

zenon driver manual
Prismic

v.8.20

© 2020 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely

with the written permission of the company COPA-DATA. Technical data is only used for product

description and are not guaranteed properties in the legal sense. Subject to change, technical or

otherwise.

Contents

1 Welcome to COPA-DATA help ... 4

2 Prismic ... 4

3 Prismic - data sheet ... 5

4 Driver history ... 7

5 Requirements .. 7

5.1 PC ..7

6 Configuration .. 7

6.1 Creating a driver ..8

6.2 Settings in the driver dialog .. 11

6.2.1 General .. 12

6.2.2 Connections .. 16

7 Creating variables ... 21

7.1 Creating variables in the Editor .. 21

7.2 Addressing .. 25

7.3 Driver objects and datatypes .. 25

7.3.1 Driver objects .. 26

7.4 Creating variables by importing ... 31

7.4.1 XML import .. 31

7.4.2 DBF Import/Export .. 32

7.5 Communication details (Driver variables) ... 38

8 Driver-specific functions .. 43

9 Driver command function .. 45

10 Error analysis ... 50

10.1 Analysis tool ... 50

10.2 Driver monitoring .. 51

10.3 Check list ... 52

Welcome to COPA-DATA help

4 | 54

1 Welcome to COPA-DATA help

ZENON VIDEO TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an

initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our customer service team, which

you can contact via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com.

2 Prismic

The PRISMIC driver receives Event Records from the Prismic PMS by means of Ethernet.

 These event records are decoded by the driver, formatted and forwarded to zenon.

 Nine event types are represented for zenon with their own driver object type. Variables from

the respective driver object type can be linked to a reaction matrix. As a result, the events

can be written to the chronological event list or the alarm message list and evaluated.

Note: You can read further information about this in the driver objects (on page 26)

chapter, in the Evaluate events section.

https://www.copadata.com/tutorial_menu

Prismic - data sheet

5 | 54

 For decoding, the driver uses .CSV files for certain event types. As a result, content such as

register number or status information can be converted to readable texts. This content can

be configured accordingly.

Note: You can find further information about this in the driver-specific functions (on page

43) chapter, in the Controller information from CSV files chapter.

 Information

The driver takes the following standard into account:

PRISMIC POWER MANAGEMENT SYSTEM EVENT,

LOGGER MESSAGE SPECIFICATION (EE0000381)

Project No. 925131, Issue: A

Date: 03/12/2014

3 Prismic - data sheet

General:

Driver file name Prismic.exe

Driver name Prismic Event Logger Driver

PLC types All Brush - Prismic power management system controllers that

have an integrated Prismic event logger/recorder .

PLC manufacturer Brush

Driver supports:

Protocol Prismic Event Logger

Addressing: Address-based Name based

Addressing: Name-based --

Spontaneous

communication

--

Polling communication X

Online browsing --

Prismic - data sheet

6 | 54

Driver supports:

Offline browsing --

Real-time capable --

Blockwrite --

Modem capable --

RDA numerical --

RDA String --

Hysteresis --

extended API --

Supports status bit

WR-SUC

--

alternative IP address --

Requirements:

Hardware PC -

Software PC -

Hardware PLC -

Software PLC -

Requires v-dll --

Platforms:

Operating systems Windows 10; Windows 7; Windows 8; Windows 8.1; Windows

Server 2008 R2; Windows Server 2012; Windows Server 2012 R2;

Windows Server 2016

Driver history

7 | 54

4 Driver history

Date Build number Change

6/15/201

6

100 Created driver documentation

5 Requirements

This chapter contains information on the requirements that are necessary for use of this driver.

5.1 PC

The computer must communicate with a network via Ethernet.

6 Configuration

In this chapter you will learn how to use the driver in a project and which settings you can change.

 Information

Find out more about further settings for zenon variables in the chapter Variables

of the online manual.

Configuration

8 | 54

6.1 Creating a driver

In the Create driver dialog, you create a list of the new drivers that you want to create.

Parameter Description

Available drivers List of all available drivers.

The display is in a tree structure:

[+] expands the folder structure and shows the

drivers contained therein.

[-] reduces the folder structure

Default: No selection

Driver name Unique Identification of the driver.

Default: empty

The input field is pre-filled with the pre-defined

Configuration

9 | 54

Parameter Description

Identification after selecting a driver from the list

of available drivers.

Driver information Further information on the selected driver.

Default: empty

The information on the selected driver is shown in

this area after selecting a driver.

CLOSE DIALOG

Option Description

OK Accepts all settings and opens the driver configuration

dialog of the selected driver.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

 Information

The content of this dialog is saved in the file called Treiber_[Language].xml. You

can find this file in the following folder:

C:\ProgramData\COPA-DATA\zenon[version number].

CREATE NEW DRIVER

In order to create a new driver:

1. Right-click on Driver in the Project Manager and select New driver in the context menu.

Optional: Select the New driver button from the toolbar of the detail view of the

Variables.The Create driver dialog is opened.

The Create simple data type dialog is opened.

Configuration

10 | 54

2. The dialog offers a list of all available drivers.

3. Select the desired driver and name it in the Driver name input field.

This input field corresponds to the Identification property. The name of the selected driver

is automatically inserted into this input field by default.

The following is applicable for the Driver name:

 The Driver name must be unique.

If a driver is used more than once in a project, a new name has to be given each time.

This is evaluated by clicking on the OK button. If the driver is already present in the

project, this is shown with a warning dialog.

 The Driver name is part of the file name.

Therefore it may only contain characters which are supported by the operating system.

Invalid characters are replaced by an underscore (_).

 Attention: This name cannot be changed later on.

4. Confirm the dialog by clicking on the OK button.

The configuration dialog for the selected driver is opened.

Configuration

11 | 54

Note: The language of driver names cannot be switched. They are always shown in the language in

which they have been created, regardless of the language of the Editor. This also applies to driver

object types.

DRIVER NAME DIALOG ALREADY EXISTS

If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by

clicking on the OK button. The driver can be named correctly.

ZENON PROJECT

The following drivers are created automatically for newly-created projects:

 Intern

 MathDr32

 SysDrv

 Information

Only the required drivers need to be present in a zenon project. Drivers can be

added at a later time if required.

6.2 Settings in the driver dialog

You can change the following settings of the driver:

Configuration

12 | 54

6.2.1 General

The configuration dialog is opened when a driver is created. In order to be able to open the dialog

later for editing, double click on the driver in the list or click on the Configuration property.

Option Description

Mode Allows to switch between hardware mode and simulation

mode

 Hardware:

A connection to the control is established.

 Simulation - static:

No communication between to the control is

established, the values are simulated by the driver.

In this modus the values remain constant or the

variables keep the values which were set by zenon

Logic. Each variable has its own memory area. E.g.

two variables of the type marker with offset 79 can

have different values in the Runtime and do not

influence each other. Exception: The simulator

driver.

 Simulation - counting:

No communication between to the control is

established, the values are simulated by the driver.

In this modus the driver increments the values

within a value range automatically.

 Simulation - programmed:

No communication is established to the PLC. The

Configuration

13 | 54

Option Description

values are calculated by a freely programmable

simulation project. The simulation project is created

with the help of the zenon Logic Workbench and

runs in a zenon Logic Runtime which is integrated

in the driver.

For details see chapter Driver simulation.

Keep update list in the memory Variables which were requested once are still requested

from the control even if they are currently not needed.

This has the advantage that e.g. multiple screen switches

after the screen was opened for the first time are

executed faster because the variables need not be

requested again. The disadvantage is a higher load for the

communication to the control.

Output can be written  Active:

Outputs can be written.

 Inactive:

Writing of outputs is prevented.

Note: Not available for every driver.

Variable image remanent This option saves and restores the current value, time

stamp and the states of a data point.

Fundamental requirement: The variable must have a valid

value and time stamp.

The variable image is saved in hardware mode if one of

these statuses is active:

 User status M1 (0) to M8 (7)

 REVISION(9)

 AUS(20)

 ERSATZWERT(27)

The variable image is always saved if:

 the variable is of the Communication details

object type

 the driver runs in simulation mode. (not

programmed simulation)

The following states are not restored at the start of the

Runtime:

Configuration

14 | 54

Option Description

 SELECT(8)

 WR-ACK(40)

 WR-SUC(41)

The mode Simulation - programmed at the driver start is

not a criterion in order to restore the remanent variable

image.

Stop on Standby Server Setting for redundancy at drivers which allow only one

communication connection. For this the driver is stopped

at the Standby Server and only started at the upgrade.

Attention: If this option is active, the gapless archiving is

no longer guaranteed.

 Active:

Sets the driver at the not-process-leading Server

automatically in a stop-like state. In contrast to

stopping via driver command, the variable does

not receive status switched off but an empty value.

This prevents that at the upgrade to the Server

irrelevant values are created in the AML, CEL and

Historian.

Default: inactive

Note: Not available if the CE terminal serves as a data

server. You can find further information in the zenon

Operator manual in the CE terminal as a data server

chapter.

Global Update time Setting for the global update times in milliseconds:

 Active:

The set Global update time is used for all

variables in the project. The priority set at the

variables is not used.

 Inactive:

The set priorities are used for the individual

variables.

Exceptions: Spontaneous drivers ignore this option.

They generally use the shortest possible update time.

For details, see the Spontaneous driver update time

section.

Configuration

15 | 54

Option Description

Priority The polling times for the individual priority classes are set

here. All variables with the according priority are polled in

the set time.

The variables are allocated separately in the settings of

the variable properties.

The communication of the individual variables can be

graded according to importance or required topicality

using the priority classes. Thus the communication load is

distributed better.

Attention: Priority classes are not supported by each

driver, e.g. spontaneously communicating zenon drivers.

CLOSE DIALOG

Option Description

OK Applies all changes in all tabs and closes the dialog.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

UPDATE TIME FOR SPONTANEOUS DRIVERS

With spontaneous drivers, for Set value, advising of variables and Requests, a read cycle is

triggered immediately - regardless of the set update time. This ensures that the value is immediately

available for visualization after writing. The update time is generally 100 ms.

Spontaneous drivers are ArchDrv, BiffiDCM, BrTcp32, DNP3, Esser32, FipDrv32, FpcDrv32, IEC850,

IEC870, IEC870_103, Otis, RTK9000, S7DCOS, SAIA_Slave, STRATON32 and Trend32.

Configuration

16 | 54

6.2.2 Connections

In this tab, you configure the connection parameters for the communication to the PLC via a TCP/IP

connection.

Note: This dialog is only available in English.

The buttons are displayed in the system language of the computer.

CONNECTIONS

List of connections.

Parameter Description

Connection list List of defined connections to PLCs.

 Connection name

Identification of a connection.

Note: as configured in the Connection name input

field in the Edit connection area.

 Net address:

Unique address of a connection.

Note: as configured in the Net address property in

the Edit connection area.

New Creates a new connection and unlocks the input fields in the

Configuration

17 | 54

Parameter Description

Edit connection area.

Edit Unlocks the input fields in the Edit connectionarea for a

selected connection.

Not active if no connection is selected in the connection list.

Delete Deletes a selected connection from the connection list.

Attention: The connection is deleted without requesting

confirmation.

Not active if no connection is selected in the connection list.

EDIT CONNECTION

You configure the settings of a connection in this area. The entry is validated. A corresponding

warning dialog is shown in the event of an error.

Parameter Description

Connection name Name of the connection as it is displayed in the connection list.

Default:Default name

Net address Unique address of the connection.

Each connection is assigned a net address. This must

correspond to the settings in the Net address property of the

variable definition.

Default:0

Input range: 0 - 255

IP-Address/Hostname Addressing of the primary connection to the PLC via IP address

or host name.

Default:192.168.0.1

Port Input of the port address for communication with the

controller. You can find details in the manual of your PLC.

Standard port: 45030

Input range: 0 - 65535

Connection timeout Waiting time before establishing a connection in seconds. If no

event is contained within this time period, the connection is

closed.

Configuration

18 | 54

Parameter Description

Default: 30

Input range: 0 - 65535

Ping Sends a ping to the IP address that is configured for this

connection. Allows the connection to the device to b tested. If

the ping is concluded negatively, check the IP address and

check to see if the device is online.

The result is displayed in a dialog.

Save Accepts all changes for edited connection and closes editing

option.

Inactive if no connection is being edited.

Cancel Discards all changes of the selected connection. No changes

are saved. The Edit connection area is deactivated.

Inactive if no connection is being edited.

CLOSE DIALOG

OK Applies all changes in all tabs and closes the dialog.

Only available if no connection is in the edit state.

Cancel Discards all changes in all tabs and closes the dialog.

Help Opens online help.

CONFIGURATION

CREATE NEW CONNECTION

1. Click on the New button.

The input fields of the input area can be configured.

2. Enter the connection details.

3. Click on Save.

The connection is shown in the list of configured connections.

EDIT CONNECTION

1. Select the connection in the connection list.

Configuration

19 | 54

2. Click on the Edit button.

The input fields of the input area can be configured.

3. Change the connection parameters.

4. Click Save.

DELETE CONNECTION

1. Select the connection in the connection list.

2. Click on the Delete button.

3. The connection will be removed from the list.

Attention: The connection is deleted without an additional request for confirmation.

WARNING DIALOG

An incorrect entry is visualized with a warning dialog.

The error can be corrected in the driver dialog by clicking on the OK button.

 Net address already issued:

Configuration

20 | 54

 Incorrect entries:

Creating variables

21 | 54

 Result Ping:

7 Creating variables

This is how you can create variables in the zenon Editor:

7.1 Creating variables in the Editor

Variables can be created:

 as simple variables

 in arrays

 as structure variables

Creating variables

22 | 54

VARIABLE DIALOG

To create a new variable, regardless of which type:

1. Select the New variable command in the Variables node in the context menu

The dialog for configuring variables is opened

2. Configure the variable

3. The settings that are possible depend on the type of variables

Creating variables

23 | 54

CREATE VARIABLE DIALOG

Property Description

Name Distinct name of the variable. If a variable with the same name

already exists in the project, no additional variable can be created

with this name.

Maximum length: 128 characters

Attention: the characters # and @ are not permitted in variable

names. If non-permitted characters are used, creation of variables

cannot be completed and the Finish button remains inactive.

Note: Some drivers also allow addressing using the Symbolic

address property.

Driver Select the desired driver from the drop-down list.

Note: If no driver has been opened in the project, the driver for

internal variables (Intern.exe) is automatically loaded.

Driver Object Type Select the appropriate driver object type from the drop-down list.

Data Type Select the desired data type. Click on the ... button to open the

selection dialog.

Array settings Expanded settings for array variables. You can find details in the

Creating variables

24 | 54

Property Description

Arrays chapter.

Addressing options Expanded settings for arrays and structure variables. You can find

details in the respective section.

Automatic element

activation

Expanded settings for arrays and structure variables. You can find

details in the respective section.

SYMBOLIC ADDRESS

The Symbolic address property can be used for addressing as an alternative to the Name or

Identification of the variables. Selection is made in the driver dialog; configuration is carried out in

the variable property. When importing variables of supported drivers, the property is entered

automatically.

Maximum length: 1024 characters.

The following drivers support the Symbolic address:

 3S_V3

 AzureDrv

 BACnetNG

 IEC850

 KabaDPServer

 OPCUA32

 Phoenix32

 POZYTON

 RemoteRT

 S7TIA

 SEL

 SnmpNg32

 PA_Drv

 EUROMAP63

INHERITANCE FROM DATA TYPE

Measuring range, Signal range and Set value are always:

 derived from the datatype

 Automatically adapted if the data type is changed

Creating variables

25 | 54

Note for signal range: If a change is made to a data type that does not support the set signal

range, the signal range is amended automatically. For example, for a change from INT to SINT, the

signal range is changed to 127. The amendment is also carried out if the signal range was not

inherited from the data type. In this case, the measuring range must be adapted manually.

7.2 Addressing

Group/Property Description

General Property group for general settings.

Name Freely definable name.

Attention: For every zenon project the name must be unambiguous.

Identification Freely definable identification.

E.g. for Resources label, comments, ...

Addressing

Net address

Data block not used for this driver

Offset not used for this driver

Alignment not used for this driver

Bit number not used for this driver

String length not used for this driver

Driver

connection/Driver

Object Type

Object type of the variables. Depending on the driver used, is selected

when the variable is created and can be changed here.

Driver

connection/Data

Type

Each driver object type has precisely one data type:

 Connection state: BOOL

 All events: WSTRING

7.3 Driver objects and datatypes

Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out

which driver objects are provided by the driver and which IEC data types can be assigned to the

respective driver objects.

Creating variables

26 | 54

7.3.1 Driver objects

The following object types are available in this driver:

Driver Object

Type

Channel

type

Read Write Supported

data types

Description

Connection state 49 x -- BOOL A BOOL variable for each

connection. Addressing via

network address.

 0:

No connection

 1:

connection results in

Event C - MMS

Message OUT

48 x -- WSTRING LOG Message Type C

MMS Message Out (IEC

61850)

Event G - GOOSE

Message IN

45 x -- WSTRING LOG Message Type G

GOOSE Message In (IEC

61850)

Event H -

Identified HR

Change

44 x -- WSTRING LOG Message Type H

Identified HR (Holding

Register)

Change

Event I - DI

Register Change

40 x -- WSTRING LOG Message Type I

DI (Digital Input)

Register Change

Event J - GOOSE

Message OUT

46 x -- WSTRING LOG Message Type J

Goose Message Out (IEC

61850)

Event M - MMS

Message IN

47 x -- WSTRING LOG Message Type M

MMS Message In (IEC

61850)

Event O - DO

Register Change

41 x -- WSTRING LOG Message Type O

DO (Digital Output)

Register Change

Event T - Text 42 x -- WSTRING LOG Message Type T

Text

Creating variables

27 | 54

Driver Object

Type

Channel

type

Read Write Supported

data types

Description

Event X -

Identified Text

43 x -- WSTRING LOG Message Type X

Identified Text

Communication

details

35 X X BOOL, SINT,

USINT, INT,

UINT, DINT,

UDINT, REAL,

STRING

Variables for the static

analysis of the

communication; Values are

transferred between driver

and Runtime (not to the

PLC).

Note: The addressing and

the behavior is the same for

most zenon drivers.

You can find detailed

information on this in the

Communication details

(Driver variables) (on page

38) chapter.

Key:

X: supported

--: not supported

Attention

All variables with a PRISMIC driver object type cannot be written to. The Write

set value variable property is always deactivated for these variables in the

zenon Editor and is grayed out.

EVALUATING EVENTS

In order to be able to use events of a connection in zenon, a variable with the corresponding driver

object type must be created in the zenon Editor for each event type. The connection state driver

object type is used to query the Connection state. You configure the assignment of the variable to a

connection in the Net address property. You can find this property in the Addressing variable

property group.

Creating variables

28 | 54

However, if this variable is linked to a reaction matrix, the events can be written to the CEL or AML.

It is recommended that this variable is not used in a zenon project directly.

To this end, configure a separate String reaction matrix for each variable in order to react to changes.

ENGINEERING IN THE EDITOR

Carry out the following project configuration steps:

1. Create a new variable.

a) In the toolbar or in the context menu of the Variable node, select the New variable...

command.

The dialog to create a variable is opened.

1. Configure the variable:

a) Ensure that, in the Driver option, the PRISMIC - [driver name] is selected.

a) Select the desired event type in the drop-down list of the driver object type.

b) Confirm your project configuration by clicking on the OK button

2. Assign the variable a connection with the Net address property.

3. Configure a reaction matrix:

a) in the context menu of the Variable node, select the React matrix subnode.

b) In the toolbar or in the context menu of the Functions node, select the New reaction

matrix command.

The dialog to create a reaction matrix is opened.

c) Select String as the type of reaction matrix and name the reaction matrix.

d) Confirm your input by clicking on the OK button.

The dialog to configure the reaction matrix is opened.

4. Create a new status for the reaction by clicking on the New status button.

a) Select, in the drop-down list of the Value area, the equal entry.

5. Create a further status for the reaction by clicking on the New status button.

a) Select, in the drop-down list of the Value area, the As desired entry.

b) Add $%[Variablenname] to the limit value text input field in order to show contents of

the variable in the CEL.

The [Variablenname] must match the name of the configured variable for the driver

object type.

c) Activate the Treat each value change as a new breach option.

d) Activate the In chronological event list option.

e) Optional: Activate In alarm message list to also incorporate content into the AML.

Creating variables

29 | 54

6. Confirm your project configuration by clicking on the OK button

7. Link the reaction matrix to a variable.

a) To do this, select the corresponding variable in the list of variables.

b) Click, in the Reaction matrix variable property, on the ... button:

The dialog to select a reaction matrix is opened.

Attention

In order to display the content of the string variable in the CEL, it must be added

to the reaction matrix with $%[variable name] in the limit value text.

Example configuration - Status 1

Creating variables

30 | 54

Example configuration - Status 2

FILTER DUPLICATES

Different Prismic PMS event loggers can register the same event and report to the driver. The driver

detects this double information and only forwards this event to zenon once. If a new event is

received, the driver checks whether an event with the same content and a time stamp that is different

by a maximum of 50 milliseconds has already been reported in the last five seconds. If this is the case,

the event is classified as a duplicate and discarded.

 Information

These discarded events are also used for further checking. If cyclical events with

the same content are sent with a time interval of less than 50 milliseconds, only

the first event is forwarded and all others are discarded.

Creating variables

31 | 54

CHANNEL TYPE

The term Kanaltyp is the internal numerical name of the driver object type. It is also used for the

extended DBF import/export of the variables.

"Kanaltyp" is used for advanced CSV import/export of variables in the "HWObjectType" column.

7.4 Creating variables by importing

Variables can also be imported by importing them. The XML and DBF import is available for every

driver.

 Information

You can find details on the import and export of variables in the Import-Export

manual in the Variables section.

7.4.1 XML import

During XML import of variables or data types, these are first assigned to a driver and then analyzed.

Before import, the user decides whether and how the respective element (variable or data type) is to

be imported:

 Import:

The element is imported as a new element.

 Overwrite:

The element is imported and overwrites a pre-existing element.

 Do not import:

The element is not imported.

Note: The actions and their durations are shown in a progress bar during import. The import of

variables is described in the following documentation. Data types are imported along the same lines.

REQUIREMENTS

The following conditions are applicable during import:

 Backward compatibility

At the XML import/export there is no backward compatibility. Data from older zenon

versions can be taken over. The handover of data from newer to older versions is not

supported.

 Consistency

Creating variables

32 | 54

The XML file to be imported has to be consistent. There is no plausibility check on importing

the file. If there are errors in the import file, this can lead to undesirable effects in the project.

Particular attention must be paid to this, primarily if not all properties exist in the XML file and

these are then filled with default values. E.g.: A binary variable has a limit value of 300.

 Structure data types

Structure data types must have the same number of structure elements.

Example: A structure data type in the project has 3 structure elements. A data type with the

same name in the XML file has 4 structure elements. Then none of the variables based on

this data type in the file are imported into the project.

 Hint

You can find further information on XML import in the Import - Export manual,

in the XML import chapter.

7.4.2 DBF Import/Export

Data can be exported to and imported from dBase.

 Information

Import and Export via CSV or dBase supported; no driver specific variable

settings, such as formulas. Use export/import via XML for this.

IMPORT DBF FILE

To start the import:

1. right-click on the variable list.

2. In the drop-down list of Extended export/import... select the Import dBase command.

3. Follow the instructions of the import assistant.

The format of the file is described in the chapter File structure.

Creating variables

33 | 54

 Information

Note:

 Driver object type and data type must be amended to the target driver in

the DBF file in order for variables to be imported.

 dBase does not support structures or arrays (complex variables) at import.

EXPORT DBF FILE

To start the export:

1. right-click on the variable list.

2. In the drop-down list of Extended export/import... select the Export dBase... command .

3. Follow the instructions of the import assistant.

Attention

DBF files:

 must correspond to the 8.3 DOS format for filenames (8 alphanumeric

characters for name, 3 character suffix, no spaces)

 must not have dots (.) in the path name.

e.g. the path C:\users\John.Smith\test.dbf is invalid.

Valid: C:\users\JohnSmith\test.dbf

 must be stored close to the root directory in order to fulfill the limit for file

name length including path: maximum 255 characters

The format of the file is described in the chapter File structure.

 Information

dBase does not support structures or arrays (complex variables) at export.

FILE STRUCTURE OF THE DBASE EXPORT FILE

The dBaseIV file must have the following structure and contents for variable import and export:

Creating variables

34 | 54

Attention

dBase does not support structures or arrays (complex variables) at export.

DBF files must:

 conform with their name to the 8.3 DOS format (8 alphanumeric characters

for name, 3 characters for extension, no space)

 Be stored close to the root directory (Root)

STRUCTURE

Identification Typ

e

Field size Comment

KANALNAME Cha

r

128 Variable name.

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

KANAL_R C 128 The original name of a variable that is to be replaced by

the new name entered under "VARIABLENNAME”

(variable name) (field/column must be entered

manually).

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

KANAL_D Log 1 The variable is deleted with the 1 entry (field/column has

to be created by hand).

TAGNR C 128 Identification.

The length can be limited using the MAX_LAENGE

entry in the project.ini file.

EINHEIT C 11 Technical unit

DATENART C 3 Data type (e.g. bit, byte, word, ...) corresponds to the

data type.

KANALTYP C 3 Memory area in the PLC (e.g. marker area, data area, ...)

corresponds to the driver object type.

HWKANAL Nu

m

3 Net address

BAUSTEIN N 3 Datablock address (only for variables from the data area

Creating variables

35 | 54

Identification Typ

e

Field size Comment

of the PLC)

ADRESSE N 5 Offset

BITADR N 2 For bit variables: bit address

For byte variables: 0=lower, 8=higher byte

For string variables: Length of string (max. 63 characters)

ARRAYSIZE N 16 Number of variables in the array for index variables

ATTENTION: Only the first variable is fully available. All

others are only available for VBA or the Recipegroup

Manager

LES_SCHR L 1 Write-Read-Authorization

0: Not allowed to set value.

1: Allowed to set value.

MIT_ZEIT R 1 time stamp in zenon (only if supported by the driver)

OBJEKT N 2 Driver-specific ID number of the primitive object

comprises TREIBER-OBJEKTTYP and DATENTYP

SIGMIN Floa

t

16 Non-linearized signal - minimum (signal resolution)

SIGMAX F 16 Non-linearized signal - maximum (signal resolution)

ANZMIN F 16 Technical value - minimum (measuring range)

ANZMAX F 16 Technical value - maximum (measuring range)

ANZKOMMA N 1 Number of decimal places for the display of the values

(measuring range)

UPDATERATE F 19 Update rate for mathematics variables (in sec, one

decimal possible)

not used for all other variables

MEMTIEFE N 7 Only for compatibility reasons

HDRATE F 19 HD update rate for historical values (in sec, one decimal

possible)

HDTIEFE N 7 HD entry depth for historical values (number)

NACHSORT R 1 HD data as postsorted values

Creating variables

36 | 54

Identification Typ

e

Field size Comment

DRRATE F 19 Updating to the output (for zenon DDE server, in [s],

one decimal possible)

HYST_PLUS F 16 Positive hysteresis, from measuring range

HYST_MINUS F 16 Negative hysteresis, from measuring range

PRIOR N 16 Priority of the variable

REAMATRIZE C 32 Allocated reaction matrix

ERSATZWERT F 16 Substitute value, from measuring range

SOLLMIN F 16 Minimum for set value actions, from measuring range

SOLLMAX F 16 Maximum for set value actions, from measuring range

VOMSTANDBY R 1 Get value from standby server; the value of the variable

is not requested from the server but from the Standby

Server in redundant networks

RESOURCE C 128 Resources label.

Free string for export and display in lists.

The length can be limited using the MAX_LAENGE entry

in project.ini.

ADJWVBA R 1 Non-linear value adaption:

0: Non-linear value adaption is used

1: Non-linear value adaption is not used

ADJZENON C 128 Linked VBA macro for reading the variable value for

non-linear value adjustment.

ADJWVBA C 128 ed VBA macro for writing the variable value for

non-linear value adjustment.

ZWREMA N 16 Linked counter REMA.

MAXGRAD N 16 Gradient overflow for counter REMA.

Attention

When importing, the driver object type and data type must be amended to the

target driver in the DBF file in order for variables to be imported.

Creating variables

37 | 54

LIMIT VALUE DEFINITION

Limit definition for limit values 1 to 4, or status 1 to 4:

Identification Type Field size Comment

AKTIV1 R 1 Limit value active (per limit value available)

GRENZWERT1 F 20 technical value or ID number of a linked variable for

a dynamic limit value (see VARIABLEx)

(if VARIABLEx is 1 and here it is -1, the existing

variable linkage is not overwritten)

SCHWWERT1 F 16 Threshold value for limit value

HYSTERESE1 F 14 Is not used

BLINKEN1 R 1 Set blink attribute

BTB1 R 1 Logging in CEL

ALARM1 R 1 Alarm

DRUCKEN1 R 1 Printer output (for CEL or Alarm)

QUITTIER1 R 1 Must be acknowledged

LOESCHE1 R 1 Must be deleted

VARIABLE1 R 1 Dyn. limit value linking

the limit is defined by an absolute value (see field

GRENZWERTx).

FUNC1 R 1 Functions linking

ASK_FUNC1 R 1 Execution via Alarm Message List

FUNC_NR1 N 10 ID number of the linked function

(if “-1” is entered here, the existing function is not

overwritten during import)

A_GRUPPE1 N 10 Alarm/Event Group

A_KLASSE1 N 10 Alarm/Event Class

MIN_MAX1 C 3 Minimum, Maximum

FARBE1 N 10 Color as Windows coding

GRENZTXT1 C 66 Limit value text

A_DELAY1 N 10 Time delay

Creating variables

38 | 54

Identification Type Field size Comment

INVISIBLE1 R 1 Invisible

Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the

definition of variables. For more information, see chapter Variable definition.

7.5 Communication details (Driver variables)

The driver kit implements a number of driver variables. This variables are part of the driver object type

Communication details. These are divided into:

 Information

 Configuration

 Statistics and

 Error message

The definitions of the variables implemented in the driver kit are available in the import file

DRVVAR.DBF and can be imported from there.

Path to file: %ProgramData%\COPA-DATA\zenon<Versionsnummer>\PredefinedVariables

Note: Variable names must be unique in zenon. If driver variables of the driver object type

Communication details are to be imported from DRVVAR.DBF again, the variables that were imported

beforehand must be renamed.

 Information

Not every driver supports all driver variables of the driver object type

Communication details.

For example:

 Variables for modem information are only supported by

modem-compatible drivers.

 Driver variables for the polling cycle are only available for pure polling

drivers.

 Connection-related information such as ErrorMSG is only supported for

drivers that only edit one connection at a a time.

INFORMATION

Name from import Type Offset Description

MainVersion UINT 0 Main version number of the driver.

Creating variables

39 | 54

Name from import Type Offset Description

SubVersion UINT 1 Sub version number of the driver.

BuildVersion UINT 29 Build version number of the driver.

RTMajor UINT 49 zenon main version number

RTMinor UINT 50 zenon sub version number

RTSp UINT 51 zenon Service Pack number

RTBuild UINT 52 zenon build number

LineStateIdle BOOL 24.0 TRUE, if the modem connection is idle

LineStateOffering BOOL 24.1 TRUE, if a call is received

LineStateAccepted BOOL 24.2 The call is accepted

LineStateDialtone BOOL 24.3 Dialtone recognized

LineStateDialing BOOL 24.4 Dialing active

LineStateRingBack BOOL 24.5 While establishing the connection

LineStateBusy BOOL 24.6 Target station is busy

LineStateSpecialInfo BOOL 24.7 Special status information received

LineStateConnected BOOL 24.8 Connection established

LineStateProceeding BOOL 24.9 Dialing completed

LineStateOnHold BOOL 24.10 Connection in hold

LineStateConferenced BOOL 24.11 Connection in conference mode.

LineStateOnHoldPendConf BOOL 24.12 Connection in hold for conference

LineStateOnHoldPendTransfe

r

BOOL 24.13 Connection in hold for transfer

LineStateDisconnected BOOL 24.14 Connection terminated.

LineStateUnknow BOOL 24.15 Connection status unknown

ModemStatus UDINT 24 Current modem status

TreiberStop BOOL 28 Driver stopped

For driver stop, the variable has the value

TRUE and an OFF bit. After the driver has

Creating variables

40 | 54

Name from import Type Offset Description

started, the variable has the value FALSE

and no OFF bit.

SimulRTState UDINT 60 Informs the state of Runtime for driver

simulation.

ConnectionStates STRING 61 Internal connection status of the driver to

the PLC.

Connection statuses:

 0: Connection OK

 1: Connection failure

 2: Connection simulated

Formating:

<Net address>:<Connection status>;…;…;

A connection is only known after a variable

has first signed in. In order for a connection

to be contained in a string, a variable of this

connection must be signed in once.

The status of a connection is only updated

if a variable of the connection is signed in.

Otherwise there is no communication with

the corresponding controller.

CONFIGURATION

Name from import Type Offset Description

ReconnectInRead BOOL 27 If TRUE, the modem is automatically

reconnected for reading

ApplyCom BOOL 36 Apply changes in the settings of the serial

interface. Writing to this variable

immediately results in the method

SrvDrvVarApplyCom being called (which

currently has no further function).

ApplyModem BOOL 37 Apply changes in the settings of the

modem. Writing this variable immediately

calls the method SrvDrvVarApplyModem.

This closes the current connection and

Creating variables

41 | 54

Name from import Type Offset Description

opens a new one according to the settings

PhoneNumberSet and ModemHwAdrSet.

PhoneNumberSet STRING 38 Telephone number, that should be used

ModemHwAdrSet DINT 39 Hardware address for the telephone

number

GlobalUpdate UDINT 3 Update time in milliseconds (ms).

BGlobalUpdaten BOOL 4 TRUE, if update time is global

TreiberSimul BOOL 5 TRUE, if driver in sin simulation mode

TreiberProzab BOOL 6 TRUE, if the variables update list should be

kept in the memory

ModemActive BOOL 7 TRUE, if the modem is active for the driver

Device STRING 8 Name of the serial interface or name of the

modem

ComPort UINT 9 Number of the serial interface.

Baudrate UDINT 10 Baud rate of the serial interface.

Parity SINT 11 Parity of the serial interface

ByteSize USINT 14 Number of bits per character of the serial

interface

Value = 0 if the driver cannot establish any

serial connection.

StopBit USINT 13 Number of stop bits of the serial interface.

Autoconnect BOOL 16 TRUE, if the modem connection should be

established automatically for reading/writing

PhoneNumber STRING 17 Current telephone number

ModemHwAdr DINT 21 Hardware address of current telephone

number

RxIdleTime UINT 18 Modem is disconnected, if no data transfer

occurs for this time in seconds (s)

WriteTimeout UDINT 19 Maximum write duration for a modem

connection in milliseconds (ms).

Creating variables

42 | 54

Name from import Type Offset Description

RingCountSet UDINT 20 Number of ringing tones before a call is

accepted

ReCallIdleTime UINT 53 Waiting time between calls in seconds (s).

ConnectTimeout UINT 54 Time in seconds (s) to establish a

connection.

STATISTICS

Name from import Type Offset Description

MaxWriteTime UDINT 31 The longest time in milliseconds (ms) that is required

for writing.

MinWriteTime UDINT 32 The shortest time in milliseconds (ms) that is

required for writing.

MaxBlkReadTime UDINT 40 Longest time in milliseconds (ms) that is required to

read a data block.

MinBlkReadTime UDINT 41 Shortest time in milliseconds (ms) that is required to

read a data block.

WriteErrorCount UDINT 33 Number of writing errors

ReadSucceedCount UDINT 35 Number of successful reading attempts

MaxCycleTime UDINT 22 Longest time in milliseconds (ms) required to read

all requested data.

MinCycleTime UDINT 23 Shortest time in milliseconds (ms) required to read

all requested data.

WriteCount UDINT 26 Number of writing attempts

ReadErrorCount UDINT 34 Number of reading errors

MaxUpdateTimeNor

mal

UDINT 56 Time since the last update of the priority group

Normal in milliseconds (ms).

MaxUpdateTimeHigh

er

UDINT 57 Time since the last update of the priority group

Higher in milliseconds (ms).

MaxUpdateTimeHigh UDINT 58 Time since the last update of the priority group High

in milliseconds (ms).

MaxUpdateTimeHigh UDINT 59 Time since the last update of the priority group

Driver-specific functions

43 | 54

Name from import Type Offset Description

est Highest in milliseconds (ms).

PokeFinish BOOL 55 Goes to 1 for a query, if all current pokes were

executed

ERROR MESSAGE

Name from import Type Offset Description

ErrorTimeDW UDINT 2 Time (in seconds since 1.1.1970), when the last error

occurred.

ErrorTimeS STRING 2 Time (in seconds since 1.1.1970), when the last error

occurred.

RdErrPrimObj UDINT 42 Number of the PrimObject, when the last reading

error occurred.

RdErrStationsName STRING 43 Name of the station, when the last reading error

occurred.

RdErrBlockCount UINT 44 Number of blocks to read when the last reading

error occurred.

RdErrHwAdresse DINT 45 Hardware address when the last reading error

occurred.

RdErrDatablockNo UDINT 46 Block number when the last reading error occurred.

RdErrMarkerNo UDINT 47 Marker number when the last reading error

occurred.

RdErrSize UDINT 48 Block size when the last reading error occurred.

DrvError USINT 25 Error message as number

DrvErrorMsg STRING 30 Error message as text

ErrorFile STRING 15 Name of error log file

8 Driver-specific functions

The driver supports the following functions:

Driver-specific functions

44 | 54

CONTROLLER INFORMATION FROM CSV FILES

The PRISMIC driver reads controller information from CSV files when the driver is started.

 These CSV files must be present in the following folder:

\ProgramData\COPA-DATA\SQL2012\[Project ID]\FILES\zenon\custom\drivers

Note: The files can also be uploaded easily in the zenon Editor. To do this, see the

uploading CSV files in the Editor section in this chapter.

The naming and structure of the files must correspond to the following requirements:

 di.csv

Slave, reg (>10000), description, false value, true value

 do.csv

Slave, reg(>0) description, false val, true val

 hr.csv

 Digital:

type, slave, reg (>40000), bit, description, false val, true val

 Analog:

type, slave, reg (>40000), bit, description, low unscaled, low scaled, high unscaled, high

scaled, dp, units

 Information

If these files are not present or they cannot be read in correctly, the received

units are forwarded to zenon in unedited form.

UPLOADING CSV FILES IN THE EDITOR

The required CSV files can also be added in the zenon Editor directly. To do this, carry out the

following steps:

1. Select the Files node in the current project.

2. There, go to the Driver subnode.

3. In the toolbar or in the context menu of the Driver subnode, select the Add file... command

The file selection dialog is opened.

4. Select, in the file selection dialog of the drop-down list of the data to be displayed, the All

files (*.*) entry.

The CSV files are listed in the selection dialog.

5. Select the files and confirm the selection by clicking on OK.

The selected files are copied to the zenon project folder.

Driver command function

45 | 54

9 Driver command function

The zenon Driver commands function is to influence drivers using zenon.

You can do the following with a driver command:

 Start

 Stop

 Shift a certain driver mode

 Instigate certain actions

Note: This chapter describes standard functions that are valid for most zenon drivers.

Not all functions described here are available for every driver. For example, a driver that does not,

according to the data sheet, support a modem connection also does not have any modem

functions.

Attention

The zenon Driver commands function is not identical to driver commands that

can be executed in the Runtime with Energy drivers!

CONFIGURATION OF THE FUNCTION

Configuration is carried out using the Driver commands function.

To configure the function:

1. Create a new function in the zenon Editor.

Driver command function

46 | 54

The dialog for selecting a function is opened

2. Navigate to the node Variable.

3. Select the Driver commands entry.

Driver command function

47 | 54

The dialog for configuration is opened

4. Select the desired driver and the required command.

5. Close the dialog by clicking on OK and ensure that the function is executed in the Runtime.

Heed the notices in the Driver command function in the network section.

DRIVER COMMAND DIALOG

Driver command function

48 | 54

Option Description

Driver Selection of the driver from the drop-down list.

It contains all drivers loaded in the project.

Current condition Fixed entry that is set by the system.

no function in the current version.

Driver command no function in the current version.

For details on the configurable driver commands, see

the available driver commands section.

Driver-specific command Entry of a command specific to the selected driver.

Note: Only available if, for the driver command

option, the driver-specific command has been selected.

Show this dialog in the Runtime Configuration of whether the configuration can be

changed in the Runtime:

 Active: This dialog is opened in the Runtime

before executing the function. The configuration

can thus still be changed in the Runtime before

execution.

 Inactive: The Editor configuration is applied in the

Runtime when executing the function.

Default: inactive

CLOSE DIALOG

Options Description

OK Applies settings and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

AVAILABLE DRIVER COMMANDS

These driver commands are available - depending on the selected driver:

Driver command Description

No command No command is sent.

A command that already exists can thus be removed

from a configured function.

Driver command function

49 | 54

Driver command Description

Start driver (online mode) Driver is reinitialized and started.

Note: If the driver has already been started, it must be

stopped. Only then can the driver be re-initialized and

started.

Stop driver (offline mode) Driver is stopped. No new data is accepted.

Note: If the driver is in offline mode, all variables that

were created for this driver receive the status switched

off (OFF; Bit 20).

Driver in simulation mode Driver is set into simulation mode.

The values of all variables of the driver are simulated by

the driver. No values from the connected hardware (e.g.

PLC, bus system, ...) are displayed.

Driver in hardware mode Driver is set into hardware mode.

For the variables of the driver the values from the

connected hardware (e.g. PLC, bus system, ...) are

displayed.

Driver-specific command Entry of a driver-specific command. Opens input field in

order to enter a command.

Driver - activate set setpoint value Write set value to a driver is possible.

Driver - deactivate set setpoint value Write set value to a driver is prohibited.

Establish connecton with modem Establish connection (for modem drivers)

Opens the input fields for the hardware address and for

the telephone number.

Disconnect from modem Terminate connection (for modem drivers)

Driver in counting simulation mode Driver is set into counting simulation mode.

All values are initialized with 0 and incremented in the

set update time by 1 each time up to the maximum

value and then start at 0 again.

Driver in static simulation mode No communication to the controller is established. All

values are initialized with 0.

Driver in programmed simulation

mode

The values are calculated by a freely-programmable

simulation project. The simulation project is created

with the help of the zenon Logic Workbench and runs

in the zenon Logic Runtime.

Error analysis

50 | 54

DRIVER COMMAND FUNCTION IN THE NETWORK

If the computer on which the Driver commands function is executed is part of the zenon network,

further actions are also carried out:

 A special network command is sent from the computer to the project server.

It then executes the desired action on its driver.

 In addition, the Server sends the same driver command to the project standby.

The standby also carries out the action on its driver.

This makes sure that Server and Standby are synchronized. This only works if the Server and the

Standby both have a working and independent connection to the hardware.

10 Error analysis

Should there be communication problems, this chapter will assist you in finding out the error.

10.1 Analysis tool

All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display

them correctly and clearly, use the Diagnosis Viewer program that was also installed with zenon. You

can find it under Start/All programs/zenon/Tools 8.20 -> Diagviewer.

zenon driver log all errors in the LOG files.LOG files are text files with a special structure. The default

folder for the LOG files is subfolder LOG in the folder ProgramData. For example:

%ProgramData%\COPA-DATA\LOG.

Attention: With the default settings, a driver only logs error information. With the Diagnosis Viewer

you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this

the driver also logs all other important tasks and events.

In the Diagnosis Viewer you can also:

 Follow newly-created entries in real time

 customize the logging settings

 change the folder in which the LOG files are saved

Note:

1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local

time.

Error analysis

51 | 54

2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more

columns activate property Add all columns with entry in the context menu of the column

header.

3. If you only use Error-Logging, the problem description is in the column Error text. For other

diagnosis level the description is in the column General text.

4. For communication problems many drivers also log error numbers which the PLC assigns to

them. They are displayed in Error text or Error code or Driver error parameter (1 and 2). Hints

on the meaning of error codes can be found in the driver documentation and the

protocol/PLC description.

5. At the end of your test set back the diagnosis level from Debug or Deep Debug. At Debug

and Deep Debug there are a great deal of data for logging which are saved to the hard drive

and which can influence your system performance. They are still logged even after you close

the Diagnosis Viewer.

Attention

In Windows CE errors are not logged per default due to performance reasons.

You can find further information on the Diagnosis Viewer in the Diagnose Viewer manual.

10.2 Driver monitoring

Runtime monitors the availability of the driver by means of a watchdog. If a driver is no longer

available, the INVALID status bit is also set for all checked-in variables.

Possible causes for a triggering of the watchdog:

 The driver process is no longer running.

Check whether the driver EXE file is still running in the Task Manager.

 Operating system is busy with processes that have a higher priority.

Check the configuration of your system to see whether there is sufficient memory and CPU

power. In this case, the driver only resets the INVALID status bit if there is a value change on

the connected party. Static values retain the INVALID status bit until the next time the

Runtime or the driver is started.

CONFIGURATION OF WATCHDOG

For the monitoring of communication in the Runtime, the connection to the driver is checked in a

fixed, prescribed time period of 60 seconds. This process is repeated several times. If, within 5

attempts (= within 5 minutes), no valid connection to the driver is detected, the INVALID bit is set for

the checked-in (advised) variables. In addition, the INVALID bit is also set when new variables are

advised. The INVALID bit will no longer be reset.

Error analysis

52 | 54

Corresponding LOG entries are created for this.

LOG ENTRY

An error message is logged in the LOG when the watchdog is triggered:

Parameter Description

Communication with

driver:<drvExe>/<drvDesc>(id:<drvId>)

timed out. No communication for <time>

ms.

No communication with driver within the given

time.

 <time>: Time (in milliseconds)

 <drvDesc>: Driver name

 <drvExe>: Driver EXE name

 <drvId>: Driver ID in the zenon project

Communication with %s timed out.

Invalid-Bit will be set.

Communication to the %s driver could not be

established after 5 attempts within 60 seconds. The

INVALID bit is set for the variable.

Communication with %s timed out. Timeout

happened %d times

Communication to the %s driver could not be

established after %d times within 60 seconds.

10.3 Check list

Questions and hints for fault isolation:

GENERAL TROUBLESHOOTING

 Is the PLC connected to the power supply?

 Analysis with the Diagnosis Viewer (on page 50):

-> Which messages are displayed?

 Are the participants available in the TCP/IP network?

 Can the PLC be reached via the Ping command?

Ping button in the driver configuration menu in the Connections tab

or

Ping: Open command line -> ping <IP address > (e.g.: ping 192.168.0.100) -> Press the

Enter key.

Do you receive an answer with a time or a timeout?

 Can the PLC be reached at the respective port via TELNET?

Error analysis

53 | 54

Telnet: Command line: enter: telent <IP address port number> (for example for

Modbus: telnet 192.168.0.100 502) -> Press the Enter key.

If the monitor display turns black, a connection could be established.

 Are you using the correct cable which is recommended by the manufacturer for the

connection between the PLC and the PC?

 Did you configure the Net address in the address properties of the variable correctly?

 Does the addressing match with the configuration in the driver dialog?

 Does the net address match the address of the target station?

 Did you use the right object type for the variable?

Example: Driver variables based on driver object type Communication details are purely

statistics variables. They do not communicate with the PLC.

You can find detailed information on this in the Communication details (Driver variables) (on

page 38) chapter.

SOME VARIABLES REPORT INVALID.

 INVALID bits always refer to a net address.

 At least one variable of the net address is faulty.

VALUES ARE NOT DISPLAYED, NUMERIC VALUES REMAIN EMPTY

Driver is not working. Check the:

 Installation of zenon

 the driver installation

 The installation of all components

-> Pay attention to error messages during the start of the Runtime.

VARIABLES ARE DISPLAYED WITH A BLUE DOT

The communication in the network is faulty:

 With a network project:

Is the network project also running on the server?

 With a stand-alone project or a network project which is also running on the server:

Deactivate the property Read from Standby Server only in node Driver

connection/Addressing.

Error analysis

54 | 54

DRIVER FAILS OCCASIONALLY

Analysis with the Diagnosis Viewer (on page 50):

-> Which messages are displayed?

	1 Welcome to COPA-DATA help
	2 Prismic
	3 Prismic - data sheet
	4 Driver history
	5 Requirements
	5.1 PC

	6 Configuration
	6.1 Creating a driver
	6.2 Settings in the driver dialog
	6.2.1 General
	6.2.2 Connections

	7 Creating variables
	7.1 Creating variables in the Editor
	7.2 Addressing
	7.3 Driver objects and datatypes
	7.3.1 Driver objects

	7.4 Creating variables by importing
	7.4.1 XML import
	7.4.2 DBF Import/Export

	7.5 Communication details (Driver variables)

	8 Driver-specific functions
	9 Driver command function
	10 Error analysis
	10.1 Analysis tool
	10.2 Driver monitoring
	10.3 Check list

