** command in the **Variables** node in the context menu The dialog for configuring variables is opened - 2. Configure the variable - 3. The settings that are possible depends on the type of variables ## **CREATE VARIABLE DIALOG** | Property | Description | |---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Name | Distinct name of the variable. If a variable with the same name already exists in the project, no additional variable can be created with this name. | | | Maximum length: 128 characters | | | Attention: the characters # and @ are not permitted in variable names. If non-permitted characters are used, creation of variables cannot be completed and the Finish button remains inactive. Note: For some drivers, the addressing is possible over the property Symbolic address, as well. | | Drivers | Select the desired driver from the drop-down list. Note: If no driver has been opened in the project, the driver for internal variables (Intern.exe (Main.chm::/Intern.chm::/Intern.htm)) is automatically loaded. | | Driver Object Type<br>(cti.chm::/28685.htm) | Select the appropriate driver object type from the drop-down list. | | Data Type | Select the desired data type. Click on the button to open the | | Property | Description | |----------------------|-------------------------------------------------------------------------------------------------------| | | selection dialog. | | Array settings | Expanded settings for array variables. You can find details in the Arrays chapter. | | Addressing options | Expanded settings for arrays and structure variables. You can find details in the respective section. | | Automatic addressing | Expanded settings for arrays and structure variables. You can find details in the respective section. | ## **SYMBOLIC ADDRESS** The **Symbolic address** property can be used for addressing as an alternative to the **Name** or **Identification** of the variables. Selection is made in the driver dialog; configuration is carried out in the variable property. When importing variables of supported drivers, the property is entered automatically. Maximum length: 1024 characters. The following drivers support the **Symbolic address**: - ▶ 3S\_V3 - AzureDrv - BACnetNG - ▶ IEC850 - KabaDPServer - POPCUA32 - Phoenix32 - POZYTON - RemoteRT - ▶ S7TIA - **▶** SEL - ▶ SnmpNg32 - PA\_Drv ## **INHERITANCE FROM DATA TYPE** Measuring range, Signal range and Set value are always: - derived from the datatype - Automatically adapted if the data type is changed **Note for signal range:** If a change is made to a data type that does not support the set **signal range**, the **signal range** is amended automatically. For example, for a change from **INT** to **SINT**, the **signal range** is changed to *127*. The amendment is also carried out if the **signal range** was not inherited from the data type. In this case, the **measuring range** must be adapted manually. 7.2 Addressing | 7.2 Addressing | <u> </u> | |--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Group/Property | Description | | General | Property group for general settings. | | Name | Freely definable name. | | | Attention: For every zenon project the name must be unambiguous. | | Identification | Freely definable identification. E.g. for Resources label, comments, | | Addressing | The name of the variables in the project on Remote Runtime are only read from the <b>Symbolic address</b> property. | | Net address | Network address of variables. | | | This address refers to the bus address in the connection configuration of the driver. This selects the target system on which the variable is located. | | Symbolic address | The <b>Symbolic address</b> property can be used for addressing as an alternative to the <b>Name</b> or <b>Identification</b> of the variables. Selection is made in the driver dialog; configuration is carried out in the variable property. When importing variables of supported drivers, the property is entered automatically. | | | Maximum length: 1024 characters. | | Data block | not used for this driver | | Offset | not used for this driver | | Alignment | not used for this driver | | Bit number | not used for this driver | | String length | Only available for String variables. Maximum number of characters that the variable can take. | | Driver connection/Driver | Object type of the variables. Depending on the driver used, is selected when the variable is created and can be changed here. | | Object Type | Only driver variable and Remote Runtime variable are available for the | | Group/Property | Description | |-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Remote Runtime driver. | | Driver<br>connection/Data<br>Type | Data type of the variable. Is selected during the creation of the variable; the type can be changed here. The following are available for the Remote Runtime driver: | | | ▶ BOOL | | | ▶ LREAL | | | ► WSTRING | | | <b>Attention:</b> If you change the data type later, all other properties of the variable must be checked and adjusted, if necessary. | # 7.3 Driver objects and datatypes Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out which driver objects are provided by the driver and which IEC data types can be assigned to the respective driver objects. # 7.3.1 Driver objects The following object types are available in this driver: | Driver Object<br>Type | Channel<br>type | Read | Write | Supported data types | Description | |--------------------------|-----------------|------|-------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Communication<br>details | 35 | X | X | BOOL, SINT,<br>USINT, INT,<br>UINT, DINT,<br>UDINT, REAL,<br>STRING | Variables for the static analysis of the communication; is transferred between driver and Runtime (not to the PLC). Note: The addressing and the behavior is the same for most zenon drivers. | | | | | | | You can find detailed information on this in the | | Driver Object<br>Type | Channel<br>type | Read | Write | Supported data types | Description | |-------------------------|-----------------|------|-------|-------------------------|----------------------------------------------------------------------| | | | | | | Communication details<br>(Driver variables) (on<br>page 41) chapter. | | Remote Runtime variable | 64 | X | | BOOL, LREAL,<br>WSTRING | | ## Key: **X**: supported --: not supported # 7.3.2 Mapping of the data types All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes with the datatypes of the PLC. | Remote Runtime | Local Runtime | Data type | |----------------|---------------|-----------| | BOOL | BOOL | 8 | | - | USINT | 9 | | - | SINT | 10 | | - | UINT | 2 | | - | INT | 1 | | - | UDINT | 4 | | - | DINT | 3 | | - | ULINT | 27 | | - | LINT | 26 | | - | REAL | 5 | | LREAL | LREAL | 6 | | - | STRING | 12 | | WSTRING | WSTRING | 21 | | - | DATE | 18 | | Remote Runtime | Local Runtime | Data type | |----------------|-------------------|-----------| | - | TIME | 17 | | - | DATE_AND_TIME | 20 | | - | TOD (Time of Day) | 19 | #### **DATA TYPE** The term **data type** is the internal numerical identification of the data type. It is also used for the extended DBF import/export of the variables. The Remote Runtime driver does not carry out any type conversions. The following breakdown shows how the connector container supplies data for individual zenon data types: - ▶ BOOL - Numerical value: - 0: False - 1: True i - ▶ Text values: empty - Numerical data types: - Numeric value: Value - ▶ Text value: empty - String data types: - ▶ Numeric value: empty - ▶ Text value: Text Based on this, the driver determines the value for each data type from the data provided by the connector client as follows: - ▶ BOOL: *True* if the field for the numerical value is not 0, otherwise *False*. - ▶ LREAL: Value of the field for numerical values. - WSTRING: Value of the field for text values. If the data types from your own Runtime do not correspond to those of Remote Runtime, there will be errors when calculating values: | Remote\target | BOOL | LREAL | WSTRING | |----------------|----------|------------------------------------|---------------| | BOOL on Remote | No error | 0 if False on remote Runtime. | Always empty. | | Runtime | | 1 if <i>True</i> on Remote Runtime | | | Remote\target | BOOL | LREAL | WSTRING | |------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------| | Numeric on Remote<br>Runtime | False if precisely 0 on Remote Runtime. Otherwise True. | There may be a rounding error, because the value is mapped to LREAL (limited precision). | Always empty. | | Text on Remote<br>Runtime | Always <i>False</i> . | Always 0. | The string may be shortened. | # 7.4 Creating variables by importing Variables can also be imported by importing them. The XML and DBF import is available for every driver. ## Information You can find details on the import and export of variables in the Import-Export (main.chm::/13028.htm) manual in the Variables (main.chm::/13045.htm) section. # 7.4.1 XML import During XML import of variables or data types, these are first assigned to a driver and then analyzed. Before import, the user decides whether and how the respective element (variable or data type) is to be imported: - ▶ *Import*: - The element is imported as a new element. - Overwrite: - The element is imported and overwrites a pre-existing element. - Do not import: - The element is not imported. **Note:** The actions and their durations are shown in a progress bar during import. The import of variables is described in the following documentation. Data types are imported along the same lines. ## **REQUIREMENTS** The following conditions are applicable during import: ## Backward compatibility At the XML import/export there is no backward compatibility. Data from older zenon versions can be taken over. The handover of data from newer to older versions is not supported. ### Consistency The XML file to be imported has to be consistent. There is no plausibility check on importing the file. If there are errors in the import file, this can lead to undesirable effects in the project. Particular attention must be paid to this, primarily if not all properties exist in the XML file and these are then filled with default values. E.g.: A binary variable has a limit value of 300. ## Structure data types Structure data types must have the same number of structure elements. Example: A structure data type in the project has 3 structure elements. A data type with the same name in the XML file has 4 structure elements. Then none of the variables based on this data type in the file are imported into the project. ## You can find further information on XML import in the **Import - Export** manual, in the **XML import** (main.chm::/13046.htm) chapter. # 7.4.2 DBF Import/Export Data can be exported to and imported from dBase. ## Information Import and Export via CSV or dBase supported; no driver specific variable settings, such as formulas. Use export/import via XML for this. ## **IMPORT DBF FILE** To start the import: - 1. right-click on the variable list - 2. in the drop-down list of Extended export/import... select the Import dBase command - 3. follow the import assistant The format of the file is described in the chapter File structure. ## Information #### Note: - Driver object type and data type must be amended to the target driver in the DBF file in order for variables to be imported. - ▶ dBase does not support structures or arrays (complex variables) at import. ## **EXPORT DBF FILE** To start the export: - 1. right-click on the variable list - 2. in the drop-down list of Extended export/import... select the Export dBase... command - 3. follow the export assistant ## **Attention** #### DBF files: - must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for name, 3 character suffix, no spaces) - must not have dots (.) in the path name. e.g. the path C:\users\John.Smith\test.dbf is invalid. Valid: C:\users\JohnSmith\test.dbf - must be stored close to the root directory in order to fulfill the limit for file name length including path: maximum 255 characters The format of the file is described in the chapter File structure. # Information dBase does not support structures or arrays (complex variables) at export. ### FILE STRUCTURE OF THE DBASE EXPORT FILE The dBaseIV file must have the following structure and contents for variable import and export: # Attention dBase does not support structures or arrays (complex variables) at export. DBF files must: - conform with their name to the 8.3 DOS format (8 alphanumeric characters for name, 3 characters for extension, no space) - ▶ Be stored close to the root directory (Root) ### **STRUCTURE** | Identification | Typ<br>e | Field size | Comment | |----------------|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------| | KANALNAME | Cha | 128 | Variable name. | | | r | | The length can be limited using the MAX_LAENGE entry in the project.ini file. | | KANAL_R | С | 128 | The original name of a variable that is to be replaced by the new name entered under "VARIABLENNAME" (variable name) (field/column must be entered manually). | | | | | The length can be limited using the <b>MAX_LAENGE</b> entry in the <b>project.ini</b> file. | | KANAL_D | Log | 1 | The variable is deleted with the 1 entry (field/column has to be created by hand). | | TAGNR | С | 128 | Identification. | | | | | The length can be limited using the <b>MAX_LAENGE</b> entry in the <b>project.ini</b> file. | | EINHEIT | С | 11 | Technical unit | | DATENART | С | 3 | Data type (e.g. bit, byte, word,) corresponds to the data type. | | KANALTYP | С | 3 | Memory area in the PLC (e.g. marker area, data area,) corresponds to the driver object type. | | HWKANAL | Nu<br>m | 3 | Net address | | BAUSTEIN | N | 3 | Datablock address (only for variables from the data area | | Identification | Typ<br>e | Field size | Comment | | |----------------|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | | | | of the PLC) | | | ADRESSE | N | 5 | Offset | | | BITADR | N | 2 | For bit variables: bit address For byte variables: 0=lower, 8=higher byte For string variables: Length of string (max. 63 characters) | | | ARRAYSIZE | N | 16 | Number of variables in the array for index variables<br>ATTENTION: Only the first variable is fully available. All<br>others are only available for VBA or the Recipegroup<br>Manager | | | LES_SCHR | L | 1 | Write-Read-Authorization 0: Not allowed to set value. 1: Allowed to set value. | | | MIT_ZEIT | R | 1 | time stamp in zenon (only if supported by the driver) | | | ОВЈЕКТ | N | 2 | Driver-specific ID number of the primitive object comprises TREIBER-OBJEKTTYP and DATENTYP | | | SIGMIN | Floa<br>t | 16 | Non-linearized signal - minimum (signal resolution) | | | SIGMAX | F | 16 | Non-linearized signal - maximum (signal resolution) | | | ANZMIN | F | 16 | Technical value - minimum (measuring range) | | | ANZMAX | F | 16 | Technical value - maximum (measuring range) | | | ANZKOMMA | N | 1 | Number of decimal places for the display of the values (measuring range) | | | UPDATERATE | F | 19 | Update rate for mathematics variables (in sec, one decimal possible) not used for all other variables | | | MEMTIEFE | N | 7 | Only for compatibility reasons | | | HDRATE | F | 19 | HD update rate for historical values (in sec, one decimal possible) | | | HDTIEFE | N | 7 | HD entry depth for historical values (number) | | | NACHSORT | R | 1 | HD data as postsorted values | | | Identification | Typ<br>e | Field size | Comment | |----------------|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------| | DRRATE | F | 19 | Updating to the output (for zenon DDE server, in [s], one decimal possible) | | HYST_PLUS | F | 16 | Positive hysteresis, from measuring range | | HYST_MINUS | F | 16 | Negative hysteresis, from measuring range | | PRIOR | N | 16 | Priority of the variable | | REAMATRIZE | С | 32 | Allocated reaction matrix | | ERSATZWERT | F | 16 | Substitute value, from measuring range | | SOLLMIN | F | 16 | Minimum for set value actions, from measuring range | | SOLLMAX | F | 16 | Maximum for set value actions, from measuring range | | VOMSTANDBY | R | 1 | Get value from standby server; the value of the variable is not requested from the server but from the Standby Server in redundant networks | | RESOURCE | С | 128 | Resources label. Free string for export and display in lists. The length can be limited using the MAX_LAENGE entry in project.ini. | | ADJWVBA | R | 1 | Non-linear value adaption: 0: Non-linear value adaption is used 1: Non-linear value adaption is not used | | ADJZENON | С | 128 | Linked VBA macro for reading the variable value for non-linear value adjustment. | | ADJWVBA | С | 128 | ed VBA macro for writing the variable value for non-linear value adjustment. | | ZWREMA | N | 16 | Linked counter REMA. | | MAXGRAD | N | 16 | Gradient overflow for counter REMA. | ## Attention When importing, the driver object type and data type must be amended to the target driver in the DBF file in order for variables to be imported. ## LIMIT VALUE DEFINITION Limit definition for limit values 1 to 4, or status 1 to 4: | Identification | Туре | Field size | Comment | |----------------|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | AKTIV1 | R | 1 | Limit value active (per limit value available) | | GRENZWERT1 | F | 20 | technical value or ID number of a linked variable for a dynamic limit value (see VARIABLEX) (if VARIABLEX is 1 and here it is -1, the existing variable linkage is not overwritten) | | SCHWWERT1 | F | 16 | Threshold value for limit value | | HYSTERESE1 | F | 14 | Is not used | | BLINKEN1 | R | 1 | Set blink attribute | | BTB1 | R | 1 | Logging in CEL | | ALARM1 | R | 1 | Alarm | | DRUCKEN1 | R | 1 | Printer output (for CEL or Alarm) | | QUITTIER1 | R | 1 | Must be acknowledged | | LOESCHE1 | R | 1 | Must be deleted | | VARIABLE1 | R | 1 | Dyn. limit value linking the limit is defined by an absolute value (see field GRENZWERTx). | | FUNC1 | R | 1 | Functions linking | | ASK_FUNC1 | R | 1 | Execution via Alarm Message List | | FUNC_NR1 | N | 10 | ID number of the linked function<br>(if "-1" is entered here, the existing function is not<br>overwritten during import) | | A_GRUPPE1 | N | 10 | Alarm/Event Group | | A_KLASSE1 | N | 10 | Alarm/Event Class | | MIN_MAX1 | С | 3 | Minimum, Maximum | | FARBE1 | N | 10 | Color as Windows coding | | GRENZTXT1 | С | 66 | Limit value text | | A_DELAY1 | N | 10 | Time delay | | Identification | Туре | Field size | Comment | |----------------|------|------------|-----------| | INVISIBLE1 | R | 1 | Invisible | Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the definition of variables. For more information, see chapter Variable definition. ## 7.5 Communication details (Driver variables) The driver kit implements a number of driver variables. This variables are part of the driver object type *Communication details*. These are divided into: - Information - Configuration - Statistics and - Error message The definitions of the variables implemented in the driver kit are available in the import file **DRVVAR.DBF** and can be imported from there. Path to file: %ProgramData%\COPA-DATA\zenon<Versionsnummer>\PredefinedVariables **Note:** Variable names must be unique in zenon. If driver variables of the driver object type *Communication details* are to be imported from **DRVVAR.DBF** again, the variables that were imported beforehand must be renamed. ### Information Not every driver supports all driver variables of the driver object type *Communication details*. For example: - Variables for modem information are only supported by modem-compatible drivers. - Driver variables for the polling cycle are only available for pure polling drivers - Connection-related information such as ErrorMSG is only supported for drivers that only edit one connection at a a time. #### **INFORMATION** | Name from import | Туре | Offset | Description | |------------------|------|--------|------------------------------------| | MainVersion | UINT | 0 | Main version number of the driver. | | Name from import | Туре | Offset | Description | |---------------------------------|-------|--------|-------------------------------------------------------------------------------------------------------------| | SubVersion | UINT | 1 | Sub version number of the driver. | | BuildVersion | UINT | 29 | Build version number of the driver. | | RTMajor | UINT | 49 | zenon main version number | | RTMinor | UINT | 50 | zenon sub version number | | RTSp | UINT | 51 | zenon Service Pack number | | RTBuild | UINT | 52 | zenon build number | | LineStateIdle | BOOL | 24.0 | TRUE, if the modem connection is idle | | LineStateOffering | BOOL | 24.1 | TRUE, if a call is received | | LineStateAccepted | BOOL | 24.2 | The call is accepted | | LineStateDialtone | BOOL | 24.3 | Dialtone recognized | | LineStateDialing | BOOL | 24.4 | Dialing active | | LineStateRingBack | BOOL | 24.5 | While establishing the connection | | LineStateBusy | BOOL | 24.6 | Target station is busy | | LineStateSpecialInfo | BOOL | 24.7 | Special status information received | | LineStateConnected | BOOL | 24.8 | Connection established | | LineStateProceeding | BOOL | 24.9 | Dialing completed | | LineStateOnHold | BOOL | 24.10 | Connection in hold | | LineStateConferenced | BOOL | 24.11 | Connection in conference mode. | | LineStateOnHoldPendConf | BOOL | 24.12 | Connection in hold for conference | | LineStateOnHoldPendTransfe<br>r | BOOL | 24.13 | Connection in hold for transfer | | LineStateDisconnected | BOOL | 24.14 | Connection terminated. | | LineStateUnknow | BOOL | 24.15 | Connection status unknown | | ModemStatus | UDINT | 24 | Current modem status | | TreiberStop | BOOL | 28 | Driver stopped | | | | | For <i>driver stop</i> , the variable has the value <i>TRUE</i> and an <b>OFF</b> bit. After the driver has | | Name from import | Туре | Offset | Description | |------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | started, the variable has the value <i>FALSE</i> and no <b>OFF</b> bit. | | SimulRTState | UDINT | 60 | Informs the status of Runtime for driver simulation. | | ConnectionStates | STRING | 61 | Internal connection status of the driver to the PLC. | | | | | Connection statuses: | | | | | 0: Connection OK | | | | | 1: Connection failure | | | | | 2: Connection simulated | | | | | Formating: | | | | | <netzadresse>:<verbindungszustand>;;;</verbindungszustand></netzadresse> | | | | | A connection is only known after a variable has first signed in. In order for a connection to be contained in a string, a variable of this connection must be signed in once. | | | | | The status of a connection is only updated if a variable of the connection is signed in. Otherwise there is no communication with the corresponding controller. | # **CONFIGURATION** | Name from import | Туре | Offset | Description | |------------------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ReconnectInRead | BOOL | 27 | If TRUE, the modem is automatically reconnected for reading | | ApplyCom | BOOL | 36 | Apply changes in the settings of the serial interface. Writing to this variable immediately results in the method SrvDrvVarApplyCom being called (which currently has no further function). | | ApplyModem | BOOL | 37 | Apply changes in the settings of the modem. Writing this variable immediately calls the method SrvDrvVarApplyModem. | | Name from import | Туре | Offset | Description | |------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------| | | | | This closes the current connection and opens a new one according to the settings <b>PhoneNumberSet</b> and <b>ModemHwAdrSet</b> . | | PhoneNumberSet | STRING | 38 | Telephone number, that should be used | | ModemHwAdrSet | DINT | 39 | Hardware address for the telephone number | | GlobalUpdate | UDINT | 3 | Update time in milliseconds (ms). | | BGlobalUpdaten | BOOL | 4 | TRUE, if update time is global | | TreiberSimul | BOOL | 5 | TRUE, if driver in sin simulation mode | | TreiberProzab | BOOL | 6 | TRUE, if the variables update list should be kept in the memory | | ModemActive | BOOL | 7 | TRUE, if the modem is active for the driver | | Device | STRING | 8 | Name of the serial interface or name of the modem | | ComPort | UINT | 9 | Number of the serial interface. | | Baudrate | UDINT | 10 | Baud rate of the serial interface. | | Parity | SINT | 11 | Parity of the serial interface | | ByteSize | USINT | 14 | Number of bits per character of the serial interface Value = 0 if the driver cannot establish any | | | | | serial connection. | | StopBit | USINT | 13 | Number of stop bits of the serial interface. | | Autoconnect | BOOL | 16 | TRUE, if the modem connection should be established automatically for reading/writing | | PhoneNumber | STRING | 17 | Current telephone number | | ModemHwAdr | DINT | 21 | Hardware address of current telephone number | | RxldleTime | UINT | 18 | Modem is disconnected, if no data transfer occurs for this time in seconds (s) | | Name from import | Туре | Offset | Description | |------------------|-------|--------|---------------------------------------------------------------------| | WriteTimeout | UDINT | 19 | Maximum write duration for a modem connection in milliseconds (ms). | | RingCountSet | UDINT | 20 | Number of ringing tones before a call is accepted | | ReCallIdleTime | UINT | 53 | Waiting time between calls in seconds (s). | | ConnectTimeout | UINT | 54 | Time in seconds (s) to establish a connection. | # **STATISTICS** | Name from import | Туре | Offse<br>t | Description | |---------------------|-------|------------|--------------------------------------------------------------------------------------| | MaxWriteTime | UDINT | 31 | The longest time in milliseconds (ms) that is required for writing. | | MinWriteTime | UDINT | 32 | The shortest time in milliseconds (ms) that is required for writing. | | MaxBlkReadTime | UDINT | 40 | Longest time in milliseconds (ms) that is required to read a data block. | | MinBlkReadTime | UDINT | 41 | Shortest time in milliseconds (ms) that is required to read a data block. | | WriteErrorCount | UDINT | 33 | Number of writing errors | | ReadSucceedCount | UDINT | 35 | Number of successful reading attempts | | MaxCycleTime | UDINT | 22 | Longest time in milliseconds (ms) required to read all requested data. | | MinCycleTime | UDINT | 23 | Shortest time in milliseconds (ms) required to read all requested data. | | WriteCount | UDINT | 26 | Number of writing attempts | | ReadErrorCount | UDINT | 34 | Number of reading errors | | MaxUpdateTimeNormal | UDINT | 56 | Time since the last update of the priority group <b>Normal</b> in milliseconds (ms). | | MaxUpdateTimeHigher | UDINT | 57 | Time since the last update of the priority group <b>Higher</b> in milliseconds (ms). | | Name from import | Туре | Offse<br>t | Description | |----------------------|-------|------------|---------------------------------------------------------------------------------------| | MaxUpdateTimeHigh | UDINT | 58 | Time since the last update of the priority group <b>High</b> in milliseconds (ms). | | MaxUpdateTimeHighest | UDINT | 59 | Time since the last update of the priority group <b>Highest</b> in milliseconds (ms). | | PokeFinish | BOOL | 55 | Goes to 1 for a query, if all current pokes were executed | ## **ERROR MESSAGE** | Name from import | Туре | Offse<br>t | Description | |-------------------|--------|------------|-----------------------------------------------------------------| | ErrorTimeDW | UDINT | 2 | Time (in seconds since 1.1.1970), when the last error occurred. | | ErrorTimeS | STRING | 2 | Time (in seconds since 1.1.1970), when the last error occurred. | | RdErrPrimObj | UDINT | 42 | Number of the PrimObject, when the last reading error occurred. | | RdErrStationsName | STRING | 43 | Name of the station, when the last reading error occurred. | | RdErrBlockCount | UINT | 44 | Number of blocks to read when the last reading error occurred. | | RdErrHwAdresse | DINT | 45 | Hardware address when the last reading error occurred. | | RdErrDatablockNo | UDINT | 46 | Block number when the last reading error occurred. | | RdErrMarkerNo | UDINT | 47 | Marker number when the last reading error occurred. | | RdErrSize | UDINT | 48 | Block size when the last reading error occurred. | | DrvError | USINT | 25 | Error message as number | | DrvErrorMsg | STRING | 30 | Error message as text | | ErrorFile | STRING | 15 | Name of error log file | # 8 Polling in Runtime When polling, all registered variables of a network address are obtained in a query at once. #### Polling procedure: - 1. The driver triggers polling for a network address, depending on global update time, the update time of the highest-priority variable of the network address and an error waiting time after a failed polling. - 2. The connection definition of the network is searched for in the driver configuration. If this cannot be found, the polling is ended with an error. - 3. In the driver, all variables of this network address that are currently registered are obtained. If there are not currently any variables registered, the polling is ended as successful with no further action. - 4. The configured IP address is broken down into a structure that can be used by the connector client. If an error occurs in the process, the polling is ended with an error. - 5. the current variable values of all variables to be polled are queried using the connector client with the previously-obtained IP address structure and the project name given in the connection. The variable name on Remote Runtime corresponds to the entry in the **Symbolic address** property of the variables on the local system. If an error occurs in the process, the polling is ended with an error. If a variable on the Remote Runtime cannot be queried, this is not considered an error. - 6. The values received for each variable are sent to the Runtime by the driver: - a) If a value has come, is sent to the Runtime in accordance with the data type set on its own Runtime. - b) If no value has come, the individual variables are set to *I-bit*. # 9 Driver-specific functions The driver supports the following functions: Import of variable values of a remote zenon Runtime to a local zenon Runtime. **Attention:** In order to not overload the Remote Runtime, a global update time of at least one second is recommended. Polling runs slower than what is usual for other drivers. Error timeout: 20 seconds ## 10 Driver command function The zenon **Driver commands** function is to influence drivers using zenon. You can do the following with a driver command: - Start - Stop - Shift a certain driver mode - Instigate certain actions **Note:** This chapter describes standard functions that are valid for most zenon drivers. Not all functions described here are available for every driver. For example, a driver that does not, according to the data sheet, support a modem connection also does not have any modem functions. ### **Attention** The zenon **Driver commands** function is not identical to driver commands that can be executed in the Runtime with Energy drivers! #### CONFIGURATION OF THE FUNCTION Configuration is carried out using the **Driver commands** function. To configure the function: 1. Create a new function in the zenon Editor. The dialog for selecting a function is opened - 2. Navigate to the node **Variable.** - 3. Select the **Driver commands** entry. The dialog for configuration is opened - 4. Select the desired driver and the required command. - 5. Close the dialog by clicking on **OK** and ensure that the function is executed in the Runtime. Heed the notices in the **Driver command function in the network** section. #### **DRIVER COMMAND DIALOG** | Option | Description | | |---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Driver | Selection of the driver from the drop-down list. It contains all drivers loaded in the project. | | | Current condition | Fixed entry that is set by the system. Has no function in the current version. | | | Driver command | Selection of the desired driver command from a drop-down list. | | | | For details on the configurable driver commands, see the available driver commands section. | | | Driver-specific command | Entry of a command specific to the selected driver. | | | | <b>Note:</b> Only available if, for the <b>driver command</b> option, the <i>driver-specific command</i> has been selected. | | | Show this dialog in the Runtime | Configuration of whether the configuration can be changed in the Runtime: | | | | <ul> <li>Active: This dialog is opened in the Runtime<br/>before executing the function. The configuration<br/>can thus still be changed in the Runtime before<br/>execution.</li> </ul> | | | | <ul> <li>Inactive: The Editor configuration is applied in the<br/>Runtime when executing the function.</li> </ul> | | | | Default: inactive | | ### **CLOSE DIALOG** | Options | Description | | |---------|---------------------------------------------|--| | ОК | Applies settings and closes the dialog. | | | Cancel | Discards all changes and closes the dialog. | | | Help | Opens online help. | | #### **AVAILABLE DRIVER COMMANDS** These driver commands are available - depending on the selected driver: | Driver command | Description | |-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <no command=""></no> | No command is sent. A command that already exists can thus be removed from a configured function. | | Start driver (online mode) | Driver is reinitialized and started. <b>Note:</b> If the driver has already been started, it must be stopped. Only then can the driver be re-initialized and started. | | Stop driver (offline mode) | Driver is stopped. No new data is accepted. | | | <b>Note:</b> If the driver is in offline mode, all variables that were created for this driver receive the status <i>switched off</i> ( <i>OFF</i> ; Bit <i>20</i> ). | | Driver in simulation mode | Driver is set into simulation mode. The values of all variables of the driver are simulated by the driver. No values from the connected hardware (e.g. PLC, bus system,) are displayed. | | Driver in hardware mode | Driver is set into hardware mode. For the variables of the driver the values from the connected hardware (e.g. PLC, bus system,) are displayed. | | Driver-specific command | Entry of a driver-specific command. Opens input field in order to enter a command. | | Activate driver write set value | Write set value to a driver is possible. | | Deactivate driver write set value | Write set value to a driver is prohibited. | | Establish connection with modem | Establish connection (for modem drivers) | | Driver command | Description | |--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Opens the input fields for the hardware address and for the telephone number. | | Disconnect from modem | Terminate connection (for modem drivers) | | Driver in counting simulation mode | Driver is set into counting simulation mode. All values are initialized with $\theta$ and incremented in the set update time by $\theta$ each time up to the maximum value and then start at $\theta$ again. | | Driver in static simulation mode | No communication to the controller is established. All values are initialized with $\theta$ . | | Driver in programmed simulation mode | The values are calculated by a freely-programmable simulation project. The simulation project is created with the help of the zenon Logic Workbench and runs in the zenon Logic Runtime. | #### DRIVER COMMAND FUNCTION IN THE NETWORK If the computer on which the **Driver commands** function is executed is part of the zenon network, further actions are also carried out: - A special network command is sent from the computer to the project server. It then executes the desired action on its driver. - In addition, the Server sends the same driver command to the project standby. The standby also carries out the action on its driver. This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby both have a working and independent connection to the hardware. # 11 Error analysis Should there be communication problems, this chapter will assist you in finding out the error. ## 11.1 Analysis tool All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display them correctly and clearly, use the Diagnosis Viewer (main.chm::/12464.htm) program that was also installed with zenon. You can find it under **Start/All programs/zenon/Tools 8.10 -> Diagviewer.** zenon driver log all errors in the LOG files.LOG files are text files with a special structure. The default folder for the LOG files is subfolder **LOG** in the folder **ProgramData**. For example: #### %ProgramData%\COPA-DATA\LOG. **Attention:** With the default settings, a driver only logs error information. With the Diagnosis Viewer you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the driver also logs all other important tasks and events. In the Diagnosis Viewer you can also: - ▶ Follow newly-created entries in real time - customize the logging settings - change the folder in which the LOG files are saved #### Note: - 1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time. - The Diagnosis Viewer does not display all columns of a LOG file per default. To display more columns activate property Add all columns with entry in the context menu of the column header. - 3. If you only use **Error-Logging**, the problem description is in the column **Error text**. For other diagnosis level the description is in the column **General text**. - 4. For communication problems many drivers also log error numbers which the PLC assigns to them. They are displayed in **Error text** or **Error code** or **Driver error parameter** (1 and 2). Hints on the meaning of error codes can be found in the driver documentation and the protocol/PLC description. - 5. At the end of your test set back the diagnosis level from **Debug** or **Deep Debug**. At **Debug** and **Deep Debug** there are a great deal of data for logging which are saved to the hard drive and which can influence your system performance. They are still logged even after you close the Diagnosis Viewer. #### **Attention** In Windows CE errors are not logged per default due to performance reasons. You can find further information on the Diagnosis Viewer in the Diagnose Viewer (main.chm::/12464.htm) manual. ### 11.2 Check list Questions and hints for fault isolation: #### GENERAL TROUBLESHOOTING - Is the Runtime connected to the power supply? - Analysis with the Diagnosis Viewer (on page 52): - -> Which messages are displayed? - Are the participants available in the TCP/IP network? - Can the Runtime be reached via the *Ping* command? Ping: Open command line -> ping <IP address > (e.g.: ping 192.168.0.100) -> Press the Enter key. Do you receive an answer with a time or a timeout? Can the Runtime be reached via *Telnet*? Telnet: Command line: enter: telent <IP address port number> (for example for Modbus: telnet 192.168.0.100 502) -> Press the Enter key. If the monitor display turns black, a connection could be established. - ▶ Has a **Symbolic address** been issued for each variable whose value is to be imported? - Did you configure the Net address in the address properties of the variable correctly? - ▶ Does the addressing match with the configuration in the driver dialog? - Does the net address match the address of the target station? - Did you use the right object type for the variable #### SOME VARIABLES REPORT INVALID. - ▶ INVALID bits always refer to a net address. - At least one variable of the net address is faulty. #### VALUES ARE NOT DISPLAYED, NUMERIC VALUES REMAIN EMPTY Driver is not working. Check the: - Installation of zenon - the driver installation - ▶ The installation of all components - -> Pay attention to error messages during the start of the Runtime. #### **SOLUTIONS TO PROBLEMS** | Problem | Reason | Solution | |-------------------------------|--------------------------------------|-----------------------| | the driver does not start. An | The <b>zrsProvider.dll</b> could not | Install the container | | Problem | Reason | Solution | | |----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--| | error message is shown and<br>the process is ended | be loaded. | components for zenon. If the problem remains, then: | | | immediately. | | Ensure that the registry entries exist. 32-bit directory under AnalyzerWrapperDir 32, 64-bit directory under AnalyzerWrapperDir 64 | | | | | ▶ Ensure that zrsProvider.dll exists in the paths stated in the registry entries. 32-bit DLL in the 32-bit directory; 64-bit DLL in the 64-bit directory. | | | | | ▶ Ensure that all dependencies of zrsProvider.dll are installed (the correct version of vcredist; can be checked with Dependency Walker). | | | Variables from the Remote | The precise cause is shown | Please check: | | | Runtime driver are on <i>I-bit</i> . | by the log entries in the Diagnosis Viewer. Possible reasons: | Network<br>connectivity and<br>firewall settings. | | | | <ul> <li>Network address of<br/>the variables is not<br/>correct.</li> <li>Network connection<br/>is not possible. For<br/>example due to an</li> </ul> | Install connector container on the target system and start it in the same user context as Runtime. | | | | incorrect IP address,<br>target IP cannot be<br>reached due to a | <ul><li>Check project configuration:</li><li>- IP address</li></ul> | | | Problem | Reason | Solution | |---------|------------------------------------------------------------------------------|-------------------------------------------| | | network failure,<br>firewall settings e | - project name of etc. the connections in | | | Connector conta<br>does not run on<br>target system. | configuration | | | Connector contagon the target system. Connector contagon the target system. | nt Network addresses of the variables | | | Project name of Remote Runtime project is not correct. | | | | • Symbolic address of the variables and the project or Remote Runtime | are<br>nes<br>n |