

zenon manual
Project efficiently with the

help of zenon

v.8.20

© 2020 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely

with the written permission of the company COPA-DATA. Technical data is only used for product

description and are not guaranteed properties in the legal sense. Subject to change, technical or

otherwise.

Contents

1 Welcome to COPA-DATA help ... 5

2 Project efficiently with the help of zenon .. 5

3 Simple operation .. 6

4 Object orientation .. 8

4.1 Parameterizing instead of programming ..9

4.2 Global and central instead of local ... 10

4.3 Object-oriented parameterization .. 11

4.3.1 Drivers .. 12

4.3.2 Data types .. 13

4.3.3 Tips for addressing and import/export .. 17

5 Reusing elements .. 18

5.1 Replacing variables and functions ... 19

5.1.1 Naming conventions.. 19

5.1.2 Possibilities for replacement ... 20

5.2 Symbols ... 24

5.2.1 Free access properties ... 24

5.2.2 Replacement with symbols ... 26

5.2.3 General symbol library .. 28

5.3 Structure Data Type .. 30

5.4 Reaction matrices .. 33

5.5 Global project .. 33

5.6 XML ... 34

5.7 Wizards .. 36

5.8 Reusing projects ... 37

5.8.1 Project backup.. 37

5.8.2 Save as ... 37

5.8.3 Multi-project administration .. 38

6 Integrated network .. 39

7 Tips and tricks ... 39

7.1 zenon Editor: .. 39

7.2 zenon Runtime .. 42

7.3 Keyboard shortcuts ... 43

7.4 Test of projects ... 49

Welcome to COPA-DATA help

5 | 49

1 Welcome to COPA-DATA help

ZENON VIDEO TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an

initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our customer service team, which

you can contact via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com.

2 Project efficiently with the help of zenon

Is it the first time you are using zenon?

Here you find information on how to use zenon efficiently. Even if you already have experience with

other process control systems, we recommend that you look at this chapter. You´ll learn which basic

ideas are behind zenon and how it works; why and how zenon helps you work easier and faster.

AN OVERVIEW OF ZENON

zenon consists of Editor and Runtime.

Projects are created in the Editor. Operation and observation is carried out in Runtime. Editor and

https://www.copadata.com/tutorial_menu

Simple operation

6 | 49

Runtime are compatible between versions from version 6.20 onwards. A project that was created with

version 6.50, for example, also runs on Runtime with version 6.22 and vice versa.

zenon mainly differs from other systems by:

 Simple operation (on page 6): Many actions can be achieved with a few mouse clicks;

assistants and wizards make work easy and fast. You can work using drag&drop with the

mouse or the keyboard - as you like it.

 Practical object orientation (on page 8): You work consistently with objects for which the

parameters can be set quickly, instead of laborious programming. You also use objects that

have been defined once throughout projects, benefit from inheritance and lightning-quick

changes to properties.

 Excellent reusability (on page 18) of objects and elements that have already been configured:

Many elements, from individual variables to complete projects can be very easily and

effectively reused in zenon.

 Integrated network (on page 39): Distributed engineering in the network and 100%

redundancy are no longer a big effort. You can create networks by checking the relevant

checkbox. It is in precisely this way that you network individual standalone projects into

efficient redundant systems.

TIPS AND TRICKS

You can find useful tips in the forum of www.copadata.com. The best way to learn how get the most

out of zenon is to visit the COPA-DATA trainings and workshops that are attuned to your priorities

and projects. Your distributor has more information for you - or drop us a mail at

sales@copadata.com.

3 Simple operation

zenon makes projecting easier through many small amenities and thus increases your productivity.

When working with zenon you´ll discover that you can solve many problems according to your

preferences. For example:

FAVORITES

You can define your own favorites in the object properties and in the function dialog. These are

always offered to you at the start of the properties list and give you quick access to the properties

that you frequently need.

Simple operation

7 | 49

GENERAL KEYBOARD OPERATION IN THE EDITOR

The Editor can be easily operated using symbols and menus with the mouse, but also with full

keyboard operation. The shortcut key combinations from Windows also work in zenon. For example:

 Ctrl+C and Ctrl+V for copy and paste

 Insert key creates new objects

 Delete key deletes highlighted objects

 Moving mouse while pressing the mouse button: Navigating in views

 Esc key cancels an action

 Backspace jumps in the directory tree to the next higher level

 Ctrl+Z undoes the last action, with the exception of database operations

You can read more about keyboard operation in the keyboard shortcuts chapter.

DRAG&DROP

In the Editor, it is possible to make worksteps easier by using Drag&Drop.

For example:

 Sequence for changing menu entries

 Link fonts to dynamic elements such as universal sliders, clocks, combined elements etc.

 Change the sequence of structure elements for structure data types

 Change sequence within a script

 Copy or move functions using different scripts

 Copy scripts by dragging them to the root node

SMART ASSISTANTS AND WIZARDS FOR COMPLEX TASKS

The assistants and wizards integrated in zenon help you to create a base project in no time or to

purposefully make complex adjustments. For beginners, we recommend the assistants for the

universal slider, the combined element and archiving.

TOOL TIPS FOR ELEMENTS AND PROPERTIES

If you move the mouse pointer to above a display element (such as a text button) or a property with a

linking (such as a function linked to a text button), a tool tip appears. It shows information about the

linked elements, like the linked function and its parameters.

Object orientation

8 | 49

ENHANCED DRAWING POSSIBILITIES

The graphics editor offers you a wide range of functions that make the imaging of equipment easy for

you and also give you many design options at the same time. From step-free zoom through to

scaling by click up to element corner points and automatic distribution of elements according to rules.

You can find details in chapter Screens.

JUMPING TO LINKED ELEMENTS

With all graphic elements, with functions, variables and also with other elements, you have the option

to jump directly to the linked elements. For example, you can go from a display element directly to a

linked element with a mouse click, from the variable directly to the data type used, and from there

even further to the unit used. If necessary, you can also jump from all these steps back to the initial

element easily with the click of a mouse.

4 Object orientation

COPA-DATA sees the topic of automatization object-oriented and pragmatically. That´s how zenon

works; furthermore, it can be largely automatized itself. You don´t need a programming language for

zenon. You do not have to program one single line of code. Instead, you assign objects with

properties using the mouse. That works not only with individual objects but also centrally for a whole

project and across objects, too.

If you´re now worried that you can´t individualize zenon and are totally dependent on the object

properties, the good news is: Of course you can individually adapt the design of zenon. To do so, use

preferably VBA or the VSTA (.NET) development environment. Additionally, zenon offers many

interfaces to communicate with hardware and software and and has an integrated SCADA logic with

zenon Logic.

THREE IMPORTANT BASIC PRINCIPLES THAT HELP YOU WITH ZENON

Three central principles make projecting with zenon easy, reliable and easy to maintain:

1. Parameterizing instead of programming (on page 9):

Easily set the required parameters instead of programming or adapting scripts.

2. Global / central instead of local (on page 10):

Define objects once and reuse them over and over, also across projects, instead of writing or

copying scripts over and over again.

3. Object-oriented parameterization: (on page 11)

Use all advantages of object-oriented thinking.

Object orientation

9 | 49

4.1 Parameterizing instead of programming

How do you profit if you parameterize projects instead of programming them?

You dispense with code that is prone to errors and gain flexibility, clear structures, speed and high

reusability. Four items are particularly in favor of parameterization:

1. Predefined modules save time

zenon contains many predefined modules. Instead of programming scripts yourself, the

project engineer chooses the suitable module and configures it by selecting the desired

properties and parameters. That allows you to create executable projects in no time.

2. The product from the manufacturer is already mature

the designer concentrates on his projects. The software is developed and tested by the

manufacturer, designers don´t have to write their own code. Therefore it´s very easy to

operate zenon - also for employees with no experience in software engineering.

3. Easy maintenance and adaptation of the project

zenon works strictly object-oriented. Combined with the philosophy "setting parameters

instead of programming", that means: simple maintenance and adaptation For changes and

monitoring, you only have to verify or change the properties of the individual objects instead

of reading and adapting long code lines. In the lifetime of the project that ensures

 Overview: Projects can be reproduced even some years later, even by new employees.

 Security: Error-prone scripts and programming is avoided.

 You save time: Projection, adaptation and maintenance can be realized a lot quicker.

4. Easy adaptation for different machines

zenon can be adapted easily and swiftly to new or changed machines. Project adjustments

require just a few mouse clicks.

ADJUST ZENON

Parameterization prevents errors in scripts from being copied again and again. It prevents tedious

changes in many individual scripts if you just want to adapt little things. But that doesn´t mean you

have to be inflexible. zenon, too, gives you opportunities to individually expand and adapt the system.

 VBA/VSTA:

With the integrated script language Visual Basic for Applications or C# and VB.NET, you can

execute any code in the Runtime. This allows the execution of automation tasks, logical tasks

and interfacing tasks like database access.

 zenon Logic:

This completely integrated control environment allows you with its SCADA logic to use all five

IEC 61131-3 languages. With it, you can complete all calculations and solve all logic problems.

Object orientation

10 | 49

 PCE:

The integrated Process Control Engine allows you to use VB-Script and Java Script for

automation tasks.

 ActiveX Controls:

You can integrate standard controls like Flash Player, Acrobat Reader, etc. in zenon. Of

course, the interface is disclosed so you can include your own ActiveX Controls.

 WPF-Elements

The direct integration of Windows Presentation Foundation format allows you to integrate

graphical elements like for example a button, a pointer instrument and many more things in

this new graphics format directly in zenon screens. These elements can be freely linked with

variables and functions, which will allow you to implement any graphical effect you like.

 COM-interface:

You can access zenon via the completely disclosed COM-interface from outside. For

communication needs, different programming languages like C++, .NET, Delphi and so on

are provided.

4.2 Global and central instead of local

Properties can be defined in many ways in zenon, depending on the task:

 directly on the object

 Central

 globally

Of course, in zenon you can adjust all settings directly at the object. But that is not always the

smartest solution.

DEFINE PROPERTIES CENTRALLY

Often it makes sense to define settings only once centrally. This way, new objects offer the desired

properties from the beginning. Changes are really easy: The desired property is changed only in one

place centrally; all concerned objects adopt it automatically. That means only one click instead of

many lines of code or many mouse clicks.

These central settings can be found easily from any position of the editor. Every object that gets

settings directly from a central location offers the option to show them directly. You simply follow a

link and see immediately how these elements are linked.

But you can´t only define properties centrally for a project, you can also define them globally.

Object orientation

11 | 49

PROJECT GLOBALLY

zenon allows you to work with more than one project at a time - and thus saves your most precious

resource: Working Hours For example, it is really easy to use the same fonts in all projects. Once

defined, properties like font or font size are instantly available for all projects of a work area. If you

need another font for all projects, it´ll take you only some seconds to change it in the global project.

What if you want to provide a project with a different font? Well, then you change this font centrally in

that project.

 Information

In the global project, use a numbering system that is different from the one in

the single projects. zenon always prefers the local settings if the numbers are

identical.

And: Use own names for font lists that you keep consistent in the global project

and in the individual projects. In doing so, you ensure that all fonts are found if

the language is changed.

OVERVIEW THE RELATIONS OF OBJECTS:

Additionally, you can get an overview of your projects and object relations with:

 Cross reference list:

It shows cross references in a project and enables you to easily search for the usage of

variables and functions.

 Wizard for documentation

It automatically creates complete project documentation. You can configure exactly what you

want to be included, down to every single property.

4.3 Object-oriented parameterization

"Object-oriented parameterization" is the fundamental philosophy of zenon. This philosophy arranges

work clearly and saves time for creation and management of variables.

Each variable in zenon is based on two elements:

 Driver (on page 12)

 Data type (on page 13)

Object orientation

12 | 49

4.3.1 Drivers

Drivers are not directly integrated in zenon, they are implemented via a driver object type. This

determines which area on the controller is to be addressed.

DRIVER OBJECT TYPE

There are many different driver object types, for example standard PLC markers, database blocks,

inputs, outputs, counters and also other special types such as alarm or driver variables.

The driver object type determines:

 The area on the controller

 Which granularity the driver has in this area

 Which data types can be created on the area

Hint: Not any data type can be created in any area. There, when creating a variable, you should

always choose:

 The driver first,

 then the driver object type and

 lastly the data type

EXTRA INFORMATION: GRANULARITY

Granularity is primarily important for numerically-addressed controllers such as the Siemens S7 for

example. Not every controller has the same grid and not all areas in a controller have the same grid.

For example, the datablock area of the Siemens S5 is word-orientated, but the marker are is

byte-orientated. This means that the smallest unit that can be addressed is a byte or a word. If you

want to write a bit in such areas, it is necessary to read at least a complete byte, mask out the

corresponding bit, change it and then write the complete byte/word to the controller again.

The same information is also required when addressing the areas, called offset. You start at zero and

count on in byte or word steps. If you use automatic adressing (on page 17)in zenon granularity is

automatically considered. The granularity does not depend on the driver, but on the driver object

type.

DRIVER VARIABLES

The driver variables are offered by each driver and provide many advantages for project

configuration. They do not communicate with the controller, but read an internal save area in the

driver, which primarily consists of statistical information. However special functions can also be

Object orientation

13 | 49

controlled with variables, such as telephone numbers for modem connections or commands for

dialing or hanging up.

You can find more detailed information on this in the driver variables help chapter.

A dBase file with the most important driver variables is included on the installation medium of zenon.

You can therefore import variables for each driver instead of creating them manually.

4.3.2 Data types

Data types are the heart of object-oriented parameterization. As you cannot change anything in the

driver -object types, they cannot be used for object-orientation. The data types, on the other hand,

offer many possibilities.

We distinguish between three types:

 Simple data types

 Structure data types

 Structure elements

4.3.2.1 Simple Data Type

Simple data types are always IEC data types, that means the data types defined by the IEC in the

61131-3 standard, like BOOL, INT, USINT, UDINT, STRING, WSTRING, etc. The length of the value

range is defined.

Examples:

 BOOL: 1 Bit

 INT: 16 bit unsigned

 UINT: 16 bit unsigned

The data types in zenon allow not only IEC data type, a lot more properties are available. These have

the same identification as the properties of the variables:

 Identification

 Unit

 Value range

 Limit Values

Why this "dual data retention"?

The background is as simple as it is practical:

Just as a dynamical element takes over the font type and size from the linked font, the variable also

takes over the value calculation, the unit and the limit values from the data type it is based on.

Object orientation

14 | 49

OBJECT ORIENTATION

In contrast to the linking of dynamic elements and fonts, this involves an object-orientated approach:

The data type object passes its properties on to the variable. The difference?

Linked/derived properties can be separated or overwritten for the variables. This works for each

property individually but also for all properties at the same time. You can, for example, take on the

unit from the data type centrally, but directly overwrite the identification or the address for the

variable. This works as follows:

 Change the relevant value of the variable, then the link is separated.

You can verify that by looking in the properties: The check is no longer there.

You can use the following functions via the context menu in the project properties:

 Link "Property" from data type

If you have separated the link, you can restore it.

 Unlink "Property" from data type

You can separate an individual property without having to change the value. If you

subsequently change the data type, you can be certain that the variable is not influenced by

this. You can set whether the inheritance concept takes effect or not.

 Link all properties with datatype

Links all properties in the properties node to the data type.

 Unlink all properties from datatype

Disconnects all properties in the properties node from the data type.

To open the context menu, click on a property in the project properties with the right mouse button.

As a particular help, you can also accept or separate all properties from the data type with a mouse

click. You can thus restore the original state (everything derived) very quickly or rescind this. How

does this all help in practice?

Particularly high flexibility: If you have many variables with the same limit value, such as an alarm at

value 1, then set this for the data type. You the set the limit value text and other optional parameters

separately for each variable. You thus save the creation and maintenance of the limit value for each

individual variable and your engineering output increases considerably. The data type BOOL, created

as standard, also has a limit value at 0 and at 1!

If you do not even have a limit value for each bool variable, you do not however need to take extra

care for each variable and turn the limit value off again. Instead, you can conveniently use a feature of

zenon and create your own BOOL data type. Proceed as follows:

 Simply leave a standard data type as it is

 Create a new data type (via the New simple datatype... entry in the project manager in the

context menu of the Datatypes entry or via the entry in the toolbar)

 Give it a name, such as MyBool

Object orientation

15 | 49

 A list with the existing data types is offered

 Select standard bool

 All properties of the new data type are automatically taken from the old one

 Delete limit values for MyBool

You then create all bool variables that are not to have limit values for this new MyBool bool data type

– and the limit values you don't want have already disappeared. Those that are wanted are retained

however.

You cannot of course create just your own bool data type, but as many as you want. All variables that

need identical properties over wide ranges get their own data type. If a property changes, change this

centrally and all derived variables are also changed automatically – with the exception of those for

which the linking was changed.

4.3.2.2 Structure data types - structure elements - structure array

STRUCTURE DATA TYPE

Structure data type means a group of data types that are precisely defined in terms of their order and

arrangement. For example, the structure motor can consist of the elements of actual speed and

power consumption.

A structure can also be nested, whereby as many hierarchy levels as desired are possible.

With structure data types, the variable household can be be structured in precisely the same way as it

actually exists in the controller or logically.

STRUCTURE ELEMENT

A structure data type is actually just a hull that gives the structure its name but does not have any

properties of its own.

These first come with the structure elements that are added to the structure data type. In doing so, a

distinction is made between:

 Linked structure data type:

Reference to a pre-existing data type. All properties are taken on, with the exception of the

name.

Advantage: If the structure element has many properties of a pre-existing data type, these

can easily be reused. It is of course still possible to change each of the variable properties or

separate them from the data type.

 Separate embedded structure data type:

Object orientation

16 | 49

Allows individual addressing settings. This new data type is only valid within this structure.

 Information

Advantage of object orientation: If the structure changes at any point, it is then

sufficient to change the structure data type in order to automatically amend all

variables that are on this structure.

Changes are possible for all forms:

 simple properties like the unit of the data type

 complex properties like adding or deleting a limit value

 Change to the complete structure, such as a change to the sequence of

elements or addition or deletion of individual structure elements in a

structure data type

STRUCTURE ARRAY

If it is not just one machine, but many, the structure array is used.

For example: 100 pumps instead of 1 pump.

Then simply change the structure variables into a structure array. 100 variables thus become 100

structure variables with the click of a mouse.

If we, for example, have to create 12 individual variables for each pump, we need a total of 1200

variables. The method of "setting parameters in an object-orientated manner" allows this with a few

mouse clicks. In addition there is the advantage that all variables have already been preset. Each

individual variable already provides all properties that it needs, such as unit, value determination,

alarms, CEL entries etc.

 Information

Structure data types are also suitable for the reuse (on page 30) of variables.

4.3.2.2.1 Example pump:

INITIAL SITUATION

A pump consists of two motors. Each of these has variables such as:

 Actual speed

Object orientation

17 | 49

 Power consumption

 Output

 etc.

Each motor has, in turn, a motor regulator with the following variables:

 Target speed

 P-proportion

 I-proportion

You construct this setup in this way:

1. Create a regulator structure from each data type for

 Target speed

 P-proportion

 I-proportion

2. Create a motor structure, each with its own separate data types:

 Actual speed

 Power consumption

 Output

 etc.

3. In the motor structure, you apply the controller.

4. Create the pump structure and integrate the motor there.

Because we have two motors, simply take on the motor data type twice in your pump

structure.

5. Create a variable that relates to this structure data type:

 Creating a new variable

 Select pump structure data type

The individual elements of these structure variables are called Structure elements (on page

15) and you can use each of these elements everywhere in zenon for example in screens, as

alarms, in archives, in recipes, etc.

4.3.3 Tips for addressing and import/export

Practical tips for:

 Addressing

 Export/import

Reusing elements

18 | 49

ADDRESSING:

With numeric controllers, you have a choice of whether addressing takes place automatically or

semi-automatically. The properties described here can also be reached by means of VBA/VSTA and

can thus be used for automatic project configuration.

AUTOMATIC ADDRESSING:

Offset and - if required - byte and bit address are automatically calculated on the basis of the position

of the structure elements; with arrays it is throughout the complete array. If you have created the

same structure in the PLC and in zenon, everything works fine and you do not have to care about

addressing.

SEMI-AUTOMATIC ADDRESSING:

You already issue individual start addresses for the data type. The further addresses are then

calculated using these addresses. You can of course also amend these if required. You can find details

in Automatic addressing.

For symbolically addressed PLCs, the same name must be given in zenon and in the PLC.

XML EXPORT/IMPORT:

Information like data types, structures, inherited properties etc. is also included when importing or

exporting. This means that, once defined, you can comfortably export structure data types and

structure variables and import them in other projects to reuse them or adapt them as needed.

5 Reusing elements

When a project is first created, you need time to create variables, functions, screens and their linking.

You can also reduce this time considerably with the following projects. This is because with zenon,

you have the possibility to simply transfer objects that have been created to other projects.

For example, you need standard elements in many projects such as screens for the system status or

detailed screens for hardware components that are used repeatedly (pumps, valves, motors, etc.).

There are different methods of reusing elements available to you:

Theme Reuse of

Replacing variables and functions

(on page 19)

Elements

Symbols (on page 24) Screens

Reusing elements

19 | 49

Theme Reuse of

Structure Data Type (on page 30) Variables

Reaction Matrices (on page 33) Variables

Global project (on page 33) Central elements of a project

XML (on page 34) Project parts by means of import and export

Wizards (on page 36) Screens and elements by means of import or

individualization

Reusing projects (on page 37) Projects

 Information

In order to be able to reuse an element efficiently, ensure that variables,

functions and screens have a unique name (on page 19) when they are created.

5.1 Replacing variables and functions

Variables and functions that are stored as dynamic elements can be replaced in an automatic manner.

This can take place at different places:

 Replacing linking in a screen (on page 21)

 Replacing linking for screen switching (on page 22)

 Replacing indexes (on page 23)

 You can also find more about replacement of variables and functions in the Screens manual

in the Replacing linking of variables and functions section.

5.1.1 Naming conventions

To be able to replace variables and other elements securely, the naming should be systematic and

standardized if possible. You therefore support not only the reusability, but also maintenance and

reverse engineering.

Different systems support you with systematic naming.

FOR EXAMPLE: ENERGY INDUSTRY

Germany

Reusing elements

20 | 49

 KKS (Kraftwerk-Kennzeichen-System - Power Plant Classification System), for details (in

German), see http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem

(http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem)

 DIN 6779 (Kennzeichnungssystematik für technische Produkte und technische

Produktdokumentation - Classification System for Technical Products and Technical Product

Documentation), for details (in German), see http://de.wikipedia.org/wiki/DIN_6779

(http://de.wikipedia.org/wiki/DIN_6779)

 Equipment Classification System, for details (in German “Anlagenkennzeichnungssystem”),

see http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem

(http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem)

International

 KKS (Power Plant Classification System), for details, see

http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System

(http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System)

Such standards exist for all industries. It is recommended that their naming convention is used.

KKS EXAMPLE:

Variables are to be named in accordance with the KKS in an energy project.

A corresponding variable with the label C01_MDY10-QA001_QA07 indicates:

 Wind energy equipment C01 (row C, no. 1)

 Wind turbine control MDY10

 Power part QA001

 Power protection QA07

5.1.2 Possibilities for replacement

Replacements can be used at different points of a project:

 Replace linking in screen (on page 21): Screens are copied and the linking is replaced in the

copied screen.

 Replace linking for screen switching (on page 22): Only one screen is used for different

controllers and the linkings are amended when called up.

 Replace indices (on page 23): Replacing variables in a process screen using the value of index

variables.

http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem
http://de.wikipedia.org/wiki/DIN_6779
http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem
http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System

Reusing elements

21 | 49

5.1.2.1 Replace linking in screen

If variables are attached in a screen, these can be easily replaced by means of a replacement dialog.

Requirement:

 Clear naming of variables (on page 19)

With this, screens that have been created can continue to be used by copying & pasting.

The replacement is started using the context menu:

 Right-click on the screen element

 Click on replace linkings

The dialog for replacement is thus opened.

EXAMPLE

In our example, the project has a number of variables from different parts of the equipment. The

following are in the process screen:

 10 variables that come from the MDY10 wind turbine control, with dynamic elements linked

 Buttons with screen switching to different areas of MDY10 available

Using copy & paste, the project engineer intends to reuse the screen in its exact form for wind turbine

controller MDY11 and to replace the variables or functions by the corresponding ones from the new

controller.

To do this:l

1. The dynamic elements on which variables and functions are linked are highlighted

Reusing elements

22 | 49

2. The replacement dialog is opened

3. In the Source field, the equipment identification *MDY10* is entered

(the first and last * characters are wild cards)

4. MDY11 is entered in the Target field

5. Replacement is carried out with Accept, the replace and the dialog is closed with OK

The screen can now be used for the new PLC.

5.1.2.2 Replace linking for screen switching

With this method, it is always the original screen that is used and called up in the Runtime with

different variables and functions. The screen contains different variables and functions, as in the

"Replace linking in the screen (on page 21)" example. Replacement is carried out when switching. To

do this:

1. Several screen switching functions are configured to this screen

2. The dialog for replacement (on page 21) is offered when the function is created

Reusing elements

23 | 49

3. Each function contains its own replacement process

A variable for this, which only comes with a screen switching: Replace indices (on page 23) for arrays.

5.1.2.3 Replace indices

The replacement for variables can be carried out using index variables in arrays.

As with Replacing linking for screen switching (on page 22), the screen is only used once. The linked

variables are replaced when switching. Screen switching is only configured once (different to replace

linking in the screen (on page 21)) and can be reused more than once using an index variable.

EXAMPLE

Screen switching is carried out on a process screen that contains 10 variables of the wind turbine

control MDY10. The aim of the person configuring the project is to reuse this screen 1:1, because the

wind turbine controllers MDY11, MDY12 and MDY13 have the same number of variables.

Reusing elements

24 | 49

The indexing rule:

 Source: C01 MDY10 QA001*

 Target: C01 MDY{X01} QA001

Has the following effect:

 With screen switching, the function is informed that it must use the variable value of X01

Index wind turbine control in the variable name for screen switching in Runtime.

Example: If this variable has the value of 12, the process screen with all variables of the wind

turbine controller MDY12 are displayed when screen switching is executed

5.2 Symbols

Symbols offer great potential for reuse. Symbols can be built up in a very complex manner and

support inheritance. Symbols can be embedded or linked. With linking, modification in one place is

sufficient to update all screens that use this symbol. Symbols can also be linked to other symbols.

EXAMPLE OF BUTTON BAR

A symbol (empty right corner) is linked as a basis in all buttons.

Free-access properties (on page 24) make it possible to issue each button with different graphics. If

the form or color of the buttons is changed, only the "empty button" symbol needs to be modified.

All buttons automatically take on the new form and/or color.

5.2.1 Free access properties

Symbols pass on their properties to the objects in which they were linked. However, individual

properties can be released from inheritance. The displayed graphics in our button for example. If

inheritance is released, this property can be set individually for each object. Changes to this detail in

the initial element no longer influence the other objects.

Reusing elements

25 | 49

REUSING SCREENS

The combination of symbols and released properties can be an effective solution for the reuse of

process screens.

EXAMPLE

There is a central dialog for setting parameters in a project, which is to be used for various setting of

parameters. Because this is used in various areas, there is also a requirement that certain adaptations

(such as background colors, screens …) should be possible.

Copy and paste:

1. Create a process screen that contains this dialog for setting parameters

2. Duplicate the screen using copy & paste

3. The process screens that are duplicated can be adapted to the requirements graphically

But: Inheritance is not possible here. If the person configuring the project subsequently wishes to

make changes centrally (in relation to the basic structure of the dialog for setting parameters), they

must then drag these to each individual process screen.

Approach using symbols with released properties:

1. The dialog for setting parameters is created using a symbol

2. Elements that have to be adapted for different parameter points are decoupled via released

properties from the inheritance concept

3. The symbol is linked, positioned and adapted in the corresponding screens.

Reusing elements

26 | 49

4. If the person configuring the project decides to change the general appearance of the

dialog, they make this change centrally in the symbol. This change then affects all items in

which the symbol is linked.

5. A global symbol can be adapted individually using released properties and corresponding

replacement (on page 26).

6. In this case, the person configuring the project has decided to change the general graphical

user interface of the dialog for setting parameters. This change is made centrally at the

"Setting parameters" symbol. The individual properties of the individual parameter dialogs

remain unchanged; only the properties that are contained in inheritance are contained.

5.2.2 Replacement with symbols

The process described in the Replacing variables and functions (on page 19) section can also be

carried out for symbols. Here too, well-thought naming (on page 19) of the objects is a requirement.

Reusing elements

27 | 49

When carrying out replacements for symbols, a distinction must be made between two different

approaches: A symbol from a library (project/global) can be

 inserted into a screen as an element group

 linked into a screen

Depending on the approach, different dialogs are switched for the replacement of variables/functions.

ELEMENT GROUPS

Here, variables are replaced directly via the replacement dialog. The dialog offers the possibility to

select variables via a variable selection dialog. Using symbols in this manner is not ideally suited for

reuse.

SYMBOLS

With this process, work is carried out using replacement strings. These strings are replaced with the

corresponding variables during compilation. It is not possible, via the dialog called up, to make

replacements by means of a variable selection dialog. The person configuring the project works using

individual replacement strings here, which are separated from each other by a semi-colon (;).

The symbol behind this replacement dialog can now be reused in various parts of the equipment. This

example assumes that similar variables and functions are used in each equipment area (only

Reusing elements

28 | 49

differentiated by the equipment abbreviation in the name) and that these can be replaced quickly and

with a clear overview.

You can find more about replacement for symbols in the Screens manual in the Symbols section.

5.2.3 General symbol library

There are several possibilities for the administration of symbols. The symbols can be administered in:

 The symbol library of the local project

 In the symbol library of the global project

 In the general symbol library

Symbol Library Property

General symbol library Symbols are available in all projects. The general symbol library node is

located in the project manager below the currently-loaded projects.

Label when linking in the screen: [symbol group]/[symbol name]

Rules:

 The dialog for selecting variables offers all projects of the

workspace for linking.

 These symbols are saved in the zenon program folder and only

updated when the Editor starts. These symbols are not saved

during project backup.

 Interlocking and aliases for ALC cannot be configured.

Attention: If symbols that contain interlocking or aliases are

added, these settings are removed.

Reusing elements

29 | 49

Symbol Library Property

SYMBOL LIBRARY IN THE

GLOBAL PROJECT

Symbols are available for all projects of the workspace.

Label when linking in the screen: Global project_[Symbol name]

Rules:

 The symbols copied into the symbol library of the global project

retain their variable linking without changes.

 The variable dialog offers all projects of the workspace for

linking. Linked variables are placed in front of the name of the

respective project.

 The name of the Variable can be amended in the properties

window. This way, for example, the prefix can be deleted with the

project origin.

 The symbols are also backed up when a project is backed up.

 Interlocking and aliases for ALC cannot be configured.

Attention: If symbols that contain interlocking or aliases are

added, these settings are removed.

Symbol library in the

project
Symbols are only available in the current project.

Label when linking in the screen: [Symbol name]

Rules:

 The symbols are saved in the project folder. The project symbol

library is in the current project in the Screens node and is backed

up together with project backup.

 Interlocking and aliases for ALC can be configured. These

properties are also retained when symbols are added.

COPYING OF SYMBOLS BETWEEN LIBRARIES

Symbols can be copied with Drag&Drop.

In doing so, the following applies:

 Only symbols of the first level of the tree can be copied.

 Groups and folders cannot be copied.

 If there are already names of symbols in the target library, the added symbols are

automatically renamed.

Renaming is carried out by adding an underscore and an ordinal number, for example:

Calibrator_1.

Reusing elements

30 | 49

 Copying between libraries is only possible to a limited extent.

Overview of copying between symbol libraries using Drag&Drop:

Copying using

Drag&Drop possible

General

symbol library

Symbol library

in the global project

Symbol library

in the project

General

symbol library

-- + --

Symbol library

in the global project

-- -- +

Symbol library

in the project

-- + --

Key:

 +: copying possible

 --: copying not possible

EXAMPLE

A central configuration point compiles a collection of symbols that are to be used by the

configuration points distributed around the world in their individualized projects. For example,

complex symbols that display important parts of process screens are displayed. This collection of

symbols is in a folder or a file, for example "Global_Used_Symbols.SYM". If central graphical changes

are carried out to this global collection of symbols, "Global_Used_Symbols.SYM" is simply sent to all

configuration points and replaced there. The individual adjustment is carried out by means of

released properties (on page 24) and replacement (on page 26).

It is not always necessary to distribute the whole collection of symbols. An XML export/import (on

page 34) can also be used to distribute individual selected symbols.

Attention

There must be clear rules when the global symbol library is used: Local

configuration points must not change the symbols from the symbol collection.

Each change would be overwritten at the next update.

5.3 Structure Data Type

Variables can be reused using structure data types. Complex structures can thus be created and the

advantages of inheritance can be used.

Reusing elements

31 | 49

EXAMPLE

The "motor" structure data type consists of three elements:

 Status

 Speed

 Temperature

The inheritance type of the elements is different:

 Status" and "Speed" are derived from the INT data type, but their inheritance was broken off

by the embedding.

This means: Subsequent updating of the INT data type does not have an effect on these two

elements.

 "Temperature" also comes from the INT data type, the inheritance is intact.

This means: Subsequent changes to the INT data type also has an effect on the settings of

this structure element.

If, for example 20 motors with a structure that is always identical are configured, variables based on

the self-created "motor" data type can be created. This can, for example, happen by creating an array

of this data type. The graphic display is triggered by means of a symbol in this example.

When linking the symbol in a process screen, the placeholder variables of the symbol are replaced by

those of the self-created structure data type. Ensure that you have well-thought out naming (on page

19) from the start.

Reusing elements

32 | 49

If a process screen is created as an overview of all motors, the inserted symbol can be easily

duplicated by copying & pasting. Only the target variable needs to be replaced with the

corresponding sequence number on each symbol:

If limit values for the "speed" variables are to be added at a later time, you benefit from the existing

inheritance display between the self-created data type and the variables that are created as a result.

For the planned change, a new limit value is created for the "speed" structure element of the separate

"motor" data type. This change made at a position has an effect on all 20 motors that have been

created.

However the person configuring the project is free to undo this inheritance relationship. The limit

value for "speed" can be changed for one of the 20 motor variables that have been created.

Note: Individual properties or all properties of a variable are disconnected from the data type.

 Information

You can also read tips on the use of structure data types in the Structure data

types - structure elements - structure array (on page 15) section and in the

Variables manual in the Structure data types section.

Reusing elements

33 | 49

5.4 Reaction matrices

Reaction matrixes ensure that a variable is the same throughout the project. In contrast to limit values,

they have a central approach: A reaction matrix is configured once and then assigned to any number

of variables. All variables that are linked to the reaction matrix react in the same way. The benefit:

central and simple maintenance.

5.5 Global project

With a global project, standards can be defined throughout a project. It is thus possible to define

certain modules or elements for all sites, whilst local projects stipulate individual parameters.

The following can be configured in the global project:

 Alarming:

Declaration of the alarm groups, alarm classes and alarm areas to be used globally.

 Equipment Modeling:

This can support the central project configuration, because you can undertake a division into

two "plants". In doing so, the project configuration elements that come from the central

project configuration point and those that come from the local project configuration point

must be configured.

 User:

If a standard envisages the existence of certain globally-valid users, these can be determined

using the global project.

 Files:

There can for example be graphics as a result of a standard, which must be used in

individually-created projects. These can be provided globally.

 Frames:

Determination of the process screen arrangement and size of the projects to be developed.

It is possible, for example, to clearly define in a guideline that in a project, newly-created

screens can only be created using templates of a global project. Uniform global graphics are

thus guaranteed.

 Fonts and color palettes:

In order to achieve uniformity with displayed texts and colors, a pre-defined set of font lists

or color palettes can be stipulated for global use.

 Language tables:

If a determined set of terms and statements to be used is specified in the project

configuration, it is possible to stipulate these using the defined language tables and to carry

out the corresponding translations at the same time.

Reusing elements

34 | 49

EXAMPLE

A central project configuration point defines standards in the ares of color, fonts, templates etc.

throughout a global project for all people configuring the project. The global project is distributed to

all teams as a project backup (on page 37). They import it into their workspace. A guideline must be

used to clearly defined that local project configuration points must not make changes to a global

project, because these are repeatedly overwritten by the input of updates from the central project

configuration point.

EXAMPLE OF EQUIPMENT MODEL

A simple equipment model that only makes a distinction between a central and a local project

configuration group. In an individualized project, this distinction could now be used to help for

visualization in the Editor. In detail, this would look as though each configured element in the Editor is

given a corresponding equipment group assignment.

The existing process screens are displayed after equipment assignment.

This way the local project configuration point can thus clearly detect which screens are updated by a

central project configuration point via the XML import. For the person configuring the local project, it

is thus also clear which screens they must not change. This is because each change to

globally-maintained screens is overwritten again on the next update.

Hint: To update a global project, it is not always necessary to create and import a project backup.

Individual changes can also be updated locally by means of XML (on page 34) export and import.

5.6 XML

Import and Export via the XML interface offers many possibilities for the reuse of project components.

Attention

Existing elements with the same name are overwritten on import.

Reusing elements

35 | 49

DEPENDENCIES ON IMPORT

If several parts of a project are to be imported, there are also more XML files with different content

accordingly. In order to accept the content of several XML files correctly, existing dependencies must

be taken into account:

If, for example a screen is imported and the variables linked therein do not exist in the project, the

linking cannot be restored. In order to create all linking correctly, it may be necessary to carry out the

import of a screen or a variable twice.

Example: Import of a screen via XML

The most comprehensive variant is to import a screen. In this case, the created XML file must not

contain just the screen and the included elements, but also the frame, linked variables and functions.

The XML file needs all content that can be seen in the screen and is thus linked to it directly.

In screen "A", a function "B" is executed by means of a button, in order to then in turn open screen

"A":

 The "B" function needs screen "A" in order for this to be linked in function "B".

 The screen "A" then in turn needs function "B" in order for this to be linked to the button.

Import:

1. First the function

2. Then the screen

3. Then the same function once again

Note: The reference to the screen cannot be established in the function otherwise.

HARMONIZE PROJECTS THROUGHOUT A FACTORY

XML export/import is also suitable for guaranteeing the cross-plant harmonization of projects. If a

company establishes that certain certain parts of the project must be designed in a uniform manner

throughout the world, then the uniform elements are:

1. Configured centrally

2. Exported to an XML file

3. Distributed as an XML file

4. Applied by each local team as an XML import

Alternatively, export and import can also be carried out by means of a specific wizard.

Because existing elements are overwritten with an XML import, these uniform elements must be

named clearly and bindingly. Local changes of these elements are overwritten again on the next

import.

Reusing elements

36 | 49

WIZARDS (ON PAGE 36)

A zenon API based wizard is offered to support the user when importing. In the wizard, the user can

then select what is to be imported using decision-making aids. A possible approach for the wizard is

to create an XML library that contains different variants of screens and functions.

CUSTOMIZATION WITH THE WIZARD

A wizard can also be used to customize standard functions that are in XML format. One function per

XML is imported and then amended to individual requirements by changing certain properties that

are not the same for each object. For example, there can be a screen switch function in XML format

and this can be used several times by customizing the properties.

5.7 Wizards

The reuse of elements and parts of projects can be simplified and supported with wizards. Wizards

are primarily suitable for:

 Creation of template projects:

A wizard makes it possible to create certain standard parts of a newly created project to be

created using a few mouse clicks. In contrast to simple input of a completed project backup

(on page 37) of the template project, the person configuring the project has more scope for

customization here.

For example, a wizard can create different project types regardless of machine.

 Creation of pre-defined parts of a project:

Wizards can also help to create certain areas in a project.

For example: Creation of a "motor" project area.

The wizard creates pre-defined elements for this area. Corresponding screens, functions,

variables, etc. can be configured in just a few mouse clicks. In addition to shorter project

configuration times, you also get a uniform appearance, because the wizards are

programmed by a central project configuration point and used by the local project

configuration points.

 Configuration using pre-defined databases or files:

Project databases or pre-defined files can also support project creation or project expansion.

In doing so, the elements to be configured are described in a database or an Excel file

(function name, function type, function parameter, variable name, offset …). These are read

off with the help of a wizard and corresponding configurations are undertaken in zenon.

You can find out more about wizards and the creation of these in the manual Wizards,

Reusing elements

37 | 49

5.8 Reusing projects

Projects can be reused in different ways. In doing so, mechanisms from the other chapter of

reusability sometimes play a significant role.

Project Backup (on page 37)

Save as (on page 37)

Multi-Project Administration (on page 38)

5.8.1 Project backup

Project backups make it possible to accept complete projects.

For example, a project can be distributed to all teams as a template. These create a project backup

and individualize the project.

Attention

This method is not suitable for transferring project changes, because all local

configuration is overwritten when it is accepted.

To maintain projects that have been created this way consistently throughout all teams, the use of

XML exports/imports (on page 34) is recommended.

In doing so, please note that pre-existing elements with the same name are overwritten during

import! When configuring a project, the configured elements that can be overwritten must be clearly

marked. For example, for the necessary identification, a corresponding addition in the element name

or the procedure using equipment groups, see the global project (on page 33) section.

5.8.2 Save as

Save as creates a copy of a project in the active working area under a new name and with a new

GUID.

EXAMPLE

Individual projects for different machine types are to be created, based on a template project. To do

this:

1. The project backup (on page 37) of the template project is loaded in

2. Several differently-named projects are created in the active workspace using Save as (such as

Machine 1, Machine 2, …)

Reusing elements

38 | 49

Each machine project has the same initial project situation. However, the projects no longer have any

connection to a template project. Changes that are made in a template project are not automatically

accepted into the copied projects. However changes to the template can be introduced into

individualized projects by means of XML export/import (on page 34).

In doing so, please note that pre-existing elements with the same name are overwritten during

import! When configuring a project, the configured elements that can be overwritten must be clearly

marked. For example, for the necessary identification, a corresponding addition in the element name

or the procedure using equipment groups, see the global project (on page 33) section.

5.8.3 Multi-project administration

Projects can also be compiled in a workspace in zenon multi-project administration as part of an

integration project. It is thus possible to change a project centrally, whilst local project configurations

are carried out in another project.

EXAMPLE

A central project configuration point is used to implement graphics reuse in local projects, in order to

ensure a uniform user interface. To do this, the central configuration creates a template project that

constitutes the graphics basis for all other project configuration teams. However, if a change is made

to the user interface design in the central configuration, this must be subsequently applied at all

project configuration levels. This can be carried out using multi-project administration: A project

contains the elements to be administered centrally; another project has the local configuration.

Procedure:

1. A template project is initially sent to all configuration teams

2. This is input into the active workspace

3. Locally, a second, empty project is created that contains the specific amendments

4. There are now two projects in the workspace: the template project and the personalized

project

5. The multi-hierarchical arrangement of the projects is carried out in the next step

6. The template project becomes the integration project, the individualized project becomes

the sub project

 Information

This method is not suitable for projects that are to run on Windows CE, because

only one project can be started on CE.

Integrated network

39 | 49

6 Integrated network

Distributed engineering in the network and 100% redundancy are no longer a big effort for you using

zenon You can create networks by checking the relevant checkbox in the project's properties. And it

is precisely this easy to make efficiently networked, redundant systems from individual standalone

projects.

If you have a TCP/IP Windows network, zenon automatically offers network functions with a mouse

click, either as client / server model or as a multihierarchical system with substations, workspace

centers and centers. It

 also create projects with other users in the network at the same time

 ensure equipment with the 100% zenon circular redundancy perfectly

 Create distributed systems without problems

 Access stations remotely

 monitor and control equipment via zenon Web Server

 see process data in all stations in real time

 Make actions of a workspace, such as the acknowledgment of alarms, visible on all others

 Have actions logged and archived centrally

 Use process data immediately for ERP systems such as SAP

zenon will automatically take care of the required time synchronization on all participating computers.

7 Tips and tricks

In zenon, you have many keyboard shortcuts and quick methods of project configuration available.

We are presenting a selection of these to you here briefly.

Tips and tricks for

 the Editor (on page 39)

 the Runtime (on page 42)

 The test phase (on page 49)

 Keyboard shortcuts (on page 43)

7.1 zenon Editor:

Tips for the zenon Editor:

Tips and tricks

40 | 49

GENERAL

 Save Editor views: With Editor profiles, you can save your individually-compiled window

divisions and assign modules.

 Open the folder for the Editor files directly: Highlight the project and press the key

combination Ctrl+Alt+E.

 Open the folder for the Runtime files directly: Highlight the project and press the Ctrl+Alt+R

key combination.

SCREEN/SYMBOL EDITOR

 Link elements:

You can link functions, variables, fonts etc. to dynamic elements by means of Drag&Drop.

 Add a copy at the same location:

With the Ctrl+Shift+V keyboard shortcut, you add copied elements at the exact same

position as the source element.

Drag a circle:

To drag a circle, drag the Ellipse/circle element with the mouse whilst holding down the Shift key.

 Change line symmetrically:

If you press and hold the Alt key while pulling the outer corner points, the change is carried

out symmetrically.

 Scaling:

You can scale several screen elements at the same time: To do this:

 Mark all elements.

 Convert this into an element group.

 Scale the element group as desired.

 The individual elements are scaled in the same scale.

 Break up the element group into individual elements again.

 Templates for screens:

You can convert any desired screen into a screen template.

 Manipulate the X/Y coordinates of an element:

You can enter the X/Y coordinates of an element or corner point of a polygon directly into a

dialog or move it with the arrow keys.

 Enter directly: Double clicking on the sizing handle of an element or corner point of a

polygon opens a dialog. You can enter the X/Y coordinates of this point directly.

 Move with the cursor: Place the mouse pointer over the sizing handle of an element or

corner point of a polygon. You can now move the X/Y coordinates of this point directly

with the help of the arrow keys.

Tips and tricks

41 | 49

 Jump to linked element:

Right clicking on a property in the properties window opens a context menu that allows you

to jump directly to the linked element.

LANGUAGE SWITCH

 Unit labeling:

Set the exact unit name as tool tip. In the usual environment, users normally think in the

respective national unit. For trouble-shooting, optimizing internationalization and projects

with a focus on internationalization, the use of this tool tip can make their work significantly

easier.

Make this tool tip translatable; use international denominations for the country too. You can

of course translate the measurement unit to the respective language.

 Value units as a character instead of as a word:

Use the unit display for the display of values. There will be no need for a translation then.

Example temperature display: The term degree(s) must be translated. The symbol °

however not only is the same symbol in all languages but can also equally be used for

Celcius, Fahrenheit and Kelvin.

Set the corresponding symbol in the properties of the basic unit.

 Conversion of values:

Add the corresponding value conversion to every language change function. Otherwise

misunderstandings might easily occur.

SYMBOL EDITOR

 Unlock property:

You can unlock a property of an element by means of Drag&Drop, moving the property into

the lower window of the symbol editor. In doing so, you must always click on the properties

using their name, not the value.

 Individual editing mode for symbols:

With the Alt+click shortcut on an element, the element below it is activated.

VARIABLES AND DRIVERS

 Substitution:

To be able to apply the possibility of substitution optimally:

 Use structure data types.

 Ensure that your variables are given a short and concise name.

 Take the possibility of substitution into account at the naming stage. This naming should

be unique and easily-substitutable.

Tips and tricks

42 | 49

 Configure a screen as a template first, which can be reused as often as you like once it

has been completed by means of a function.

 Automatically create variables by importing:

Many drivers support the automatic creation of variables with correct addressing by import

from the PLC or from a file. To do this, right-click on the driver with the mouse and select

Import variables from the driver.

7.2 zenon Runtime

Tips for zenon Runtime:

GENERAL

 Display screen name:

Right click on an empty screen area and hold down the mouse button. The screen name is

displayed.

 Display linkings:

Right click on a dynamic element and hold down the mouse button. Linked functions or

variables are shown.

 Communication error:

Display by means of symbols on the numeric element:

 Red corner at the top left: No communication with the PLC.

 Blue corner at the top left: No communication with the server.

Note: The colors can be adjusted in the project properties in the Graphical design/Status

of variable node.

 Write set value:

Except value, also change command.

Only the value of a variable can be changed in the Runtime. If the standard dialog is used,

the function that is to be executed can also be changed by means of the Command

drop-down list, such as to Switch off spontaneous value for example. In order for the

standard dialog to be displayed, the Screen Keyboard property must be deactivated in the

Dynamic elements property.

 Write set value directly without executing dialog:

To write the set value directly, activate, in the properties of the dynamic element, in the Write

set value group, the without dialog property.

This setting can also be set with the Write/modify set value function by activating the

Direct to hardware option.

Tips and tricks

43 | 49

HISTORIAN

 Show name of the ARX file in the screen:

The name of the ARX file can be shown in the list of the archives in the archive revision

screen in a column. To do this, set, in zenon6.ini, in the [ARCHEDIT] section, the

KURZBEZEICHNUNG=1 entry. The short description is thus displayed in the list. This

corresponds to the ARX file names and is also part of all aggregation archives.

KEYBOARD OPERATION

 Keyboard operation:

Runtime can also be operated in full with the keyboard. For details, see the keyboard

operation chapter in the Runtime manual.

 Block keys:

Windows keyboard shortcuts can be blocked. For details, see the Block keyboard shortcuts

chapter in the Runtime manual.

7.3 Keyboard shortcuts

In zenon, you can carry out many actions with keyboard shortcuts.

GENERAL

Command Key combination

Open help F1

Start/stop full screen mode Shift Key+F9

Remote: Close full-screen mode Ctrl+Alt+Shift+F

Start VSTA Editor Alt+F10

Start VBA Editor Alt+F11

Wizards: Open selection Alt+F12

Open file explorer for current project with

focus on SQL folder.

Corresponds to:

%ProgramData%\COPA-DATA\[SQL-Ordner]\

[UID]\FILES

Ctrl+Alt+E

Open file explorer with focus on project files

from the current project.

Ctrl+Alt+D

Tips and tricks

44 | 49

Command Key combination

For example:

C:\Users\Public\Documents\zenon_Projects\[Pr

oject]\INI\[Rechner]\INI

Open file explorer with focus on Runtime files

from the current project.

For example:

C:\Users\Public\Documents\zenon_Projects\[Pr

oject]\INI

Ctrl+Alt+R

Start Runtime; create changed Runtime files

beforehand.

F5

Create changed Runtime files. F7

EDITOR PROFILES

Command Key combination

Load Editor profile 1 Shift+F1

Load Editor profile 2 Shift+F2

Load Editor profile 3 Shift+F3

Load Editor profile 4 Shift+F4

Load Editor profile 5 Shift+F5

Load Editor profile 6 Shift+F6

Load Editor profile 7 Shift+F7

Load Editor profile 8 Shift+F8

Save current Editor view as:

Editor profile 1 Ctrl+Shift+F1

Editor profile 2 Ctrl+Shift+F2

Editor profile 3 Ctrl+Shift+F3

Editor profile 4 Ctrl+Shift+F4

Editor profile 5 Ctrl+Shift+F5

Editor profile 6 Ctrl+Shift+F6

Tips and tricks

45 | 49

Command Key combination

Editor profile 7 Ctrl+Shift+F7

Editor profile 8 Ctrl+Shift+F8

GRAPHIC EDITOR:

Note for shortcuts: The plus sign (+) means that keys a pressed together.

For example:

Ctrl+A means: Hold down the Control key and then press the A key.

Ctrl++ means: Hold down the Control key and then press the plus key.

GENERAL

Command Key combination

Main window: Scroll content with 'moving

hand'

Press and hold Space

Close current screen Ctrl+F4

Open properties Alt+Enter key

SELECT

Command Key combination

Select several objects Hold down the Shift or

Control key

Deselect selected object during multi-select Ctrl+mouse click

Selection: Change sort order. Defines the

element on which all others realign

Hold down the Shift key when

selecting

Select hidden objects 1. Press the Alt key

2. Click object and

move it

Select all elements of a screen. Ctrl+A

Select next element according to the order of

their creation

Tab

Select previous element according to the Shift key+Tab

Tips and tricks

46 | 49

Command Key combination

order of their creation

POSITIONING

Command Key combination

Move selected object. Arrow keys

Move by 10 pixels each time you press an

arrow key

Shift key+Arrow key

Move only horizontally or only vertically Hold down the Shift key when

moving

Centers the selected object in the working

section

H

ACTIONS

Command Key combination

Saves changes Ctrl+S

Pastes element from the clipboard Ctrl+V

Shift+Ins

Insert element from the clipboard into the

original position. The original and copy lie on

top of each other

Ctrl+Shift+V

Copies selected element. Ctrl+C

Ctrl+Ins

Copy instead of move Hold down the Control key

when moving

Duplicates the selected element.

You can find more detailed information in the

Duplicating elements section.

Ctrl+D

Deletes selected element Del

Cuts out the selected element. Shift key+Del

Ctrl+X

Tips and tricks

47 | 49

Command Key combination

Opens the dialog to replace links for the

selected element.

Ctrl+R

Undoes changes Ctrl+Z

Alt+Backspace

Add or delete node in the selected element.

Add: Mouse cursor turns to plus symbol (+).

Delete: Mouse cursor turns to minus symbol

(-).

Works for polylines, polygons and pipe

elements.

Ctrl+Shift key

Cancel drawing of polylines and polygons S

Cancel drawing of polylines and polygons and

delete the section which was drawn last

Esc

Move selected elements one level up +

Move selected elements one level down -

Move selected elements to the foreground Ctrl++

Move selected elements to the background Ctrl+-

SCALING

Command Key combination

Change size Move mouse cursor to the

handle so that the mouse

cursor changes to an arrow.

After that you can position, with

pixel precision, using the arrow

keys or in steps of 10 pixels with

the Shift key held down.

Note: If an angel dissimilar to

0 via property Rotation angle

[°] was defined for an element,

scaling via arrow keys is not

possible.

Scaling object around the center Hold down the Alt key when

Tips and tricks

48 | 49

Command Key combination

scaling.

Proportional scaling Hold down the Shift key when

scaling.

ZOOM

Command Key combination

Reduce view Ctrl + Shift key + -

Enlarge view Ctrl + Shift key + +

Set view to 100% Ctrl + Alt + 0

Amend the view to the space available in the

Editor and display it proportionally

Ctrl + 0

ZOOM WITH THE MOUSE

Command Key combination

Reduce view Ctrl + scroll wheel of the

mouse downwards

Enlarge view Ctrl + scroll wheel upwards

DETAIL VIEW

Command Key combination

Create a new element for the respective

module

Ins

Edit the selected column F2

Copy a selected list element Ctrl+C

Insert a list element which was copied

beforehand

Ctrl+V

Delete a selected list element Del

Scroll up several elements in the list Pg up

Scroll down several elements in the list Pg down

Navigate in the list Arrow key

Tips and tricks

49 | 49

RUNTIME

Command Key combination

Browse through open Window windows. Alt+Tab

Stopping the Runtime. Alt+F4

CONTEXT MENU ELEMENTS

Create element group Creates an element group. The keyboard shortcut Ctrl +

G can also be used for this.

Resolve Resolves an element group into its screen elements. The

keyboard shortcut Ctrl + Shift key + G can also be used for

this.

Full-screen mode Close full-screen mode: Shift key + F9

7.4 Test of projects

Tips for testing projects:

 Name of the variable in the screen:

To display a variable name in the screen, configure a combined element without status and

with the default text: %n.

	1 Welcome to COPA-DATA help
	2 Project efficiently with the help of zenon
	3 Simple operation
	4 Object orientation
	4.1 Parameterizing instead of programming
	4.2 Global and central instead of local
	4.3 Object-oriented parameterization
	4.3.1 Drivers
	4.3.2 Data types
	4.3.2.1 Simple Data Type
	4.3.2.2 Structure data types - structure elements - structure array
	4.3.2.2.1 Example pump:

	4.3.3 Tips for addressing and import/export

	5 Reusing elements
	5.1 Replacing variables and functions
	5.1.1 Naming conventions
	5.1.2 Possibilities for replacement
	5.1.2.1 Replace linking in screen
	5.1.2.2 Replace linking for screen switching
	5.1.2.3 Replace indices

	5.2 Symbols
	5.2.1 Free access properties
	5.2.2 Replacement with symbols
	5.2.3 General symbol library

	5.3 Structure Data Type
	5.4 Reaction matrices
	5.5 Global project
	5.6 XML
	5.7 Wizards
	5.8 Reusing projects
	5.8.1 Project backup
	5.8.2 Save as
	5.8.3 Multi-project administration

	6 Integrated network
	7 Tips and tricks
	7.1 zenon Editor:
	7.2 zenon Runtime
	7.3 Keyboard shortcuts
	7.4 Test of projects

