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1 Welcome to COPA-DATA help 

ZENON VIDEO TUTORIALS 

You can find practical examples for project configuration with zenon in our YouTube channel 

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an 

initial insight into working with different zenon modules. All tutorials are available in English. 

 

GENERAL HELP 

If you cannot find any information you require in this help chapter or can think of anything that you 

would like added, please send an email to documentation@copadata.com. 

 

PROJECT SUPPORT 

You can receive support for any real project you may have from our customer service team, which 

you can contact via email at support@copadata.com. 

 

LICENSES AND MODULES 

If you find that you need other modules or licenses, our staff will be happy to help you. Email 

sales@copadata.com. 
 

2 Project efficiently with the help of zenon 

Is it the first time you are using zenon?  

Here you find information on how to use zenon efficiently. Even if you already have experience with 

other process control systems, we recommend that you look at this chapter. You´ll learn which basic 

ideas are behind zenon and how it works; why and how zenon helps you work easier and faster.  

AN OVERVIEW OF ZENON 

zenon consists of Editor and Runtime.  

Projects are created in the Editor. Operation and observation is carried out in Runtime. Editor and 

https://www.copadata.com/tutorial_menu
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Runtime are compatible between versions from version 6.20 onwards. A project that was created with 

version 6.50, for example, also runs on Runtime with version 6.22 and vice versa. 

zenon mainly differs from other systems by: 

 Simple operation (on page 6): Many actions can be achieved with a few mouse clicks; 

assistants and wizards make work easy and fast. You can work using drag&drop with the 

mouse or the keyboard - as you like it. 

 Practical object orientation (on page 8): You work consistently with objects for which the 

parameters can be set quickly, instead of laborious programming. You also use objects that 

have been defined once throughout projects, benefit from inheritance and lightning-quick 

changes to properties. 

 Excellent reusability (on page 18) of objects and elements that have already been configured: 

Many elements, from individual variables to complete projects can be very easily and 

effectively reused in zenon. 

 Integrated network (on page 39): Distributed engineering in the network and 100% 

redundancy are no longer a big effort. You can create networks by checking the relevant 

checkbox. It is in precisely this way that you network individual standalone projects into 

efficient redundant systems. 

TIPS AND TRICKS 

You can find useful tips in the forum of www.copadata.com. The best way to learn how get the most 

out of zenon is to visit the COPA-DATA trainings and workshops that are attuned to your priorities 

and projects. Your distributor has more information for you - or drop us a mail at 

sales@copadata.com.  
 

3 Simple operation 

zenon makes projecting easier through many small amenities and thus increases your productivity. 

When working with zenon you´ll discover that you can solve many problems according to your 

preferences. For example: 

FAVORITES 

You can define your own favorites in the object properties and in the function dialog. These are 

always offered to you at the start of the properties list and give you quick access to the properties 

that you frequently need. 
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GENERAL KEYBOARD OPERATION IN THE EDITOR 

The Editor can be easily operated using symbols and menus with the mouse, but also with full 

keyboard operation. The shortcut key combinations from Windows also work in zenon. For example: 

 Ctrl+C and Ctrl+V for copy and paste 

 Insert key creates new objects 

 Delete key deletes highlighted objects 

 Moving mouse while pressing the mouse button: Navigating in views 

 Esc key cancels an action 

 Backspace jumps in the directory tree to the next higher level 

 Ctrl+Z undoes the last action, with the exception of database operations 

You can read more about keyboard operation in the keyboard shortcuts chapter. 

DRAG&DROP 

In the Editor, it is possible to make worksteps easier by using Drag&Drop.  

For example: 

 Sequence for changing menu entries 

 Link fonts to dynamic elements such as universal sliders, clocks, combined elements etc. 

 Change the sequence of structure elements for structure data types 

 Change sequence within a script 

 Copy or move functions using different scripts 

 Copy scripts by dragging them to the root node 

SMART ASSISTANTS AND WIZARDS FOR COMPLEX TASKS 

The assistants and wizards integrated in zenon help you to create a base project in no time or to 

purposefully make complex adjustments. For beginners, we recommend the assistants for the 

universal slider, the combined element and archiving. 

TOOL TIPS FOR ELEMENTS AND PROPERTIES 

If you move the mouse pointer to above a display element (such as a text button) or a property with a 

linking (such as a function linked to a text button), a tool tip appears. It shows information about the 

linked elements, like the linked function and its parameters. 
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ENHANCED DRAWING POSSIBILITIES 

The graphics editor offers you a wide range of functions that make the imaging of equipment easy for 

you and also give you many design options at the same time. From step-free zoom through to 

scaling by click up to element corner points and automatic distribution of elements according to rules. 

You can find details in chapter Screens. 

JUMPING TO LINKED ELEMENTS 

With all graphic elements, with functions, variables and also with other elements, you have the option 

to jump directly to the linked elements. For example, you can go from a display element directly to a 

linked element with a mouse click, from the variable directly to the data type used, and from there 

even further to the unit used. If necessary, you can also jump from all these steps back to the initial 

element easily with the click of a mouse. 
 

4 Object orientation 

COPA-DATA sees the topic of automatization object-oriented and pragmatically. That´s how zenon 

works; furthermore, it can be largely automatized itself. You don´t need a programming language for 

zenon. You do not have to program one single line of code. Instead, you assign objects with 

properties using the mouse. That works not only with individual objects but also centrally for a whole 

project and across objects, too. 

If you´re now worried that you can´t individualize zenon and are totally dependent on the object 

properties, the good news is: Of course you can individually adapt the design of zenon. To do so, use 

preferably VBA or the VSTA (.NET) development environment. Additionally, zenon offers many 

interfaces to communicate with hardware and software and and has an integrated SCADA logic with 

zenon Logic. 

THREE IMPORTANT BASIC PRINCIPLES THAT HELP YOU WITH ZENON 

Three central principles make projecting with zenon easy, reliable and easy to maintain: 

1. Parameterizing instead of programming (on page 9): 

Easily set the required parameters instead of programming or adapting scripts. 

2. Global / central instead of local (on page 10): 

Define objects once and reuse them over and over, also across projects, instead of writing or 

copying scripts over and over again. 

3. Object-oriented parameterization: (on page 11) 

Use all advantages of object-oriented thinking. 
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4.1 Parameterizing instead of programming 

How do you profit if you parameterize projects instead of programming them? 

You dispense with code that is prone to errors and gain flexibility, clear structures, speed and high 

reusability. Four items are particularly in favor of parameterization: 

1. Predefined modules save time 

zenon contains many predefined modules. Instead of programming scripts yourself, the 

project engineer chooses the suitable module and configures it by selecting the desired 

properties and parameters. That allows you to create executable projects in no time. 

2. The product from the manufacturer is already mature 

the designer concentrates on his projects. The software is developed and tested by the 

manufacturer, designers don´t have to write their own code. Therefore it´s very easy to 

operate zenon - also for employees with no experience in software engineering. 

3. Easy maintenance and adaptation of the project 

zenon works strictly object-oriented. Combined with the philosophy "setting parameters 

instead of programming", that means: simple maintenance and adaptation For changes and 

monitoring, you only have to verify or change the properties of the individual objects instead 

of reading and adapting long code lines. In the lifetime of the project that ensures 

 Overview: Projects can be reproduced even some years later, even by new employees. 

 Security: Error-prone scripts and programming is avoided. 

 You save time: Projection, adaptation and maintenance can be realized a lot quicker. 

4. Easy adaptation for different machines 

zenon can be adapted easily and swiftly to new or changed machines. Project adjustments 

require just a few mouse clicks. 

ADJUST ZENON 

Parameterization prevents errors in scripts from being copied again and again. It prevents tedious 

changes in many individual scripts if you just want to adapt little things. But that doesn´t mean you 

have to be inflexible. zenon, too, gives you opportunities to individually expand and adapt the system. 

 VBA/VSTA: 

With the integrated script language Visual Basic for Applications or C# and VB.NET, you can 

execute any code in the Runtime. This allows the execution of automation tasks, logical tasks 

and interfacing tasks like database access. 

 zenon Logic: 

This completely integrated control environment allows you with its SCADA logic to use all five 

IEC 61131-3 languages. With it, you can complete all calculations and solve all logic problems. 
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 PCE:  

The integrated Process Control Engine allows you to use VB-Script and Java Script for 

automation tasks. 

 ActiveX Controls:  

You can integrate standard controls like Flash Player, Acrobat Reader, etc. in zenon. Of 

course, the interface is disclosed so you can include your own ActiveX Controls. 

 WPF-Elements 

The direct integration of Windows Presentation Foundation format allows you to integrate 

graphical elements like for example a button, a pointer instrument and many more things in 

this new graphics format directly in zenon screens. These elements can be freely linked with 

variables and functions, which will allow you to implement any graphical effect you like. 

 COM-interface: 

You can access zenon via the completely disclosed COM-interface from outside. For 

communication needs, different programming languages like C++, .NET, Delphi and so on 

are provided. 

 
 

4.2 Global and central instead of local 

Properties can be defined in many ways in zenon, depending on the task: 

 directly on the object 

 Central 

 globally 

Of course, in zenon you can adjust all settings directly at the object. But that is not always the 

smartest solution.  

DEFINE PROPERTIES CENTRALLY 

Often it makes sense to define settings only once centrally. This way, new objects offer the desired 

properties from the beginning. Changes are really easy: The desired property is changed only in one 

place centrally; all concerned objects adopt it automatically. That means only one click instead of 

many lines of code or many mouse clicks. 

These central settings can be found easily from any position of the editor. Every object that gets 

settings directly from a central location offers the option to show them directly. You simply follow a 

link and see immediately how these elements are linked. 

But you can´t only define properties centrally for a project, you can also define them globally.  
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PROJECT GLOBALLY 

zenon allows you to work with more than one project at a time - and thus saves your most precious 

resource: Working Hours For example, it is really easy to use the same fonts in all projects. Once 

defined, properties like font or font size are instantly available for all projects of a work area. If you 

need another font for all projects, it´ll take you only some seconds to change it in the global project. 

What if you want to provide a project with a different font? Well, then you change this font centrally in 

that project. 

  Information 

In the global project, use a numbering system that is different from the one in 

the single projects. zenon always prefers the local settings if the numbers are 

identical.  

And: Use own names for font lists that you keep consistent in the global project 

and in the individual projects. In doing so, you ensure that all fonts are found if 

the language is changed. 

OVERVIEW THE RELATIONS OF OBJECTS:  

Additionally, you can get an overview of your projects and object relations with: 

 Cross reference list:  

It shows cross references in a project and enables you to easily search for the usage of 

variables and functions.  

 Wizard for documentation 

It automatically creates complete project documentation. You can configure exactly what you 

want to be included, down to every single property. 

 
 

4.3 Object-oriented parameterization 

"Object-oriented parameterization" is the fundamental philosophy of zenon. This philosophy arranges 

work clearly and saves time for creation and management of variables. 

Each variable in zenon is based on two elements: 

 Driver (on page 12)  

 Data type (on page 13)  
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4.3.1 Drivers 

Drivers are not directly integrated in zenon, they are implemented via a driver object type. This 

determines which area on the controller is to be addressed. 

DRIVER OBJECT TYPE 

There are many different driver object types, for example standard PLC markers, database blocks, 

inputs, outputs, counters and also other special types such as alarm or driver variables. 

The driver object type determines: 

 The area on the controller 

 Which granularity the driver has in this area 

 Which data types can be created on the area 

 

Hint: Not any data type can be created in any area. There, when creating a variable, you should 

always choose: 

 The driver first, 

 then the driver object type and 

 lastly the data type 

EXTRA INFORMATION: GRANULARITY 

Granularity is primarily important for numerically-addressed controllers such as the Siemens S7 for 

example. Not every controller has the same grid and not all areas in a controller have the same grid. 

For example, the datablock area of the Siemens S5 is word-orientated, but the marker are is 

byte-orientated. This means that the smallest unit that can be addressed is a byte or a word. If you 

want to write a bit in such areas, it is necessary to read at least a complete byte, mask out the 

corresponding bit, change it and then write the complete byte/word to the controller again. 

The same information is also required when addressing the areas, called offset. You start at zero and 

count on in byte or word steps. If you use automatic adressing (on page 17)in zenon granularity is 

automatically considered. The granularity does not depend on the driver, but on the driver object 

type. 

DRIVER VARIABLES 

The driver variables are offered by each driver and provide many advantages for project 

configuration. They do not communicate with the controller, but read an internal save area in the 

driver, which primarily consists of statistical information. However special functions can also be 
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controlled with variables, such as telephone numbers for modem connections or commands for 

dialing or hanging up. 

You can find more detailed information on this in the driver variables help chapter. 

A dBase file with the most important driver variables is included on the installation medium of zenon. 

You can therefore import variables for each driver instead of creating them manually. 
 

4.3.2 Data types 

Data types are the heart of object-oriented parameterization. As you cannot change anything in the 

driver -object types, they cannot be used for object-orientation. The data types, on the other hand, 

offer many possibilities. 

We distinguish between three types: 

 Simple data types 

 Structure data types 

 Structure elements 
 

4.3.2.1 Simple Data Type 

Simple data types are always IEC data types, that means the data types defined by the IEC in the 

61131-3 standard, like BOOL, INT, USINT, UDINT, STRING, WSTRING, etc. The length of the value 

range is defined. 

Examples: 

 BOOL: 1 Bit 

 INT: 16 bit unsigned 

 UINT: 16 bit unsigned 

The data types in zenon allow not only IEC data type, a lot more properties are available. These have 

the same identification as the properties of the variables: 

 Identification 

 Unit 

 Value range 

 Limit Values 

Why this "dual data retention"? 

The background is as simple as it is practical:  

Just as a dynamical element takes over the font type and size from the linked font, the variable also 

takes over the value calculation, the unit and the limit values from the data type it is based on. 
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OBJECT ORIENTATION 

In contrast to the linking of dynamic elements and fonts, this involves an object-orientated approach: 

The data type object passes its properties on to the variable. The difference? 

Linked/derived properties can be separated or overwritten for the variables. This works for each 

property individually but also for all properties at the same time. You can, for example, take on the 

unit from the data type centrally, but directly overwrite the identification or the address for the 

variable. This works as follows: 

 Change the relevant value of the variable, then the link is separated.  

You can verify that by looking in the properties: The check is no longer there. 

You can use the following functions via the context menu in the project properties: 

 Link "Property" from data type 

If you have separated the link, you can restore it. 

 Unlink "Property" from data type 

You can separate an individual property without having to change the value. If you 

subsequently change the data type, you can be certain that the variable is not influenced by 

this. You can set whether the inheritance concept takes effect or not. 

 Link all properties with datatype 

Links all properties in the properties node to the data type. 

 Unlink all properties from datatype 

Disconnects all properties in the properties node from the data type. 

To open the context menu, click on a property in the project properties with the right mouse button. 

As a particular help, you can also accept or separate all properties from the data type with a mouse 

click. You can thus restore the original state (everything derived) very quickly or rescind this. How 

does this all help in practice? 

Particularly high flexibility: If you have many variables with the same limit value, such as an alarm at 

value 1, then set this for the data type. You the set the limit value text and other optional parameters 

separately for each variable. You thus save the creation and maintenance of the limit value for each 

individual variable and your engineering output increases considerably. The data type BOOL, created 

as standard, also has a limit value at 0 and at 1! 

If you do not even have a limit value for each bool variable, you do not however need to take extra 

care for each variable and turn the limit value off again. Instead, you can conveniently use a feature of 

zenon and create your own BOOL data type. Proceed as follows: 

 Simply leave a standard data type as it is 

 Create a new data type (via the New simple datatype... entry in the project manager in the 

context menu of the Datatypes entry or via the entry in the toolbar) 

 Give it a name, such as MyBool 
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 A list with the existing data types is offered 

 Select standard bool 

 All properties of the new data type are automatically taken from the old one 

 Delete limit values for MyBool 

You then create all bool variables that are not to have limit values for this new MyBool bool data type 

– and the limit values you don't want have already disappeared. Those that are wanted are retained 

however. 

You cannot of course create just your own bool data type, but as many as you want. All variables that 

need identical properties over wide ranges get their own data type. If a property changes, change this 

centrally and all derived variables are also changed automatically – with the exception of those for 

which the linking was changed. 
 

4.3.2.2 Structure data types - structure elements - structure array 

STRUCTURE DATA TYPE 

Structure data type means a group of data types that are precisely defined in terms of their order and 

arrangement. For example, the structure motor can consist of the elements of actual speed and 

power consumption. 

A structure can also be nested, whereby as many hierarchy levels as desired are possible. 

With structure data types, the variable household can be be structured in precisely the same way as it 

actually exists in the controller or logically. 

STRUCTURE ELEMENT 

A structure data type is actually just a hull that gives the structure its name but does not have any 

properties of its own. 

These first come with the structure elements that are added to the structure data type. In doing so, a 

distinction is made between: 

 Linked structure data type: 

Reference to a pre-existing data type. All properties are taken on, with the exception of the 

name. 

Advantage: If the structure element has many properties of a pre-existing data type, these 

can easily be reused. It is of course still possible to change each of the variable properties or 

separate them from the data type. 

 Separate embedded structure data type: 
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Allows individual addressing settings. This new data type is only valid within this structure. 

  Information 

Advantage of object orientation: If the structure changes at any point, it is then 

sufficient to change the structure data type in order to automatically amend all 

variables that are on this structure. 

Changes are possible for all forms: 

 simple properties like the unit of the data type 

 complex properties like adding or deleting a limit value 

 Change to the complete structure, such as a change to the sequence of 

elements or addition or deletion of individual structure elements in a 

structure data type 

 

STRUCTURE ARRAY 

If it is not just one machine, but many, the structure array is used. 

For example: 100 pumps instead of 1 pump. 

Then simply change the structure variables into a structure array. 100 variables thus become 100 

structure variables with the click of a mouse. 

If we, for example, have to create 12 individual variables for each pump, we need a total of 1200 

variables. The method of "setting parameters in an object-orientated manner" allows this with a few 

mouse clicks. In addition there is the advantage that all variables have already been preset. Each 

individual variable already provides all properties that it needs, such as unit, value determination, 

alarms, CEL entries etc. 

  Information 

Structure data types are also suitable for the reuse (on page 30) of variables. 

 
 

4.3.2.2.1 Example pump: 

INITIAL SITUATION 

A pump consists of two motors. Each of these has variables such as: 

 Actual speed 
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 Power consumption 

 Output 

 etc. 

Each motor has, in turn, a motor regulator with the following variables: 

 Target speed 

 P-proportion 

 I-proportion 

You construct this setup in this way: 

1. Create a regulator structure from each data type for 

 Target speed 

 P-proportion 

 I-proportion 

2. Create a motor structure, each with its own separate data types: 

 Actual speed 

 Power consumption 

 Output 

 etc. 

3. In the motor structure, you apply the controller. 

4. Create the pump structure and integrate the motor there. 

Because we have two motors, simply take on the motor data type twice in your pump 

structure. 

5. Create a variable that relates to this structure data type: 

 Creating a new variable 

 Select pump structure data type 

The individual elements of these structure variables are called Structure elements (on page 

15) and you can use each of these elements everywhere in zenon for example in screens, as 

alarms, in archives, in recipes, etc. 
 

4.3.3 Tips for addressing and import/export 

Practical tips for: 

 Addressing 

 Export/import 
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ADDRESSING: 

With numeric controllers, you have a choice of whether addressing takes place automatically or 

semi-automatically. The properties described here can also be reached by means of VBA/VSTA and 

can thus be used for automatic project configuration. 

AUTOMATIC ADDRESSING: 

Offset and - if required - byte and bit address are automatically calculated on the basis of the position 

of the structure elements; with arrays it is throughout the complete array. If you have created the 

same structure in the PLC and in zenon, everything works fine and you do not have to care about 

addressing. 

SEMI-AUTOMATIC ADDRESSING: 

You already issue individual start addresses for the data type. The further addresses are then 

calculated using these addresses. You can of course also amend these if required. You can find details 

in Automatic addressing. 

For symbolically addressed PLCs, the same name must be given in zenon and in the PLC. 

XML EXPORT/IMPORT: 

Information like data types, structures, inherited properties etc. is also included when importing or 

exporting. This means that, once defined, you can comfortably export structure data types and 

structure variables and import them in other projects to reuse them or adapt them as needed. 
 

5 Reusing elements 

When a project is first created, you need time to create variables, functions, screens and their linking. 

You can also reduce this time considerably with the following projects. This is because with zenon, 

you have the possibility to simply transfer objects that have been created to other projects. 

For example, you need standard elements in many projects such as screens for the system status or 

detailed screens for hardware components that are used repeatedly (pumps, valves, motors, etc.). 

There are different methods of reusing elements available to you: 

Theme Reuse of 

Replacing variables and functions 

(on page 19) 

Elements 

Symbols (on page 24) Screens 
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Theme Reuse of 

Structure Data Type (on page 30) Variables 

Reaction Matrices (on page 33) Variables 

Global project (on page 33) Central elements of a project 

XML (on page 34) Project parts by means of import and export 

Wizards (on page 36) Screens and elements by means of import or 

individualization 

Reusing projects (on page 37) Projects 

 

  Information 

In order to be able to reuse an element efficiently, ensure that variables, 

functions and screens have a unique name (on page 19) when they are created. 

 
 

5.1 Replacing variables and functions 

Variables and functions that are stored as dynamic elements can be replaced in an automatic manner. 

This can take place at different places: 

 Replacing linking in a screen (on page 21)  

 Replacing linking for screen switching (on page 22) 

 Replacing indexes (on page 23)  

 You can also find more about replacement of variables and functions in the Screens manual 

in the Replacing linking of variables and functions section. 
 

5.1.1 Naming conventions 

To be able to replace variables and other elements securely, the naming should be systematic and 

standardized if possible. You therefore support not only the reusability, but also maintenance and 

reverse engineering. 

Different systems support you with systematic naming. 

FOR EXAMPLE: ENERGY INDUSTRY 

Germany 
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 KKS (Kraftwerk-Kennzeichen-System - Power Plant Classification System), for details (in 

German), see http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem 

(http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem) 

 DIN 6779 (Kennzeichnungssystematik für technische Produkte und technische 

Produktdokumentation - Classification System for Technical Products and Technical Product 

Documentation), for details (in German), see http://de.wikipedia.org/wiki/DIN_6779 

(http://de.wikipedia.org/wiki/DIN_6779) 

 Equipment Classification System, for details (in German “Anlagenkennzeichnungssystem”), 

see  http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem 

(http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem) 

International 

 KKS (Power Plant Classification System), for details, see 

http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System 

(http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System) 

Such standards exist for all industries. It is recommended that their naming convention is used. 

KKS EXAMPLE: 

Variables are to be named in accordance with the KKS in an energy project.  

A corresponding variable with the label C01_MDY10-QA001_QA07 indicates: 

 Wind energy equipment C01 (row C, no. 1) 

 Wind turbine control MDY10 

 Power part QA001 

 Power protection QA07 
 

5.1.2 Possibilities for replacement 

Replacements can be used at different points of a project: 

 Replace linking in screen (on page 21): Screens are copied and the linking is replaced in the 

copied screen. 

 Replace linking for screen switching (on page 22): Only one screen is used for different 

controllers and the linkings are amended when called up. 

 Replace indices (on page 23): Replacing variables in a process screen using the value of index 

variables. 

 
 

http://de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem
http://de.wikipedia.org/wiki/DIN_6779
http://de.wikipedia.org/wiki/Anlagenkennzeichnungssystem
http://en.wikipedia.org/wiki/KKS_Power_Plant_Classification_System
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5.1.2.1 Replace linking in screen 

If variables are attached in a screen, these can be easily replaced by means of a replacement dialog.  

Requirement: 

 Clear naming of variables (on page 19) 

With this, screens that have been created can continue to be used by copying & pasting.  

The replacement is started using the context menu: 

 Right-click on the screen element 

 Click on replace linkings 

 

The dialog for replacement is thus opened. 

EXAMPLE 

In our example, the project has a number of variables from different parts of the equipment. The 

following are in the process screen: 

 10 variables that come from the MDY10 wind turbine control, with dynamic elements linked 

 Buttons with screen switching to different areas of MDY10 available 

Using copy & paste, the project engineer intends to reuse the screen in its exact form for wind turbine 

controller MDY11 and to replace the variables or functions by the corresponding ones from the new 

controller.  

To do this:l 

1. The dynamic elements on which variables and functions are linked are highlighted 
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2. The replacement dialog is opened 

 

3. In the Source field, the equipment identification *MDY10* is entered 

(the first and last * characters are wild cards) 

4. MDY11 is entered in the Target field 

5. Replacement is carried out with Accept, the replace and the dialog is closed with OK 

The screen can now be used for the new PLC. 
 

5.1.2.2 Replace linking for screen switching 

With this method, it is always the original screen that is used and called up in the Runtime with 

different variables and functions. The screen contains different variables and functions, as in the 

"Replace linking in the screen (on page 21)" example. Replacement is carried out when switching. To 

do this: 

1. Several screen switching functions are configured to this screen 

2. The dialog for replacement (on page 21) is offered when the function is created 
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3. Each function contains its own replacement process 

 

A variable for this, which only comes with a screen switching: Replace indices (on page 23) for arrays. 
 

5.1.2.3 Replace indices 

The replacement for variables can be carried out using index variables in arrays. 

As with Replacing linking for screen switching (on page 22), the screen is only used once. The linked 

variables are replaced when switching. Screen switching is only configured once (different to replace 

linking in the screen (on page 21)) and can be reused more than once using an index variable. 

EXAMPLE 

Screen switching is carried out on a process screen that contains 10 variables of the wind turbine 

control MDY10. The aim of the person configuring the project is to reuse this screen 1:1, because the 

wind turbine controllers MDY11, MDY12 and MDY13 have the same number of variables. 
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The indexing rule: 

 Source: C01 MDY10 QA001* 

 Target: C01 MDY{X01} QA001 

Has the following effect: 

 With screen switching, the function is informed that it must use the variable value of X01 

Index wind turbine control in the variable name for screen switching in Runtime. 

Example: If this variable has the value of 12, the process screen with all variables of the wind 

turbine controller MDY12 are displayed when screen switching is executed 

 
 

5.2 Symbols 

Symbols offer great potential for reuse. Symbols can be built up in a very complex manner and 

support inheritance. Symbols can be embedded or linked. With linking, modification in one place is 

sufficient to update all screens that use this symbol. Symbols can also be linked to other symbols. 

EXAMPLE OF BUTTON BAR 

A symbol (empty right corner) is linked as a basis in all buttons. 

 

Free-access properties (on page 24) make it possible to issue each button with different graphics. If 

the form or color of the buttons is changed, only the "empty button" symbol needs to be modified. 

All buttons automatically take on the new form and/or color. 
 

5.2.1 Free access properties 

Symbols pass on their properties to the objects in which they were linked. However, individual 

properties can be released from inheritance. The displayed graphics in our button for example. If 

inheritance is released, this property can be set individually for each object. Changes to this detail in 

the initial element no longer influence the other objects.  
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REUSING SCREENS 

The combination of symbols and released properties can be an effective solution for the reuse of 

process screens.  

EXAMPLE 

There is a central dialog for setting parameters in a project, which is to be used for various setting of 

parameters. Because this is used in various areas, there is also a requirement that certain adaptations 

(such as background colors, screens …) should be possible.  

Copy and paste: 

1. Create a process screen that contains this dialog for setting parameters  

2. Duplicate the screen using copy & paste 

3. The process screens that are duplicated can be adapted to the requirements graphically 

But: Inheritance is not possible here. If the person configuring the project subsequently wishes to 

make changes centrally (in relation to the basic structure of the dialog for setting parameters), they 

must then drag these to each individual process screen.    

Approach using symbols with released properties:  

1. The dialog for setting parameters is created using a symbol 

2. Elements that have to be adapted for different parameter points are decoupled via released 

properties from the inheritance concept  

3. The symbol is linked, positioned and adapted in the corresponding screens.  
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4. If the person configuring the project decides to change the general appearance of the 

dialog, they make this change centrally in the symbol. This change then affects all items in 

which the symbol is linked.  

 

5.  A global symbol can be adapted individually using released properties and corresponding 

replacement (on page 26).  

 

6. In this case, the person configuring the project has decided to change the general graphical 

user interface of the dialog for setting parameters. This change is made centrally at the 

"Setting parameters" symbol. The individual properties of the individual parameter dialogs 

remain unchanged; only the properties that are contained in inheritance are contained. 

 
 

5.2.2 Replacement with symbols 

The process described in the Replacing variables and functions (on page 19) section can also be 

carried out for symbols. Here too, well-thought naming (on page 19) of the objects is a requirement.  
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When carrying out replacements for symbols, a distinction must be made between two different 

approaches: A symbol from a library (project/global) can be 

 inserted into a screen as an element group 

 linked into a screen  

Depending on the approach, different dialogs are switched for the replacement of variables/functions.  

ELEMENT GROUPS 

Here, variables are replaced directly via the replacement dialog. The dialog offers the possibility to 

select variables via a variable selection dialog. Using symbols in this manner is not ideally suited for 

reuse.   

SYMBOLS 

With this process, work is carried out using replacement strings. These strings are replaced with the 

corresponding variables during compilation. It is not possible, via the dialog called up, to make 

replacements by means of a variable selection dialog. The person configuring the project works using 

individual replacement strings here, which are separated from each other by a semi-colon (;). 

 

The symbol behind this replacement dialog can now be reused in various parts of the equipment. This 

example assumes that similar variables and functions are used in each equipment area (only 
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differentiated by the equipment abbreviation in the name) and that these can be replaced quickly and 

with a clear overview.   

You can find more about replacement for symbols in the Screens manual in the Symbols section. 
 

5.2.3 General symbol library 

There are several possibilities for the administration of symbols. The symbols can be administered in: 

 The symbol library of the local project 

 In the symbol library of the global project 

 In the general symbol library 

Symbol Library Property 

General symbol library Symbols are available in all projects. The general symbol library node is 

located in the project manager below the currently-loaded projects. 

Label when linking in the screen: [symbol group]/[symbol name] 

Rules: 

 The dialog for selecting variables offers all projects of the 

workspace for linking. 

 These symbols are saved in the zenon program folder and only 

updated when the Editor starts. These symbols are not saved 

during project backup. 

 Interlocking and aliases for ALC cannot be configured.  

Attention: If symbols that contain interlocking or aliases are 

added, these settings are removed. 
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Symbol Library Property 

SYMBOL LIBRARY IN THE 

GLOBAL PROJECT 

Symbols are available for all projects of the workspace. 

Label when linking in the screen: Global project_[Symbol name] 

Rules: 

 The symbols copied into the symbol library of the global project 

retain their variable linking without changes. 

 The variable dialog offers all projects of the workspace for 

linking. Linked variables are placed in front of the name of the 

respective project. 

 The name of the Variable can be amended in the properties 

window. This way, for example, the prefix can be deleted with the 

project origin. 

 The symbols are also backed up when a project is backed up. 

 Interlocking and aliases for ALC cannot be configured.  

Attention: If symbols that contain interlocking or aliases are 

added, these settings are removed. 

Symbol library in the 

project 
Symbols are only available in the current project. 

Label when linking in the screen: [Symbol name] 

Rules: 

 The symbols are saved in the project folder. The project symbol 

library is in the current project in the Screens node and is backed 

up together with project backup. 

 Interlocking and aliases for ALC can be configured. These 

properties are also retained when symbols are added. 

COPYING OF SYMBOLS BETWEEN LIBRARIES 

Symbols can be copied with Drag&Drop.  

In doing so, the following applies: 

 Only symbols of the first level of the tree can be copied. 

 Groups and folders cannot be copied. 

 If there are already names of symbols in the target library, the added symbols are 

automatically renamed.  

Renaming is carried out by adding an underscore and an ordinal number, for example: 

Calibrator_1. 
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 Copying between libraries is only possible to a limited extent. 

Overview of copying between symbol libraries using Drag&Drop: 

Copying using  

Drag&Drop possible 

General 

symbol library 

Symbol library  

in the global project 

Symbol library  

in the project 

General 

symbol library 

-- + -- 

Symbol library  

in the global project 

-- -- + 

Symbol library  

in the project 

-- + -- 

Key: 

 +: copying possible 

 --: copying not possible 

EXAMPLE 

A central configuration point compiles a collection of symbols that are to be used by the 

configuration points distributed around the world in their individualized projects. For example, 

complex symbols that display important parts of process screens are displayed. This collection of 

symbols is in a folder or a file, for example "Global_Used_Symbols.SYM". If central graphical changes 

are carried out to this global collection of symbols, "Global_Used_Symbols.SYM" is simply sent to all 

configuration points and replaced there. The individual adjustment is carried out by means of 

released properties (on page 24) and replacement (on page 26). 

It is not always necessary to distribute the whole collection of symbols. An XML export/import (on 

page 34) can also be used to distribute individual selected symbols. 

Attention 

There must be clear rules when the global symbol library is used: Local 

configuration points must not change the symbols from the symbol collection. 

Each change would be overwritten at the next update. 

 
 

5.3 Structure Data Type 

Variables can be reused using structure data types. Complex structures can thus be created and the 

advantages of inheritance can be used.  
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EXAMPLE 

The "motor" structure data type consists of three elements:  

 Status  

 Speed   

 Temperature 

 

The inheritance type of the elements is different: 

  Status" and "Speed" are derived from the INT data type, but their inheritance was broken off 

by the embedding.  

This means: Subsequent updating of the INT data type does not have an effect on these two 

elements.  

 "Temperature" also comes from the INT data type, the inheritance is intact.  

This means: Subsequent changes to the INT data type also has an effect on the settings of 

this structure element.  

If, for example 20 motors with a structure that is always identical are configured, variables based on 

the self-created "motor" data type can be created. This can, for example, happen by creating an array 

of this data type. The graphic display is triggered by means of a symbol in this example. 

 

When linking the symbol in a process screen, the placeholder variables of the symbol are replaced by 

those of the self-created structure data type. Ensure that you have well-thought out naming (on page 

19) from the start.  
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If a process screen is created as an overview of all motors, the inserted symbol can be easily 

duplicated by copying & pasting. Only the target variable needs to be replaced with the 

corresponding sequence number on each symbol: 

 

If limit values for the "speed" variables are to be added at a later time, you benefit from the existing 

inheritance display between the self-created data type and the variables that are created as a result. 

For the planned change, a new limit value is created for the "speed" structure element of the separate 

"motor" data type. This change made at a position has an effect on all 20 motors that have been 

created.  

However the person configuring the project is free to undo this inheritance relationship. The limit 

value for "speed" can be changed for one of the 20 motor variables that have been created.   

Note: Individual properties or all properties of a variable are disconnected from the data type. 

  Information 

You can also read tips on the use of structure data types in the Structure data 

types - structure elements - structure array (on page 15) section and in the 

Variables manual in the Structure data types section.  
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5.4 Reaction matrices 

Reaction matrixes ensure that a variable is the same throughout the project. In contrast to limit values, 

they have a central approach: A reaction matrix is configured once and then assigned to any number 

of variables. All variables that are linked to the reaction matrix react in the same way. The benefit: 

central and simple maintenance. 
 

5.5 Global project 

With a global project, standards can be defined throughout a project. It is thus possible to define 

certain modules or elements for all sites, whilst local projects stipulate individual parameters. 

The following can be configured in the global project: 

 Alarming: 

Declaration of the alarm groups, alarm classes and alarm areas to be used globally. 

 Equipment Modeling: 

This can support the central project configuration, because you can undertake a division into 

two "plants". In doing so, the project configuration elements that come from the central 

project configuration point and those that come from the local project configuration point 

must be configured. 

 User: 

If a standard envisages the existence of certain globally-valid users, these can be determined 

using the global project. 

 Files:  

There can for example be graphics as a result of a standard, which must be used in 

individually-created projects. These can be provided globally. 

 Frames: 

Determination of the process screen arrangement and size of the projects to be developed. 

It is possible, for example, to clearly define in a guideline that in a project, newly-created 

screens can only be created using templates of a global project. Uniform global graphics are 

thus guaranteed. 

 Fonts and color palettes: 

In order to achieve uniformity with displayed texts and colors, a pre-defined set of font lists 

or color palettes can be stipulated for global use. 

 Language tables: 

If a determined set of terms and statements to be used is specified in the project 

configuration, it is possible to stipulate these using the defined language tables and to carry 

out the corresponding translations at the same time. 
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EXAMPLE 

A central project configuration point defines standards in the ares of color, fonts, templates etc. 

throughout a global project for all people configuring the project. The global project is distributed to 

all teams as a project backup (on page 37). They import it into their workspace. A guideline must be 

used to clearly defined that local project configuration points must not make changes to a global 

project, because these are repeatedly overwritten by the input of updates from the central project 

configuration point. 

EXAMPLE OF EQUIPMENT MODEL 

 

A simple equipment model that only makes a distinction between a central and a local project 

configuration group. In an individualized project, this distinction could now be used to help for 

visualization in the Editor. In detail, this would look as though each configured element in the Editor is 

given a corresponding equipment group assignment. 

 

The existing process screens are displayed after equipment assignment. 

This way the local project configuration point can thus clearly detect which screens are updated by a 

central project configuration point via the XML import. For the person configuring the local project, it 

is thus also clear which screens they must not change. This is because each change to 

globally-maintained screens is overwritten again on the next update. 

Hint: To update a global project, it is not always necessary to create and import a project backup. 

Individual changes can also be updated locally by means of XML (on page 34) export and import. 
 

5.6 XML 

Import and Export via the XML interface offers many possibilities for the reuse of project components. 

Attention 

Existing elements with the same name are overwritten on import. 
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DEPENDENCIES ON IMPORT 

If several parts of a project are to be imported, there are also more XML files with different content 

accordingly. In order to accept the content of several XML files correctly, existing dependencies must 

be taken into account: 

If, for example a screen is imported and the variables linked therein do not exist in the project, the 

linking cannot be restored. In order to create all linking correctly, it may be necessary to carry out the 

import of a screen or a variable twice. 

Example: Import of a screen via XML 

The most comprehensive variant is to import a screen. In this case, the created XML file must not 

contain just the screen and the included elements, but also the frame, linked variables and functions. 

The XML file needs all content that can be seen in the screen and is thus linked to it directly. 

In screen "A", a function "B" is executed by means of a button, in order to then in turn open screen 

"A": 

 The "B" function needs screen "A" in order for this to be linked in function "B". 

 The screen "A" then in turn needs function "B" in order for this to be linked to the button. 

Import: 

1. First the function 

2. Then the screen 

3. Then the same function once again 

Note: The reference to the screen cannot be established in the function otherwise. 

HARMONIZE PROJECTS THROUGHOUT A FACTORY 

XML export/import is also suitable for guaranteeing the cross-plant harmonization of projects. If a 

company establishes that certain certain parts of the project must be designed in a uniform manner 

throughout the world, then the uniform elements are: 

1. Configured centrally 

2. Exported to an XML file 

3. Distributed as an XML file 

4. Applied by each local team as an XML import 

Alternatively, export and import can also be carried out by means of a specific wizard. 

Because existing elements are overwritten with an XML import, these uniform elements must be 

named clearly and bindingly. Local changes of these elements are overwritten again on the next 

import. 
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WIZARDS (ON PAGE 36) 

A zenon API based wizard is offered to support the user when importing. In the wizard, the user can 

then select what is to be imported using decision-making aids. A possible approach for the wizard is 

to create an XML library that contains different variants of screens and functions. 

CUSTOMIZATION WITH THE WIZARD 

A wizard can also be used to customize standard functions that are in XML format. One function per 

XML is imported and then amended to individual requirements by changing certain properties that 

are not the same for each object. For example, there can be a screen switch function in XML format 

and this can be used several times by customizing the properties. 
 

5.7 Wizards 

The reuse of elements and parts of projects can be simplified and supported with wizards. Wizards 

are primarily suitable for:  

 Creation of template projects: 

A wizard makes it possible to create certain standard parts of a newly created project to be 

created using a few mouse clicks. In contrast to simple input of a completed project backup 

(on page 37) of the template project, the person configuring the project has more scope for 

customization here. 

For example, a wizard can create different project types regardless of machine. 

 Creation of pre-defined parts of a project: 

Wizards can also help to create certain areas in a project. 

For example: Creation of a "motor" project area.  

The wizard creates pre-defined elements for this area. Corresponding screens, functions, 

variables, etc. can be configured in just a few mouse clicks. In addition to shorter project 

configuration times, you also get a uniform appearance, because the wizards are 

programmed by a central project configuration point and used by the local project 

configuration points. 

 Configuration using pre-defined databases or files: 

Project databases or pre-defined files can also support project creation or project expansion. 

In doing so, the elements to be configured are described in a database or an Excel file 

(function name, function type, function parameter, variable name, offset …). These are read 

off with the help of a wizard and corresponding configurations are undertaken in zenon. 

You can find out more about wizards and the creation of these in the manual Wizards,  
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5.8 Reusing projects 

Projects can be reused in different ways. In doing so, mechanisms from the other chapter of 

reusability sometimes play a significant role. 

Project Backup (on page 37) 

Save as (on page 37) 

Multi-Project Administration (on page 38) 
 

5.8.1 Project backup 

Project backups make it possible to accept complete projects.  

For example, a project can be distributed to all teams as a template. These create a project backup 

and individualize the project.  

Attention 

This method is not suitable for transferring project changes, because all local 

configuration is overwritten when it is accepted.  

To maintain projects that have been created this way consistently throughout all teams, the use of 

XML exports/imports (on page 34) is recommended. 

In doing so, please note that pre-existing elements with the same name are overwritten during 

import! When configuring a project, the configured elements that can be overwritten must be clearly 

marked. For example, for the necessary identification, a corresponding addition in the element name 

or the procedure using equipment groups, see the global project (on page 33) section. 
 

5.8.2 Save as 

Save as creates a copy of a project in the active working area under a new name and with a new 

GUID. 

EXAMPLE 

Individual projects for different machine types are to be created, based on a template project. To do 

this: 

1. The project backup (on page 37) of the template project is loaded in 

2. Several differently-named projects are created in the active workspace using Save as (such as 

Machine 1, Machine 2, … )   
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Each machine project has the same initial project situation. However, the projects no longer have any 

connection to a template project. Changes that are made in a template project are not automatically 

accepted into the copied projects. However changes to the template can be introduced into 

individualized projects by means of XML export/import (on page 34).  

In doing so, please note that pre-existing elements with the same name are overwritten during 

import! When configuring a project, the configured elements that can be overwritten must be clearly 

marked. For example, for the necessary identification, a corresponding addition in the element name 

or the procedure using equipment groups, see the global project (on page 33) section. 
 

5.8.3 Multi-project administration 

Projects can also be compiled in a workspace in zenon multi-project administration as part of an 

integration project. It is thus possible to change a project centrally, whilst local project configurations 

are carried out in another project. 

EXAMPLE 

A central project configuration point is used to implement graphics reuse in local projects, in order to 

ensure a uniform user interface. To do this, the central configuration creates a template project that 

constitutes the graphics basis for all other project configuration teams. However, if a change is made 

to the user interface design in the central configuration, this must be subsequently applied at all 

project configuration levels. This can be carried out using multi-project administration: A project 

contains the elements to be administered centrally; another project has the local configuration.  

Procedure: 

1. A template project is initially sent to all configuration teams 

2. This is input into the active workspace 

3. Locally, a second, empty project is created that contains the specific amendments 

4. There are now two projects in the workspace: the template project and the personalized 

project 

5. The multi-hierarchical arrangement of the projects is carried out in the next step  

6. The template project becomes the integration project, the individualized project becomes 

the sub project    

  Information 

This method is not suitable for projects that are to run on Windows CE, because 

only one project can be started on CE.  
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6 Integrated network 

Distributed engineering in the network and 100% redundancy are no longer a big effort for you using 

zenon You can create networks by checking the relevant checkbox in the project's properties. And it 

is precisely this easy to make efficiently networked, redundant systems from individual standalone 

projects.  

If you have a TCP/IP Windows network, zenon automatically offers network functions with a mouse 

click, either as client / server model or as a multihierarchical system with substations, workspace 

centers and centers. It  

 also create projects with other users in the network at the same time 

 ensure equipment with the 100% zenon circular redundancy perfectly 

 Create distributed systems without problems 

 Access stations remotely 

 monitor and control equipment via zenon Web Server 

 see process data in all stations in real time 

 Make actions of a workspace, such as the acknowledgment of alarms, visible on all others 

 Have actions logged and archived centrally 

 Use process data immediately for ERP systems such as SAP 

zenon will automatically take care of the required time synchronization on all participating computers. 
 

7 Tips and tricks 

In zenon, you have many keyboard shortcuts and quick methods of project configuration available. 

We are presenting a selection of these to you here briefly.  

Tips and tricks for 

 the Editor (on page 39) 

 the Runtime (on page 42) 

 The test phase (on page 49)  

 Keyboard shortcuts (on page 43) 
 

7.1 zenon Editor: 

Tips for the zenon Editor: 
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GENERAL 

 Save Editor views: With Editor profiles, you can save your individually-compiled window 

divisions and assign modules. 

 Open the folder for the Editor files directly: Highlight the project and press the key 

combination Ctrl+Alt+E. 

 Open the folder for the Runtime files directly: Highlight the project and press the Ctrl+Alt+R 

key combination. 

SCREEN/SYMBOL EDITOR 

 Link elements:  

You can link functions, variables, fonts etc. to dynamic elements by means of Drag&Drop. 

 Add a copy at the same location:  

With the Ctrl+Shift+V keyboard shortcut, you add copied elements at the exact same 

position as the source element. 

Drag a circle:  

To drag a circle, drag the Ellipse/circle element with the mouse whilst holding down the Shift key. 

 Change line symmetrically:  

If you press and hold the Alt key while pulling the outer corner points, the change is carried 

out symmetrically. 

 Scaling:  

You can scale several screen elements at the same time: To do this: 

 Mark all elements. 

 Convert this into an element group. 

 Scale the element group as desired. 

 The individual elements are scaled in the same scale. 

 Break up the element group into individual elements again. 

 Templates for screens:  

You can convert any desired screen into a screen template. 

 Manipulate the X/Y coordinates of an element: 

You can enter the X/Y coordinates of an element or corner point of a polygon directly into a 

dialog or move it with the arrow keys. 

 Enter directly: Double clicking on the sizing handle of an element or corner point of a 

polygon opens a dialog. You can enter the X/Y coordinates of this point directly. 

 Move with the cursor: Place the mouse pointer over the sizing handle of an element or 

corner point of a polygon. You can now move the X/Y coordinates of this point directly 

with the help of the arrow keys. 
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 Jump to linked element:  

Right clicking on a property in the properties window opens a context menu that allows you 

to jump directly to the linked element. 

LANGUAGE SWITCH 

 Unit labeling:  

Set the exact unit name as tool tip. In the usual environment, users normally think in the 

respective national unit. For trouble-shooting, optimizing internationalization and projects 

with a focus on internationalization, the use of this tool tip can make their work significantly 

easier. 

Make this tool tip translatable; use international denominations for the country too. You can 

of course translate the measurement unit to the respective language. 

 Value units as a character instead of as a word:  

Use the unit display for the display of values. There will be no need for a translation then. 

Example temperature display: The term degree(s) must be translated. The symbol ° 

however not only is the same symbol in all languages but can also equally be used for 

Celcius, Fahrenheit and Kelvin. 

Set the corresponding symbol in the properties of the basic unit. 

 Conversion of values:  

Add the corresponding value conversion to every language change function. Otherwise 

misunderstandings might easily occur. 

SYMBOL EDITOR 

 Unlock property: 

You can unlock a property of an element by means of Drag&Drop, moving the property into 

the lower window of the symbol editor. In doing so, you must always click on the properties 

using their name, not the value. 

 Individual editing mode for symbols:  

With the Alt+click shortcut on an element, the element below it is activated. 

VARIABLES AND DRIVERS 

 Substitution:  

To be able to apply the possibility of substitution optimally: 

 Use structure data types. 

 Ensure that your variables are given a short and concise name. 

 Take the possibility of substitution into account at the naming stage. This naming should 

be unique and easily-substitutable. 
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 Configure a screen as a template first, which can be reused as often as you like once it 

has been completed by means of a function. 

 Automatically create variables by importing:  

Many drivers support the automatic creation of variables with correct addressing by import 

from the PLC or from a file. To do this, right-click on the driver with the mouse and select 

Import variables from the driver. 
 

7.2 zenon Runtime 

Tips for zenon Runtime: 

GENERAL 

 Display screen name:  

Right click on an empty screen area and hold down the mouse button. The screen name is 

displayed. 

 Display linkings:  

Right click on a dynamic element and hold down the mouse button. Linked functions or 

variables are shown. 

 Communication error:  

Display by means of symbols on the numeric element: 

 Red corner at the top left: No communication with the PLC. 

 Blue corner at the top left: No communication with the server. 

Note: The colors can be adjusted in the project properties in the Graphical design/Status 

of variable node. 

 Write set value:  

Except value, also change command. 

Only the value of a variable can be changed in the Runtime. If the standard dialog is used, 

the function that is to be executed can also be changed by means of the Command 

drop-down list, such as to Switch off spontaneous value for example. In order for the 

standard dialog to be displayed, the Screen Keyboard property must be deactivated in the 

Dynamic elements property. 

 Write set value directly without executing dialog:  

To write the set value directly, activate, in the properties of the dynamic element, in the Write 

set value group, the without dialog property. 

This setting can also be set with the Write/modify set value function by activating the 

Direct to hardware option. 
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HISTORIAN 

 Show name of the ARX file in the screen:  

The name of the ARX file can be shown in the list of the archives in the archive revision 

screen in a column. To do this, set, in zenon6.ini, in the [ARCHEDIT] section, the 

KURZBEZEICHNUNG=1 entry. The short description is thus displayed in the list. This 

corresponds to the ARX file names and is also part of all aggregation archives. 

KEYBOARD OPERATION 

 Keyboard operation:  

Runtime can also be operated in full with the keyboard. For details, see the keyboard 

operation chapter in the Runtime manual. 

 Block keys:  

Windows keyboard shortcuts can be blocked. For details, see the Block keyboard shortcuts 

chapter in the Runtime manual. 
 

7.3 Keyboard shortcuts 

In zenon, you can carry out many actions with keyboard shortcuts. 

GENERAL 

Command Key combination 

Open help F1  

Start/stop full screen mode Shift Key+F9  

Remote: Close full-screen mode Ctrl+Alt+Shift+F 

Start VSTA Editor Alt+F10 

Start VBA Editor Alt+F11 

Wizards: Open selection Alt+F12 

Open file explorer for current project with 

focus on SQL folder. 

Corresponds to: 

%ProgramData%\COPA-DATA\[SQL-Ordner]\

[UID]\FILES 

Ctrl+Alt+E 

Open file explorer with focus on project files 

from the current project. 

Ctrl+Alt+D 
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Command Key combination 

For example: 

C:\Users\Public\Documents\zenon_Projects\[Pr

oject]\INI\[Rechner]\INI 

Open file explorer with focus on Runtime files 

from the current project. 

For example: 

C:\Users\Public\Documents\zenon_Projects\[Pr

oject]\INI 

Ctrl+Alt+R 

Start Runtime; create changed Runtime files 

beforehand. 

F5  

Create changed Runtime files.  F7  

EDITOR PROFILES 

Command Key combination 

Load Editor profile 1 Shift+F1 

Load Editor profile 2 Shift+F2 

Load Editor profile 3 Shift+F3 

Load Editor profile 4 Shift+F4 

Load Editor profile 5 Shift+F5 

Load Editor profile 6 Shift+F6 

Load Editor profile 7 Shift+F7 

Load Editor profile 8 Shift+F8 

Save current Editor view as:  

Editor profile 1 Ctrl+Shift+F1 

Editor profile 2 Ctrl+Shift+F2 

Editor profile 3 Ctrl+Shift+F3 

Editor profile 4 Ctrl+Shift+F4 

Editor profile 5 Ctrl+Shift+F5 

Editor profile 6 Ctrl+Shift+F6 
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Command Key combination 

Editor profile 7 Ctrl+Shift+F7 

Editor profile 8 Ctrl+Shift+F8 

GRAPHIC EDITOR: 

Note for shortcuts: The plus sign (+) means that keys a pressed together.  

For example: 

Ctrl+A means: Hold down the Control key and then press the A key. 

Ctrl++ means: Hold down the Control key and then press the plus key. 

GENERAL 

Command Key combination 

Main window: Scroll content with 'moving 

hand' 

Press and hold Space 

Close current screen Ctrl+F4 

Open properties Alt+Enter key 

SELECT 

Command Key combination 

Select several objects Hold down the Shift or 

Control key 

Deselect selected object during multi-select Ctrl+mouse click 

Selection: Change sort order. Defines the 

element on which all others realign 

Hold down the Shift key when 

selecting 

Select hidden objects 1. Press the Alt key 

2. Click object and 

move it 

Select all elements of a screen. Ctrl+A 

Select next element according to the order of 

their creation 

Tab 

Select previous element according to the Shift key+Tab 
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Command Key combination 

order of their creation 

POSITIONING 

Command Key combination 

Move selected object. Arrow keys 

Move by 10 pixels each time you press an 

arrow key 

Shift key+Arrow key 

Move only horizontally or only vertically Hold down the Shift key when 

moving  

Centers the selected object in the working 

section 

H 

ACTIONS 

Command Key combination 

Saves changes Ctrl+S 

Pastes element from the clipboard Ctrl+V  

Shift+Ins 

Insert element from the clipboard into the 

original position. The original and copy lie on 

top of each other 

Ctrl+Shift+V 

Copies selected element. Ctrl+C 

Ctrl+Ins 

Copy instead of move Hold down the Control key 

when moving 

Duplicates the selected element. 

You can find more detailed information in the 

Duplicating elements section. 

Ctrl+D 

Deletes selected element Del 

Cuts out the selected element. Shift key+Del 

Ctrl+X 
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Command Key combination 

Opens the dialog to replace links for the 

selected element. 

Ctrl+R 

Undoes changes Ctrl+Z 

Alt+Backspace 

Add or delete node in the selected element. 

Add: Mouse cursor turns to plus symbol (+). 

Delete: Mouse cursor turns to minus symbol 

(-).  

Works for polylines, polygons and pipe 

elements. 

Ctrl+Shift key 

Cancel drawing of polylines and polygons S 

Cancel drawing of polylines and polygons and 

delete the section which was drawn last 

Esc 

Move selected elements one level up +  

Move selected elements one level down -  

Move selected elements to the foreground Ctrl++  

Move selected elements to the background Ctrl+- 

SCALING 

Command Key combination 

Change size Move mouse cursor to the 

handle so that the mouse 

cursor changes to an arrow. 

After that you can position, with 

pixel precision, using the arrow 

keys or in steps of 10 pixels with 

the Shift key held down. 

Note: If an angel dissimilar to 

0 via property Rotation angle 

[°] was defined for an element, 

scaling via arrow keys is not 

possible. 

Scaling object around the center Hold down the Alt key when 
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Command Key combination 

scaling. 

Proportional scaling Hold down the Shift key when 

scaling.  

ZOOM 

Command Key combination 

Reduce view Ctrl + Shift key + - 

Enlarge view Ctrl + Shift key + + 

Set view to 100% Ctrl + Alt + 0 

Amend the view to the space available in the 

Editor and display it proportionally 

Ctrl + 0 

ZOOM WITH THE MOUSE 

Command Key combination 

Reduce view Ctrl + scroll wheel of the 

mouse downwards 

Enlarge view Ctrl + scroll wheel upwards 

DETAIL VIEW 

Command Key combination 

Create a new element for the respective 

module 

Ins  

Edit the selected column F2  

Copy a selected list element Ctrl+C   

Insert a list element which was copied 

beforehand 

Ctrl+V   

Delete a selected list element Del  

Scroll up several elements in the list Pg up  

Scroll down several elements in the list Pg down  

Navigate in the list Arrow key 



Tips and tricks 

 

49 | 49 

 

 

RUNTIME 

Command Key combination 

Browse through open Window windows. Alt+Tab 

Stopping the Runtime. Alt+F4 

CONTEXT MENU ELEMENTS 

Create element group Creates an element group. The keyboard shortcut Ctrl + 

G can also be used for this. 

Resolve Resolves an element group into its screen elements. The 

keyboard shortcut Ctrl + Shift key + G can also be used for 

this. 

Full-screen mode Close full-screen mode: Shift key + F9 

 
 

7.4 Test of projects 

Tips for testing projects: 

 Name of the variable in the screen:  

To display a variable name in the screen, configure a combined element without status and 

with the default text: %n. 
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