

zenon manual
zenon WPF Element

v.8.20

© 2020 Ing. Punzenberger COPA-DATA GmbH

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form are permitted solely

with the written permission of the company COPA-DATA. Technical data is only used for product

description and are not guaranteed properties in the legal sense. Subject to change, technical or

otherwise.

Contents

1 Welcome to COPA-DATA help ... 5

2 WPF element ... 5

3 Basics ... 6

3.1 WPF in process visualization...7

3.2 Referenced assemblies ...8

3.3 Workflows ... 10

3.3.1 Workflow with Microsoft Expression Blend .. 11

3.3.2 Workflow with Adobe Illustrator ... 11

4 Guidelines for designers .. 12

4.1 Workflow with Microsoft Expression Blend ... 12

4.1.1 Create button as an XAML file with Microsoft Expression Blend ... 12

4.2 Workflow with Adobe Illustrator .. 16

4.2.1 Bar graph illustration ... 16

4.2.2 WPF export .. 18

4.2.3 Animation in Blend ... 20

5 Guidelines for developers .. 24

5.1 Creation of a simple WPF user control with code behind function .. 24

5.2 Debugging the WPF user control in the Runtime ... 29

5.3 Data exchange between zenon and WPF user controls.. 34

5.3.1 Data exchange using dependency properties ... 34

5.3.2 Data replacement via VSTA ... 38

5.4 Access to the zenon (Runtime) object model from a WPF user control 40

5.4.1 Access via VSTA "variable link" .. 40

5.4.2 Access via marshaling ... 44

6 Engineering in zenon .. 48

6.1 CDWPF files (collective files) .. 48

6.2 create WPF element .. 49

6.3 Configuration of the linking .. 49

6.3.1 Properties ... 52

6.3.2 Events ... 58

6.3.3 Transformation ... 59

6.4 Validity of XAML Files ... 62

6.5 Pre-built elements ... 63

6.5.1 Analog clock - AnalogClockControl .. 64

6.5.2 Bar graph vertical - VerticalBargraphControl ... 65

6.5.3 Progress bar - ProgressBarControl .. 66

6.5.4 COMTRADE-Viewer .. 66

6.5.5 Energy class diagram ... 79

6.5.6 Pareto diagram .. 80

6.5.7 Circular gauge control .. 83

6.5.8 Sankey diagram ... 87

6.5.9 Temperature indicator - TemperatureIndicatorControl... 88

6.5.10 Universal slider - UniversalReglerControl .. 89

6.5.11 Waterfall chart .. 91

6.5.12 BACnet WPF Control .. 93

6.6 Display of WPF elements in the zenon web client .. 109

6.6.1 Engineering in the zenon Editor .. 109

6.6.2 VSTA code (complex) ... 109

6.6.3 VSTA code (simplified) ... 111

6.7 Examples: Integration of WPF in zenon... 112

6.7.1 Integrate bar graph as WPF XAML in zenon ... 112

6.7.2 Integrate button as WPF XAML in zenon ... 117

6.7.3 Integrate DataGrid Control in zenon .. 123

6.8 Error handling ... 130

Welcome to COPA-DATA help

5 | 131

1 Welcome to COPA-DATA help

ZENON VIDEO TUTORIALS

You can find practical examples for project configuration with zenon in our YouTube channel

(https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an

initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP

If you cannot find any information you require in this help chapter or can think of anything that you

would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT

You can receive support for any real project you may have from our customer service team, which

you can contact via email at support@copadata.com.

LICENSES AND MODULES

If you find that you need other modules or licenses, our staff will be happy to help you. Email

sales@copadata.com.

2 WPF element

With the WPF dynamic element, valid WPF/XAML files in zenon can be integrated and displayed.

Note: In the zenon Editor, the standard tooltip for the WPF element is not displayed if a .wpf file is

linked. Furthermore, in zenon Runtime, the zenon tooltip for WPF elements is not supported.

 Information

All brand and product names in this documentation are trademarks or

registered trademarks of the respective title holder.

https://www.copadata.com/tutorial_menu

Basics

6 | 131

3 Basics

XAML

XAML stands for Extensible Application Markup Language. The XML-based descriptive text developed

by Microsoft defines graphic elements, animations, transformations, displays of color gradients etc. in

Silverlight and WPF user interfaces. The use of XAML makes it possible to strictly separate design and

programming. The designer prepares, for example, the graphical user interface and creates basic

animations that are then used by the developers/project planners who create the application logic.

WPF

WPF stands for Windows Presentation Foundation and describes a graphics framework that is part of

the Windows .NET framework:

 WPF provides a comprehensive model for the programmer.

 XAML describes, based on XML, the interface hierarchy as a markup language. Depending

on the construction of the XAML file, there is the possibility to link properties, events and

transformations of WPF elements with variables and functions of

CD_PRODUCTNAME<.

 The framework unites the different areas of presentation such as user interface, drawing,

graphics, audio, video, documents and typography.

For execution in zenon, Microsoft .NET framework version 4.6.2 or higher is required.

 Information

Transparency

In order for WPF controls in which a transparent background has been defined

to also be displayed as transparent, the following must be the case on the

computer for both Editor and Runtime:

 The operating system must be at least Windows 8.1

 The .NET framework version 4.6.2 or higher must be installed

WPFs are not shown as transparent in Windows 7 or 8. Instead, the transparent

areas are filled with the background color set on the zenon screen.

Basics

7 | 131

3.1 WPF in process visualization

XAML makes different design possibilities possible for zenon. Display elements and dynamic elements

can be adapted graphically regardless of the project planning. For example, laborious illustrations are

first created by designers and then imported into zenon as an XAML file and linked to the desired

logic. There are many possibilities for using this, for example:

DYNAMIC ELEMENTS IN ANALOG-LOOK

Graphics no longer need to be drawn in zenon, but can be imported directly as an XAML file. This

makes it possible to use complex, elaborately illustrated elements in process visualization. Reflections,

shading, 3D effects etc. are supported as graphics. The elements that are adapted to the respective

industry environment make intuitive operation possible, along the lines of the operating elements of

the machine.

INTRICATE ILLUSTRATIONS FOR INTUITIVE OPERATION

The integration of XAML-based display elements improves the graphics of projects and makes it very

easy to display processes clearly. Elements optimized for usability make operation easier. A clear

display of data makes it easier to receive complex content. The flexible options for adapting individual

elements makes it easier to use for the operator. It is therefore possible for the project planners to

determine display values, scales and units on their own.

CLEAR PRESENTATION OF DATA AND SUMMARIES

Grouped display elements make it possible to clearly display the most important process data, so that

the equipment operator is always informed of the current process workflow. Graphical evaluations,

display values and sliders can be grouped into an element and make quick and uncomplicated

control possible.

Basics

8 | 131

INDUSTRY-SPECIFIC DISPLAYS

Elements such as thermometers, scales or bar graphs are part of the basic elements of process

visualization. It is possible, using XAML, to adapt these to the respective industry. Thus equipment

operators can find the established and usual elements that they already know from the machines in

process visualization at the terminal.

ADAPTATION TO CORPORATE DESIGN

Illustrations can be adapted to the respective style requirements of the company, in order to achieve

a consistent appearance through to the individual process screen. For example, the standard

operation elements from zenon can be used, which can then be adapted to color worlds, house fonts

and illustration styles of the corporate design.

3.2 Referenced assemblies

It is not just standard objects (rectangles, graphics, etc.) or effects (color gradients, animations, etc.)

that can be displayed using the WPF elements, but also customized user controls (with logic in the

code behind), which are referenced as assemblies.

For example, a user control that looks like a tacho and provides special properties and optical effects

can be created, such as a Value property, which causes the pointer of the tacho to move and/or the

corresponding value to be displayed in a label.

Procedure:

 Draw the appearance of the user controls with standard objects that are offered by WPF.

 Program the properties and interactions.

 Compile the complete package.

The result is available as a .NET assembly.

This assembly can be used for WPF projects. To do this, it must be referenced (linked) in the WPF

editor (for example: Microsoft Expression Blend). To do this, select the assembly in the zenon file

selection dialog:

Basics

9 | 131

From this point in time, the WPF user controls of the assembly in the tool box can be selected under

Custom user controls and used in the WPF project.

Read more about this in the Guidelines for developers (on page 24).

USED REFERENCED ASSEMBLIES IN ZENON

To use an assembly in zenon, this must be provided as a file.

Collective files in .cdwpf format manage the assemblies independently. No further configuration is

necessary. Assemblies must be added to the Files folder for .xaml files:

 Click on Files on the project tree.

 Select Others

 Select Add file... in the context menu

The file selection dialog is opened.

 Insert the desired assembly

When displaying a WPF file in the WPF element (Editor and Runtime), the assemblies from this folder

are loaded. It is thus also ensured that that when the Runtime files are transferred using Remote

Transport, all referenced assemblies are present on the target computer.

A collective file (.cdwpf) can exist alongside an XAML file with the same name. All assemblies (*.dll)

from all collective files and the Other folder are copied to the work folder. Only the highest file version

is used if there are several assemblies with the same name.

Basics

10 | 131

 Hint

DLLs that are part of a WPF element can also be replaced during ongoing

operation. In doing so, the referencing is via linking in the XAML file.

To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.

You can find this folder in the SQL directory under

...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in

the zenon Editor directly. To do this, carry out the following steps:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the

file with the higher version number.

MULTI-PROJECT ADMINISTRATION

With multi-project administration, the same assembly must be used in all projects. If an assembly is

replaced by another version in a project, it must also be replaced in all other projects that are

loaded in the Editor or in Runtime.

3.3 Workflows

The WPF/XAML technology makes new workflows in process visualization possible. The separation of

design and functionality ensures a clear distinction of roles between the project engineer and

designers; design tasks can be easily fulfilled by using pre-existing designs, which no longer need to

be modified by the project engineer.

The following people are involved in the workflow to create WPF elements in zenon:

 Designer

 illustrates elements

 takes care of the graphics for MS Expression Design

 MS Expression Blend operator

Basics

11 | 131

 Animates elements

 Creates variables for the animation of WPF elements in zenon, which project engineer

can access

 Project engineer

 Integrates elements into zenon:

 stores logic and functionality

We make a distinction:

 Workflow with Microsoft Expression Blend (on page 11)

 Workflow with Adobe Illustrator (on page 11)

3.3.1 Workflow with Microsoft Expression Blend

When using Microsoft Expression Blend, a WPF element is created in four stages:

1. Illustration of elements in MS Expression Blend (on page 12)

2. Open element in MS Expression Design and export as WPF

3. Animation in MS Expression Blend (on page 12)

4. Integration into zenon (on page 117)

You can find an example for creating a WPF elements with Microsoft Expression Blend in the Create

button as XAML file with Microsoft Expression Blend (on page 12) chapter.

3.3.2 Workflow with Adobe Illustrator

Based on traditional design processes with Adobe Illustrator the following workflow is available:

1. Illustration of elements in Adobe Illustrator (on page 16)

2. Import of .ai files and preparation in MS Expression Design (on page 18)

3. WPF export from MS Expression Design (on page 18)

4. Animation in MS Expression Blend (on page 20)

5. Integration into zenon (on page 112)

You can find an example for creation in the Workflow with Adobe Illustrator (on page 16) chapter.

Guidelines for designers

12 | 131

4 Guidelines for designers

This section informs you how to correctly create WPF files in Microsoft Expression Blend and Adobe

Illustrator. The tutorials on Creating a button element (on page 12) and a bar graph element (on page

16) show you how fully functional WPF files for zenon can be created from pre-existing graphics in a

few steps.

The following tools were used for this:

 Adobe Illustrator CS3 (AI)

 Microsoft Expression Design 4 (ED)

 Microsoft Expression Blend 4 (EB)

 zenon

 Information

If referenced objects (assemblies) are used in WPF, note the instructions in the

Referenced objects (on page 8) chapter.

4.1 Workflow with Microsoft Expression Blend

With Microsoft Expression Blend, a WPF element:

 is illustrated

 is converted into WPF format using MS Expression Design

 animated

The following example shows the illustration and conversion of a button element into an XAML file.

Note: A test version of "Microsoft Expression Blend" can be downloaded from the Microsoft website.

4.1.1 Create button as an XAML file with Microsoft Expression Blend

CREATE BUTTON

1. Start Expression Blend

Guidelines for designers

13 | 131

2. select the New Project option

3. Select WPF as project type

4. give it a path and name of your choice (MyBlendProject, for example)

The Language and Version settings can be ignored, because no functionality is to be

programmed.

5. After the dialog has been confirmed with OK, Microsoft Blend creates a new project with the

chosen settings. Expression Blend adds an empty XAML file which already contains a class

reference.

6. Delete the CS file that belongs to the XAML file using the context menu.

Guidelines for designers

14 | 131

7. Rename the XAML file MainControl.xaml to MyButton.xaml.

8. The development size of the file is set at 640 x 480 pixels as standard and must still be

changed:

a) switch to XAML view

b) correct the size to 100 x 100 pixels

c) Delete the class reference x:Class="MyBlendProject.MyButton"

9. switch to Design view

10. add a button via the toolbar

11. define the properties

 Width: 50

 Height: 50

Guidelines for designers

15 | 131

 Margins: 25

The button is therefore at the center of the control.

12. Save the changes and open the file in Internet Explorer to check it. You will see that the

button is displayed in a size of 50 x 50 pixels.

MAKE BUTTON SCALABLE

If you integrate this status into zenon, the button will always have the exact size of 50 x 50 pixels.

Because the button can be implemented as a scalable button, switch to Expression Blend again:

1. Select the button in the tree view.

2. select the Group Into->Viewbox button in the context menu

3. the button is inserted into a Viewbox

4. Define the properties of the viewbox

 Width: Auto

 Height: Auto

Guidelines for designers

16 | 131

5. save the file

6. If you now open the file in Internet Explorer, the button is automatically scaled when the IE

window size is changed. This file will now also automatically adapt to changes in the size of

the WPF element in zenon.

CHANGE NAME

Before you can integrate the file into zenon, you must give the WPF element a name. The WPF

elements are not named in Expression Blend as standard, and are labeled with square brackets and

their type. zenon content is assigned to WPF content via the name of the WPF elements:

 in tree view, change the name

 of the button on MyButton

 of the ViewBox to MyViewBox

This button can now be integrated in zenon (on page 117) as an XAML file.

4.2 Workflow with Adobe Illustrator

When Adobe Illustrator is used, a WPF element:

 is illustrated in Adobe Illustrator

 is converted into a WPF in MS Expression Design

 is animated in MS Expression Blend

The following example shows the illustration and conversion of a bar graph element into an XAML

file.

4.2.1 Bar graph illustration

A bar graph is created in Adobe Illustrator.

Guidelines for designers

17 | 131

1. AI: Starting element for bar graph

Illustrated in Adobe Illustrator CS3.

2. AI: Path view of bar graph in Adobe Illustrator

 All effects must be converted (Object -> Convert appearance)

 All lines are transformed into paths (Object -> Path -> Contour line)

 Do not use filters such as shading, blurring etc.

NOTES ON COMPATIBILITY

Illustrations that were created with Adobe Illustrator are in principle suitable for WPF export. However,

not all Illustrator effects can become corresponding effects in Expression Design/Blend. Note:

Effect Description

Clipping masks Clipping masks created in Adobe Illustrator are not correctly

interpreted by Expression Design. These are usually shown in

Blend as areas of black color.

We recommend creating illustrations without clipping masks.

Filters and effects Not all Adobe Illustrator filters are transferred into Expression

Design accordingly: Thus blurring filters, shading filters and

corner effects from Illustrator do not work in Expression Design.

Solution:

 Most effects can be converted so that they can be read

correctly by Expression Design using the Object ->

Convert appearance command in Adobe Illustrator.

 Corner effects from Adobe Illustrator are correctly

interpreted by MS Design if they are converted to AI in

paths.

Text fields To be able to link text fields with code, these must be created

separately in Expression Blend. "Labels" are required for dynamic

texts; simple "text fields" are sufficient for static information.

Guidelines for designers

18 | 131

Effect Description

There is no possibility to create text labels in MS Design. These

must be directly created in MS Blend.

Transparencies and group

transparencies
There can be difficulties in Adobe Illustrator with the correct

interpretation of transparency settings, in particular from group

transparency settings.

However MS Expression Blend and MS Expression Design do

offer the possibility to create new transparency settings.

Multiply levels These level settings in Adobe Illustrator are not always correctly

displayed by MS Expression Blend.

However, there is the possibility to "Multiply levels" directly in

Expression Design.

Indicating instruments and

standard positions
To prepare the graphics optimally for animation, the indicator

and slider must always be set to the starting position, usually 0 or

12:00 o'clock.

Thus the position parameters for rotations etc. are also correct in

Blend and an animation can be implemented without conversion

of position data.

4.2.2 WPF export

WPF files are required for animation in Microsoft Expression Blend. We recommend Microsoft

Expression Design for this export, because it provides good results and most Illustrator effects are

correctly interpreted.

Note: There is a free plug-in for the direct export of WPF files from Adobe Illustrator available on the

internet. This plug-in provides a quick, uncomplicated way of exporting from Illustrator, however it is

less suited to the current application because it lead to graphical losses. Even color deviations from

the original document are possible.

Files in .ai format can regularly be imported into Expression Design; the paths are retained in the

process.

Attention: Some common Illustrator effects cannot be displayed by Expression Design correctly

however (see Illustration (on page 16) chapter).

We export the pre-created bar graph element in 5 stages:

1. ED: Import

Guidelines for designers

19 | 131

 Import the prepared Illustrator file (on page 16) in Microsoft Expression Design via File

-> Import

2. ED: Optimization

 If the starting file is not correctly displayed in MS Expression Design, it can still be

subsequently edited and optimized here

3. ED: Select

 Highlight the element for WPF export with the direct selection arrow in MS Expression

Design; in this case it is the whole clock

4. ED: Start export

 Start the export via File -> Export

 the dialog for configuring the export settings opens

Guidelines for designers

20 | 131

5. ED: Export settings

 Enter the following export settings:

a) Format: XAML Silverlight 4 / WPF Canvas

Always name objects: Activate with tick

Place the grouped object in an XAML layout container: Activate with tick

b) Text: Editable text block

c) Line effects: Rasterize all

The exported file has .xaml file suffix. It is prepared and animated (on page 20) in MS Expression

Blend in the next stage.

4.2.3 Animation in Blend

With MS Expression Blend:

 static XAML files from MS Expression Design are animated

 Variables for controlling effects that can be addressed by zenon are created

In thirteen steps, we go from a static XAML to an animated element, that can be embedded in zenon:

1. EB:create project

a) Open Microsoft Expression Blend

a) Create a new project

b) Select the Project type of WPF- >WPF Control Library

c) Give it a name (in our tutorial: My_Project)

d) Select a location where it is to be saved

e) Select a language (in our tutorial: C#)

f) Select a framework that is supported by zenon

Guidelines for designers

21 | 131

2. EB: delete MainControl.xaml.cs

a) Navigate to MainControl.xaml.cs

b) Delete this file using the Delete command in the context menu

3. EB: Open exported XAML file

a) Open the context menu for My_Project (right mouse button)

b) Select Add existing element…

c) Select the XAML file exported from Microsoft Expression Design, in order to open this in

Microsoft Expression Blend

4. EB: Open MainControl.xaml

a) Open the automatically created MainControl.xaml

b) In the Objects and Time axes area, navigate to the UserControl entry

5. EB: Adapt XAML code

a) Click on UserControl with the right mouse button

b) Select Display XAML in the contextual menu.

c) Delete lines 7 and 9 in the XAML code:

x:Class="My_Project.MainControl”

d:DesignWidth="640" d:DesignHeight="480”

Guidelines for designers

22 | 131

6. EB: check XAML code

 The XAML code should now look like this:

<UserControl

xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d"
x:Name="UserControl">

<Grid x:Name="LayoutRoot"/>

</UserControl>

7. EB: Copy elements

a) Open the XAML file imported from Expression Design

b) Mark all elements

c) Select Delete in the context menu

d) Change back to the automatically created XAML file

8. EB: Insert element

a) Click on Layout Root with the right mouse button

b) Select Insert

Guidelines for designers

23 | 131

9. EB: Adapt layout type

a) Click on Layout root -> Change layout type -> Viewbox with the right mouse button

b) The structure should now look like this: UserControl -> LayoutRoot -> Grid -> Elements

c) Assign a name for LayoutRoot and Grid by double-clicking on the names

10. EB: Texts and values

 Dynamic and static texts are labeled with text fields

 Values (numbers) are issued with Labels

11. EB: Insert labels

 Labels replace numbers that are to be subsequently linked using INT variables (must be

carried out for all number elements)

12. EB: Set property

 To display 100%, set the bar graph element's MaxHeight property to 341 (the maximum

height of the indicator element is 340)

13. EB: prepare for use in zenon

a) Delete all name labels (names may only be given for elements that are to be addressed

via zenon)

b) Save the XAML file with any desired name

Guidelines for developers

24 | 131

c) Integrate the XAML file into zenon (on page 112)

A hint for checking: If the XAML file is displayed with no problems in Microsoft Internet Explorer

and the window size of Internet Explorer adapts to it, it will also be correctly used in zenon.

5 Guidelines for developers

This section handles the creation of simple WPF user controls with code-behind functionality using

Microsoft Visual Studio and debugging this user control in the Runtime.

The following tools were used for this:

 Microsoft Visual Studio 2015

 zenon

 Information

Recommendation: Use Microsoft Visual Studio version 2012 or later. The XAML

designer is better integrated in this.

5.1 Creation of a simple WPF user control with code behind

function

The creation and incorporation of a simple user control is described in this chapter. Because only the

fundamental mechanisms/process for integration into zenon is described, the functionality of the user

control is limited to the addition of two values. There is intentionally no enhanced error handling or

explicit completion, in order to retain the simplicity of this example.

CREATE WPF USER CONTROL

1. Create a new Solution and a WPF User Control Library in this in Visual Studio.

The .NET framework version 4 was selected for this example. A different version can also be

selected, which must be installed on the target system on which Runtime will subsequently be

started.

Info: If the corresponding project template does not appear in the list of available templates,

this can be added by means of the search (field at the top right of the dialog).

Guidelines for developers

25 | 131

In our example, the project is given the name WPFUserControlLibrary.

2. Create 3 text boxes and a button in the UserControl1.xaml file:

3. Add the following code in the click event of the button:

Guidelines for developers

26 | 131

Now you have the user control with the required functionality available. However, because zenon can

only display XAML files that do not link to a code-behind file, an additional XAML file is needed that

references the library (assembly) that has just been built.

CREATION OF THE XAML FILE (WITHOUT CODE BEHIND) FOR ZENON

Proceed as follows to create the XAML file required in zenon.

1. Create a further project, again as a WPF User Control Library

2. It was called WPFUserControlNoCodeBehind in our example.

3. Insert a reference to the project that has just been built into this new project.

4. The XAML files (UserControl1.xaml) looks as follows:

5. Because all necessary content is contained in the DLL that has been created and no

code-behind file can be used, delete the following lines:

x:Class="WPFUserControlNoCodeBehind.UserControl1"

xmlns:local="clr-namespace:WPFUserControlNoCodeBehind"

6. Also delete (for the designer's size setting) the following lines:

mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="300"

7. Delete the code-behind file (UserControl1.xaml.cs) in this project.

Guidelines for developers

27 | 131

8. Drag the user control that has been created beforehand (for the project

WPFUserControlLibrary) over the toolbox in the XAML designer.

9. Assign a name for the grid and the user control.

Attention: If no name is given here, these elements do not appear in the linking dialog in

the zenon Editor and thus cannot be made dynamic.

10. The XAML file should now look as follows:

In the next step, how the DLL and XAML file are incorporated into zenon is explained.

STEPS IN ZENON

1. Open the zenon Editor

2. Go to File -> Graphics.

3. Select Add file... in the context menu

4. Select the XAML file at the save location (UserControl1.xaml from the

WPFUserControlNoCodeBehind project) and add this:

5. Insert the DLL with the functionality for the XAML file.

To do this:

Guidelines for developers

28 | 131

a) Select, in the context menu, File -> OtherAdd file....

b) Select the file WPFUserControlLibrary.dll (from the output path) of the first project

(WPFUserControlLibrary).

6. Create a zenon screen.

7. Add a WPF element and select the previously-incorporated XAML file.

You should now see the following in the zenon Editor:

8. Start zenon Runtime in order to also test the control there.

 Information

The XAML file and referenced assemblies can also be saved in complied form as

a *.cdwpf file. Only one file thus need to be imported in the Editor (under Files

-> Graphics). Further information on this can be found in the CDWPF files

(collective files) (on page 48) chapter.

Hint: When developing a WPF user control, it is usually more practical to insert

the XAML file and the referenced DLL(s) separately. This makes the replacement

of the DLL and debugging easier. Further information on the topic of debugging

can be found in the Debugging the WPF user control in the Runtime (on page

29) chapter.

Guidelines for developers

29 | 131

 Hint

DLLs that are part of a WPF element can also be replaced during ongoing

operation. In doing so, the referencing is via linking in the XAML file.

To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.

You can find this folder in the SQL directory under

...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in

the zenon Editor directly. To do this, carry out the following steps:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the

file with the higher version number.

Further examples can be found in the Examples: Integration of WPF into zenon (on page 112)

chapter.

5.2 Debugging the WPF user control in the Runtime

To debug the WPF user control in the Runtime, proceed as follows.

In this example, the control described in the Creation of a simple WPF user controls with code behind

function (on page 24) is used.

DEBUGGING BY MEANS OF ATTACH TO PROCESS

1. Ensure that zenon Runtime has been started and a screen with the WPF user control is open.

Furthermore, ensure that the DLL that is currently being used corresponds to the build

(Version) of the user control project (WPFUserControlLibrary).

Guidelines for developers

30 | 131

2. Set a breakpoint in the click event of the button in the Visual Studio project

3. In Visual Studio, under Debug , select the Attach to Process menu item.

4. Select the zenon Runtime process

5. Under Attach to, select either Automatic or the corresponding .NET framework version

6. Click on Attach.

Guidelines for developers

31 | 131

7. Now trigger the breakpoint in which you enter values into the WPF control in zenon Runtime

and click on the button

DEBUG USING START EXTERNAL PROGRAM

1. Ensure that zenon Runtime has been closed.

2. Ensure that, in the zenon Editor, the project that contains the WPF user control has been set

as the start project.

3. Ensure that the user control project (WPFUserControlLibrary) is set as the start project in

Visual Studio.

4. In the project properties of the Visual Studio project, select under Debug, for Start action:

Start external program

5. For Start external program, select the path of the zenon Runtime application.

6. Under Working Directory, select the \wpfcache folder of the Runtime files

(...\PROJECTNAME\RT\FILES\zenon\custom\wpfcache)

Guidelines for developers

32 | 131

Hint: In the selected project in the zenon Editor, press the keyboard combination

CTRL+ALT+R in order to jump directly to the root directory of the Runtime files.

7. In the project properties, enter \wpfache folder of the Runtime files as the Output path under

Build .

8. Create the project in Visual Studio

9. Start debugging in Visual Studio with Start

10. zenon Runtime is now started automatically.

11. Trigger the breakpoint by entering values in the WPF control in zenon Runtime and click on

the button

Guidelines for developers

33 | 131

 Information

When starting zenon Runtime, the assemblies (DLLs) referenced in the WPF user

controls from the \FILES\zenon\custom\additional folder, and/or the assemblies

from CDWPF files in the \FILES\zenon\custom\wpfcache folder are copied. If the

file version of the DLL in the \wpfache folder is one higher than the version of

the "original file", it is not replaced!

For debugging, it is thus sufficient to only replace the file that is on the \wpfache

folder directly.

For delivery, it must be ensured that the current version of the DLL is present in

the \additional folder or the CDWPF file!

Attention: If only the DLL is updated in the \additional folder or in the CDWPF,

but the version number is not increased, the DLL must be deleted manually in

the \wpcache folder, because it is not updated otherwise (due to the

above-described mechanism).

 Hint

DLLs that are part of a WPF element can also be replaced during ongoing

operation. In doing so, the referencing is via linking in the XAML file.

To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.

You can find this folder in the SQL directory under

...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in

the zenon Editor directly. To do this, carry out the following steps:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the

file with the higher version number.

Guidelines for developers

34 | 131

5.3 Data exchange between zenon and WPF user controls

There are different possibilities for exchanging data between zenon and WPF user controls.

 Data exchange using dependency properties (on page 34)

 Data replacement via VSTA (on page 38)

5.3.1 Data exchange using dependency properties

The most elegant and secure way to exchange data between zenon and self-created WPF user

controls is by using Dependency Properties.

The WPF user control project created in the Creating a simple WPF user controls with code behind

function (on page 24) serves as a basis (WPFUserControlLibrary).

In this chapter, the focus is purely on the core theme (Dependency Properties and data exchange

between the user control and zenon in this case). Specific WPF features such as Databinding, etc., as

well as explicit error handling, are not covered.

ADDITIONS TO THE CODE

1. Create the TextChanged Event for the textBoxA element in the UserControl1.xaml file

TextChanged="textBoxA_TextChanged"

2. Add the following lines of code in the UserControl1 class of the code behind file

(UserControl1.xaml.cs)

/// <summary>

/// Gets or sets the ValueA.

/// </summary>

public double ValueA

{

get

{

return (double)GetValue(ValueADependencyProperty);

}

set

{

SetValue(ValueADependencyProperty, value);

}

}

Guidelines for developers

35 | 131

/// <summary>

/// Dependency property for ValueA

/// </summary>

public static readonly DependencyProperty ValueADependencyProperty =

DependencyProperty.Register("ValueA", typeof(double),

typeof(UserControl1), new FrameworkPropertyMetadata(0.0, new
PropertyChangedCallback(OnValueADependencyPropertyChanged)));

/// <summary>

/// Called when [value a dependency property changed].

/// </summary>

/// <param name="source">The source.</param>

/// <param name="e">The <see cref="DependencyPropertyChangedEventArgs"/> instance containing the event

data.</param>

private static void OnValueADependencyPropertyChanged(DependencyObject source,
DependencyPropertyChangedEventArgs e)

{

UserControl1 control = source as UserControl1;

if (control != null)

{

try

{

control.ValueA = (double)e.NewValue;

control.textBoxA.Text = control.ValueA.ToString();

}

catch (Exception)

{}

}

}

/// <summary>

/// Handles the TextChanged event of the textBoxA control.

/// </summary>

/// <param name="sender">The source of the event.</param>

/// <param name="e">The <see cref="TextChangedEventArgs"/> instance containing the event data.</param>

private void textBoxA_TextChanged(object sender, TextChangedEventArgs e)

{

try

{

Guidelines for developers

36 | 131

ValueA = Convert.ToDouble(textBoxA.Text);

}

catch (Exception)

{}

}

Then build the solution.

 Information

A numerical property (double) is used in this example. Other simple data types

(such as bool, string, int, etc.) can also be used.

LINKING IN ZENON

1. Update the WPF user control (DLL) in the zenon Editor.

2. Proceed as described in the creation of a simple WPF user controls with code behind

function (on page 24) chapter.

3. Create a numeric variable in zenon. Link the variable to a dynamic text element.

You place the dynamic text element in the screen next to the WPF element with your user

control.

4. Open the screen that contains the WPF element.

5. Go to Configuration in the properties of the WPF element in the WPF links property group.

Guidelines for developers

37 | 131

6. Expand the node in the tree view at the top left

and select AdditionControl

7. Select the line with ValueA(this is the name of the property that was created in the code

beforehand) and select, for Type of link: Variable.

Hint: Give Properties a prefix so that this can be found more easily, for example: _ValueA

8. In the column under Linkage, print out the variable that was created in zenon beforehand

9. Confirm the dialog with OK and build the Runtime files

Guidelines for developers

38 | 131

10. Start Runtime in order to test the WPF user control

11. If the value is changed in user control, the value automatically changes in zenon and vice

versa.

12. You can of course debug the control as described in the Debugging the WPF user control in

Runtime (on page 29) chapter, and create further dependency properties.

 Information

The UserControl_Loaded event can be used in order to (automatically) access the

values of the dependency property during initialization (when calling up the user

control) for example.

5.3.2 Data replacement via VSTA

Data can also be exchanged between zenon and WPF user controls using VSTA.

The API element methods

 get_WPFProperty (reading of values)

 set_WPFProperty (writing of values)

are used for this.

The example used here is based on the example used in the Data exchange using dependency

properties (on page 34) chapter.

Guidelines for developers

39 | 131

CREATION OF A VSTA MACRO FOR DATA EXCHANGE BETWEEN ZENON AND

THE WPF USER CONTROL

1. Create the following VSTA macro in the project add-in of the zenon project

Whereby:

 "Screen" is the name of the zenon screen in which the WPF element is located

 "WPF_Element" is the name of the WPF element that contains the WPF user control

 "AdditionControl" is the name of the WPF user controls itself (defined in the

UserControl1.xaml file)

 "ValueA" is the name of the user control property

2. Create an execute VSTA macro function and link this to a button in the screen in which the

WPF element is also located

3. Start Runtime to test changes

When executing the macro, the value is read by the control, doubled and written back.

 Information

The user control properties used for this method of data exchange need not

necessarily be dependency properties, as outlined in this example. "Standard"

properties can also be used, see in relation to this the Access via VSTA "variable

link" (on page 40) chapter.

Guidelines for developers

40 | 131

5.4 Access to the zenon (Runtime) object model from a WPF

user control

There are different possibilities for access to the zenon object model from a WPF user control. This is

explained in more detail in the following chapters.

Attention

When using zenon COM objects with self-created user controls or external

applications, they must be enabled using the Marshal.ReleaseComObject

method. Enabling by means of the Marshal.FinalReleaseComObject method

must not be used, because this leads to a malfunction of zenon Add-ins.

5.4.1 Access via VSTA "variable link"

In order to get access to the zenon Runtime COM interface by means of "variable link", proceed as

follows. The creation of a simple WPF user controls with code behind function (on page 24) serves as

an initial example.

 Information

The following code is intended to show an example of how the COM

implements access to zenon Runtime and in doing so limits itself to the basic

functionality. There is no explicit error handling, etc.

NECESSARY AMENDMENTS IN WPF USER CONTROL

The following steps are necessary in the WPF user control project (WPFUserControlLibrary).

Firstly, a reference to the zenon COM interface must be incorporated.

Guidelines for developers

41 | 131

After this, the following code must be inserted in the UserControl1 class:

//The zenon Project

zenOn.Project zenonProject = null;

/// <summary>

/// Property for the Variable link via VSTA

/// </summary>

public object zenonVariableLink

{

get { return null; }

set

{

if (value != null && zenonProject == null)

{

zenOn.Variable zenonVariable;

try

{

zenonVariable = (zenOn.Variable)value;

}

catch (Exception)

{

return;

}

if ((zenonVariable!= null) && (!string.IsNullOrEmpty(zenonVariable.Name)))

{

zenonProject = zenonVariable.Parent.Parent;

}

}

}

}

/// <summary>

/// Trigger used to notify the control from VSTA to release the COM resources

/// </summary>

public object zenonReleaseTrigger

{

Guidelines for developers

42 | 131

get { return null; }

set

{

if ((bool)value && zenonProject != null)

{

try

{

Marshal.ReleaseComObject(zenonProject);

}

catch (Exception)

{

return;

}

zenonProject = null;

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();

}

}

}

Whereby access to the properties zenonVariableLink (to initialize the COM object) and zenonReleaseTrigger

(to unlock the COM object) are subsequently accessed from VSTA (write).

In order to test the COM access quickly very easily, it is possible to insert the following line of code in

the existing button click event of the user control.

private void buttonAdd_Click(object sender, RoutedEventArgs e)

{

if (zenonProject != null)

{

MessageBox.Show(zenonProject.Name);

}

return;

...

Guidelines for developers

43 | 131

 Information

A zenOn.Project variable is used in this example. Of course other objects such as

events, etc. of the zenon object model can also be used.

NECESSARY AMENDMENTS IN THE ZENON PROJECT/VSTA CODE

The following steps are necessary in the VSTA code:

Creation of a VSTA macro for the initialization

/// <summary>

/// Macro for API initialization in the WPF User Control

/// </summary>

public void MacroWPFInit()

{

zenOn.IDynPicture myWPFScreen = this.DynPictures().Item("Screen");

zenOn.IElement myWPFElement = myWPFScreen.Elements().Item("WPF_Element");

myWPFElement.set_WPFProperty("AdditionControl", "zenonVariableLink", this.Variables().Item(0));

}

Creation of a VSTA macro for approval

/// <summary>

/// Macro for API release in the WPF User Control

/// </summary>

public void MacroWPFRelease()

{

zenOn.IDynPicture myWPFScreen = this.DynPictures().Item("Screen");

zenOn.IElement myWPFElement = myWPFScreen.Elements().Item("WPF_Element");

myWPFElement.set_WPFProperty("AdditionControl", "zenonReleaseTrigger", true);

}

Create two execute VSTA macro functions that are linked with buttons, which are in the same screen

as the WPF element.

Now start Runtime in order to test the functionality

 Execute the macro for initialization

Guidelines for developers

44 | 131

 Click on the button in the WPF user control; a message box with the project name of the

project appears

 Execute the macro for release

In order to debug the user control, it is possible to proceed as described in the Debugging the WPF

user control in Runtime (on page 29).

 Hint

The initialization and release of the COM object in this example is only carried

out for simple demonstration using VSTA macro functions. Depending on the

application, and/or in practice, events in VSTA are better suited to this.

For example, the code for initialization in the _Open event of the screen can be

executed with the WPF element and the code for release in the _Close event.

The mechanism described here is also used in the Display of WPF elements in

the zenon Web Client (on page 109) chapter.

Attention

If COM objects are used in WPF user controls, these must always be explicitly

approved before destroying the WPF user control (before closing the screen,

before closing Runtime, before reloading).

5.4.2 Access via marshaling

In order to get access to the zenon Runtime COM interface by means of marshaling, proceed as

follows. The creation of a simple WPF user controls with code behind function (on page 24) serves as

an initial example.

Guidelines for developers

45 | 131

 Information

The following code is intended to show an example of how the COM

implements access to zenon Runtime and in doing so limits itself to the basic

functionality. There is no explicit error handling, etc.

NECESSARY AMENDMENTS IN WPF USER CONTROL

The following steps are necessary in the WPF user control project (WPFUserControlLibrary).

Firstly, a reference to the zenon COM interface must be incorporated.

After this, the following code must be inserted in the UserControl1 class:

//The zenon Project

zenOn.Project zenonProject = null;

Furthermore, the constructor of the user controls must be supplemented with the lines below (to

initialize the COM object):

/// <summary>

/// Constructor for UserControl1, initialize COM Object

/// </summary>

public UserControl1()

{

InitializeComponent();

try

{

Guidelines for developers

46 | 131

zenonProject =
((zenOn.Application)Marshal.GetActiveObject("zenOn.Application")).Projects().Item("TESTPROJECT");

}

catch (Exception)

{

}

}

The COM object must be approved in the UserControl_Unloaded event:

/// <summary>

/// Release COM Object

/// </summary>

private void UserControl_Unloaded(object sender, RoutedEventArgs e)

{

try

{

if (zenonProject != null)

{

Marshal.ReleaseComObject(zenonProject);

zenonProject = null;

}

}

catch (Exception)

{

}

}

In order to test the COM access quickly very easily, it is possible to insert the following line of code in

the existing button click event of the user control.

private void buttonAdd_Click(object sender, RoutedEventArgs e)

{

if (zenonProject != null)

{

MessageBox.Show(zenonProject.Name);

}

 return;

...

Guidelines for developers

47 | 131

Now build the solution and update the WPF user control in the zenon project.

Start Runtime to test the user control.

In order to debug the user control, it is possible to proceed as described in the Debugging the WPF

user control in Runtime (on page 29).

 Information

A zenOn.Project variable is used in this example. Of course other objects such as

events, etc. of the zenon object model can also be used.

Attention

If COM objects are used in WPF user controls, these must always be explicitly

approved before destroying the WPF user control (before closing the screen,

before closing Runtime, before reloading).

 Information

No access by means of marshaling is possible in the zenon web client. If access

to the COM interface is required there, the method described in the Access via

VSTA "variable link" (on page 40) must be used.

Engineering in zenon

48 | 131

6 Engineering in zenon

In order to be able to use WPF user controls in zenon, version 4.6.2 (or higher, depending on the

.NET framework version used in the user control) of the Microsoft framework must be used on both

the Editor computer and the Runtime computer.

CONDITIONS FOR THE WPF DISPLAY IN ZENON

The dynamization is currently available for simple variable types (numerical data types as well as

string). Arrays and structures cannot be dynamized.

Therefore the following WPF functions can be implemented in zenon:

 Element properties that correspond to simple data types, such as String, Int, Double, Bool etc.

 Element properties of the "Object" type, which can be set with simple data types

 Element events can be used with functions; the parameters of the events are not however

available in and cannot be evaluated in zenon

 Element transformation, for which a RenderTransform is present for the element in the XAML

file

Attention: if the content is outside of the area of the WPF element during transformation,

this is not labeled

Notes on dBase: No shade can be displayed in zenon for WPF elements.

Attention

If the Runtime files were created for a project for a version before 6.50, existing

WPF elements are not included into Runtime screens.

6.1 CDWPF files (collective files)

A CDWPF file (with the suffix *.cdwpf) is a renamed ZIP file that contains the following components:

 XAML file (to reference the user control assembly)

 DLL file (the actual WPF user control, optional)

 Preview graphics (for preview, optional)

Rules for the use of collective files:

 The files (XAML, DLL, preview graphics) can be in the CDWPF file directly or in a joint folder.

 The name of the collective file should correspond to the names of the XAML file.

Engineering in zenon

49 | 131

 Only one XAML file may be contained.

 The preview graphic should be small and no more than 64 pixels high.

Name of the preview file: preview.png or the name of the XAML file with the suffix png.

 Any number of assemblies can be used. The distinction is made on the basis of the file

version.

 Collective files do not need to contain an assembly.

 All subfolders are examined and only taken into account with *.dll, *.xaml or *.png files.

 If a collective file (*.cdwpf) is replaced by a file with a different version, all corresponding

CDWPF files in all symbols and images in all projects must be adapted.

6.2 create WPF element

To create a WPF element

1. In the elements toolbar, select the symbol for WPF element or the Elements entry in the

menu

2. Select the start point in the main window.

3. Pull open the element with the mouse.

4. In properties, select Representation the property XAML file in the group.

5. The file selection dialog opens.

6. Select the desired file

Files of the following formats are valid:

 *.xaml: Extensible Application Markup Language

 *.cdwpf: WPF collective file, also shows preview image

(The file must already be present in the Project Manager under Files/graphics or created in

the dialog.)

7. Configure the links (on page 49).

 Information

If referenced assemblies are used, note the instructions in the Referenced

assemblies (on page 8) chapter.

6.3 Configuration of the linking

To configure a WPF element

1. In properties, select WPF links the property Configuration in the group.

Engineering in zenon

50 | 131

2. The dialog with three tabs opens with a preview of the XAML file and the elements present in

the file

DIALOG CONFIGURATION

Parameter Description

Available elements Shows the named file elements in a tree structure.

The selected element can be linked with process

data.

WPF is assigned to process data based on the

element name. Therefore elements are only shown

if they and the attendant elements have a name.

Allocations are configured and shown in the

Properties, Events, Transformations tabs.

Hint: If the corresponding elements are not

displayed, check whether the non-displayed

objects in the XAML file have been given a name

(for example: <Grid Name="GridName">).

Preview The selected element is shown flashing in the

preview.

Engineering in zenon

51 | 131

Parameter Description

Properties (on page 52) Configuration and display of properties (variables,

authorizations, interlockings, linked values).

Events (on page 58) Configuration and display of events (functions).

Transformations (on page 59) Configuration and display of transformations.

Name Name of the property.

Linkage Selection of link.

Type of link Type of link (variable, authorization, function)

WPF info Shows the current value for properties in WPF

content. For the user, it is directly visible what type

of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

If not contained in the view, can be selected via

Context menu->Column selection.

 Information

Only logical objects can be displayed in the configuration dialog. Visual objects

are not displayed. You can read background information and how visual objects

can be animated in the Allocation of zenon object to WPF content.

EDIT HYPERLINKS

All configured hyperlinks can be edited from the properties of the element. Click on the element and

open the property group WPF links. Hyperlinks can be further configured here, without having to

open the dialog.

Limitations:

 The linking type cannot be changed here.

 New linkings can only be created via the configuration dialog.

 Insertion of a WPF elements into a symbol: WPF linkings cannot be exported.

Engineering in zenon

52 | 131

6.3.1 Properties

The properties enable the linking of:

 Variables (on page 53)

 Values (on page 55)

 Authorizations and interlockings (on page 56)

Parameter Description

Name Name of the property.

Linkage Linked variable, authorization or linked value.

Clicking in the column opens the respective

selection dialog, depending on the entry in the Link

type column.

Type of link Selection of linking.

WPF info Shows the current value for properties in WPF

content. For the user, it is directly visible what type

of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

If not contained in the view, can be selected via

Engineering in zenon

53 | 131

Parameter Description

Context menu->Column selection.

CREATE LINK

To create a link:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select the desired link from the drop-down list.

The following are available:

 <not linked> (deletes an existing link)

 Authorization/Interlocking

 Constant value

 variable

4. Click in the Link cell

5. The dialog for configuring the desired link opens

 Information

Properties of WPF and zenon can be different. If, for example the visibility

property is linked, there are three values available in .NET:

 0 - visible

 1 - invisible

 2- collapsed

These values must be displayed via the linked zenon variable.

6.3.1.1 Link variable

To link a variable with a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select from the variable drop down list

4. Click in the Link cell

5. The dialog for configuring the variables opens

Engineering in zenon

54 | 131

This dialog also applies for the selection of variables with transformations (on page 59). The

configuration also makes it possible to convert from zenon into WPF units.

Parameters Description

Linked variable Selection of the variable to be linked. A click on the

... button opens the selection dialog.

Range of values of the WPF element Data to convert variable values into WPF values.

Convert range of values Active: WPF unit conversion is switched on.

Effect in the Runtime: The current zenon value

(incl. zenon unit) is converted to the WPF range

using standardized minimum and maximum values.

For example: The value of a variable varies from

100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this

change in value using a WPF rotary knob. For this:

 for Transformations, the

RotateTransform.Angle property is linked

to the variables

 Adjust value activated

 a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of

150, for example, by 180 degrees.

Minimum Defines the lowest WPF value.

Maximum Defines the highest WPF value.

OK Accepts settings and ends the dialog.

Cancel Discards settings and ends the dialog.

Help Opens online help.

Engineering in zenon

55 | 131

6.3.1.2 Link values

Linked values can either be a String or a numerical value of the type Double. When selecting the

screen, the selected value is sent in WPF content after loading the WPF content.

To link a value to a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select Value linkings from the drop-down list

4. Click in the Link cell

5. The dialog for configuration of value linking opens

Parameter Description

Linked value: Entry of a numerical value or string value.

Use string Active: A string value is used instead of a numerical value.

The language of string values can be switched. The text is

translated in the Runtime when the screen is called up and sent

in WPF content. If the language is switched whilst the screen is

opened, the string value is retranslated and sent.

String value/numerical

value

Depending on what is selected for the Use string property, a

numerical value or a string value is entered into this field. A unit

of measurement can also be selected for numerical values.

Unit: Selection of a unit of measurement from the drop down list. You

must have configured this in unit switching beforehand.

The unit of measurement is allocated with the numerical value. If

the units are switched in the Runtime, the value is converted to

the new unit of measurement and sent to WPF content.

Engineering in zenon

56 | 131

CLOSE DIALOG

Options Description

OK Applies settings and closes the dialog.

Cancel Discards all changes and closes the dialog.

Help Opens online help.

6.3.1.3 Link authorization or interlocking

Authorizations cannot be granted for the whole WPF element. The element is allocated a user level.

Authorizations are granted within the user level for individual controls. If an authorization is active, the

value 1 is written to the element.

To link a user authorization or interlocking to a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select Authorization/interlocking from the drop down menu

4. Click in the Link cell

5. The dialog for configuring the authorizations opens

Parameter Description

Link authorization/interlocking Setting the authorizations.

Linked status Selection of an authorization that is linked to a WPF

control from the drop down list. For example, visibility

and operability of a WPF button can depend on a user's

status.

Engineering in zenon

57 | 131

Authorization Description

Operating authorization

available

If the user has sufficient rights to operate the WPF element, a

value of 1 is written to the property.

Operating authorization does

not exist

If the user does not have sufficient rights to operate the WPF

element, a value of 1 is written to the property.

Not interlocked If the element is not locked, the value 1 is written to the property.

Interlocked If the element is locked, the value 1 is written to the property.

Can be operated If authorization is present and the element is not locked, then a

value of 1 is written to the property.

Cannot be operated If authorization is not present or the element is not locked, then

a value of 1 is written to the property.

Engineering in zenon

58 | 131

6.3.2 Events

Events make it possible to link zenon functions to a WPF element.

Parameter Description

Name Name of the property.

Linkage Linked function. Clicking in the cell opens the

configuration dialog.

Type of link Selection of linking. Clicking in the cell opens the

selection dialog.

WPF info Shows the current value for properties in WPF

content. For the user, it is directly visible what type

of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

If not contained in the view, can be selected via

Context menu->Column selection.

LINK FUNCTIONS

To create a link:

Engineering in zenon

59 | 131

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select from the drop down list function

4. Click in the Link cell

5. The dialog for configuring the function opens

Parameter Description

Linked function Selection of the function to be linked. Clicking on

the ... button opens the dialog for Function

selection.

OK Accepts selection and closes dialog.

Cancel Discards changes and closes dialog.

Help Opens online help.

6.3.3 Transformation

The WPF element does not support rotation. If, for example, the WPF element is in a symbol and

the symbol is rotated, the WPF element does not rotate with it. Therefore there is a different

mechanism for Transformation with WPF to turn elements or to otherwise transform them. These

transformations are configured in the Transformation tab.

Engineering in zenon

60 | 131

Attention: If the content is outside of the WPF element area, this part of the contents is lost or it is

not shown.

Parameter Description

Name Name of the property.

Linkage Selection of the linked variables.

Transformations are displayed in XAML as transformation objects with

their own properties. If an element supports a transformation, then the

possible properties of the transformation object are displayed in list

view. (more on this in: Integrate button as WPF XAML in zenon (on

page 117)

For example, if the linked variable is set at the value of 10, then this

value is written as a WPF target and the WPF element is rotated by 10°.

Type of link Selection of transformation link type.

WPF info Shows the current value for properties in WPF content. For the user, it is

directly visible what type of property it is (Boolean, string, etc.).

Linked Shows if a property is currently being used.

If not contained in the view, can be selected via Context

menu->Column selection.

Engineering in zenon

61 | 131

LINK TRANSFORMATIONS

To link a transformation with a WPF property:

1. Highlight the line with the property that is to be linked

2. Click in the Link type cell

3. Select from the Transformation drop down list

4. Click in the Link cell

5. The dialog for configuring the variables opens

The configuration also makes it possible to convert from zenon into WPF units.

Parameters Description

Linked variable Selection of the variable to be linked. A click on the

... button opens the selection dialog.

Range of values of the WPF element Data to convert variable values into WPF values.

Convert range of values Active: WPF unit conversion is switched on.

Effect in the Runtime: The current zenon value

(incl. zenon unit) is converted to the WPF range

using standardized minimum and maximum values.

For example: The value of a variable varies from

100 to 200. With the variables, the standardized

range is set to 100 - 200. The aim is to display this

change in value using a WPF rotary knob. For this:

 for Transformations, the

RotateTransform.Angle property is linked

to the variables

 Adjust value activated

 a WPF value range of 0 to 360 is configured

Now the rotary knob can be turned at a value of

Engineering in zenon

62 | 131

Parameters Description

150, for example, by 180 degrees.

Minimum Defines the lowest WPF value.

Maximum Defines the highest WPF value.

OK Accepts settings and ends the dialog.

Cancel Discards settings and ends the dialog.

Help Opens online help.

6.4 Validity of XAML Files

XAML files are valid subject to certain requirements:

 Correct name spaces

 No class references

 Scalability

CORRECT NAME SPACE

The WPF element can only display WPF content, i.e.:

Only XAML files with the correct WPF namespace can be displayed by the WPF element. Files that

use a Silverlight namespace cannot be loaded or displayed. However, in most cases it is suffice to

change the Silverlight namespace to the WPF namespace.

WPF-Namespaces:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

NO USE OF CLASS REFERENCES

Because the XAML files can be loaded dynamically, it is not possible to use XAML files that contain

references to classes ("class" key in header). Functions that have been programmed in

independently-created C#- files cannot be used.

In order to use WPF user controls with code behind, the process as described in the Creating a simple

WPF user control with code behind funciton (on page 24) must be carried out.

Engineering in zenon

63 | 131

SCALABILITY

If the content of a WPF element is adjusted to the size of the WPF element, then the controls of the

WPF element are interlaced in a control that offers this functionality, such as a view box for example.

In addition, it must be ensured that the height and width for this elements are configured as

automatic.

CHECKING AN XAML FILE TO SEE IF IT IS CORRECT

To check if an XAML file has the correct format:

 Open XAML file in Internet Explorer

 If it can be opened without additional plug-ins (Java or similar), then it can be assumed

with a high degree of certainty that this file can be loaded or displayed by zenon

 if problems occur during loading, these are then shown in Internet Explorer and the lines

in which problems arise can be clearly seen

The scaling can also be tested in this manner: If the file has been created correctly, the content will

adjust to the size of the Internet Explorer window.

ERROR MESSAGE

If an invalid file is used in zenon, then an error message is displayed in the output window when

loading the file in the WPF element.

For example:

"error when loading

xaml-Datei:C:\ProgramData\COPA-DATA\SQL\781b1352-59d0-437e-a173-08563c3142e9\FILES\zenon

\custom\media\UserControl1.xaml

The attribute "Class" cannot be found in XML namespace

"http://schemas.microsoft.com/winfx/2006/xaml". Line 7 Position 2."

6.5 Pre-built elements

Registered zenon partners can obtain examples of WPFs via MyArea

(https://www.copadata.com/en/my-area/overview/) on the COPA-DATA website.

zenon is already shipped with several WPF elements. More are available for download in the web

shop.

All WPF elements have properties which determine the graphical design of the respective element

(Dependency Properties). Setting the values via an XAML file or linking the property via zenon can

directly change the look in the Runtime. The tables in the description of the individual elements

contain the respective Dependency Properties, depending on the control.

https://www.copadata.com/en/my-area/overview/

Engineering in zenon

64 | 131

Available elements:

 Analog clock (on page 64)

 Vertical bar graph (on page 65)

 BACnet WPF Control

 Comtrade Viewer (on page 66)

 Energy class diagram (on page 79)

 Progress bar (on page 66)

 Pareto diagram (on page 80)

 Sankey Diagram (on page 87)

 Round display (on page 83)

 Temperature control (on page 88)

 Universal slider (on page 89)

 Waterfall chart (on page 91)

REPLACING ASSEMBLY WITH A NEWER VERSION

Per project only one Assembly for a WPF element can be used in the zenon Editor as well as in the

Runtime. If two versions of an Assembly are available in a project, then the first loaded file is used. A

user enquiry is made as to which version should be used. No further actions are needed for the

maintenance of the versions used up until now. If a newer version is chosen, all corresponding

CDWPF files in all symbols and images in all projects must be adapted.

Note for Multi-Project Administration: If an Assembly in a project is replaced by a new version,

it must also be replaced in all other projects that are loaded in the Editor or in Runtime.

6.5.1 Analog clock - AnalogClockControl

Property Function Value

ElementStyle Shape/type of element. Enum:

 SmallNum

bers

 BigNumber

s

 No

ElementBackgroundBrush Color of element background. Brush

ElementGlasReflection Activate the glass effect on the element. Visibility

Engineering in zenon

65 | 131

Property Function Value

Offset Value in hours (h) which displays the time lag to

the system clock.

Int16

OriginText Text which is displayed in the clock (e.g.

location).

String

6.5.2 Bar graph vertical - VerticalBargraphControl

Property Function Value

CurrentValue Current value which should be displayed. Double

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

MajorTicksCount Number of main ticks on the scale. Integer

MinorTicksCount Number of sub ticks on the scale. Integer

MajorTickColor Color of main ticks on the scale. Color

MinorTickColor Color of sub ticks on the scale. Color

ElementBorderBrush Color of the element border. Brush

ElementBackgroundBru

sh

Color of element background. Brush

ElementGlasReflection Activate the glass effect on the element. Visibility

ElementFontFamily Element font. Font

ScaleFontSize Font size of the scale. Double

ScaleFontColor Font color of the scale. Color

IndicatorBrush Bar graph fill color. Brush

BargraphSeparation Number of bar graph dividion. Integer

BargraphSeparationCol

or

Color of the scale division. Color

Engineering in zenon

66 | 131

6.5.3 Progress bar - ProgressBarControl

Property Function Value

CurrentValue Current value which should be displayed. Double

MinValue Minimum value of the value area. Double

MaxValue Maximum value of the value area. Double

ProgressbarDivisionCoun

t

Number of divisions of the progress bar. Integer

VisibilityText Visibility of the value display. Boolean

TextSize Font size of the value display. Double

TextColor Color of the value display. Color

ProgressBarBoxedColor Color of the border of the progress bar. Color

ProgressBarMarginDistan

ce

Distance of the progress bar box from the element edge

(left, top, right, down).

Double

ProgressBarInactiveBrush Indicator color not active. Brush

ProgressBarActiveBrush Indicator color active. Brush

ProgressBarPadding Distance of the progress bar from the progress bar box

(left, top, right, down).

Double

ElementBorderBrush Color of the element border. Brush

ElementBackgroundBrus

h

Color of element background. Brush

6.5.4 COMTRADE-Viewer

The COMTRADE-Viewer WPF element is available to partners of COPA-DATA and is available to them

via the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

 License information

The COMTRADE-Viewer can only be configured in the zenon Editor with a valid

Energy Edition license. If there is no valid license, the WPF is displayed as grayed

out in the Editor. A valid Energy Edition license is also required for display in the

Runtime.

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

67 | 131

The control supports the graphical analysis of digital error and event data logging of a COMTRADE

file.

 Information

The control supports IEEE C37.111 (IEEE Standard Common Format for Transient

Data Exchange (COMTRADE) for Power Systems) standards-compliant files.

ASCII or binary files in accordance with the 1999 or 2013 edition can be

visualized.

Older files or files without a year identification are not supported. A warning

dialog is called up when an invalid/unsupported file is selected.

Possibilities of the COMTRADE-Viewer WPF control in zenon Runtime:

 Selection of a file in the COMTRADE file format

 Visualization of the selected COMTRADE file:

Note: The display colors can be configured in the zenon Editor.

 Current (sinus wave display)

 Voltage (sinus wave display)

 Digital signals (binary bar chart display)

 Display of values at a selected cursor position.

 If an element that represents neither current or voltage is selected, (such as frequency),

this is visualized in both analog areas again (current and voltage).

 Navigation:

Engineering in zenon

68 | 131

 Zoom in and zoom out using the mouse wheel, scroll bar and Multi-Touch gestures

 Enlargement of the area

Selection of the area by clicking the mouse

 Move the display area using the right mouse button, scroll bar or Multi-Touch gestures.

 Exports selected objects as an CSV file.

 Hint

To be able to transport COMTRADE files to the zenon Runtime computer, you

can also use the file transfer of the IEC 61850 driver or the FTP function block of

zenon Logic.

You can find further information about this in the driver documentation of the

IEC 61850 driver or in the zenon Logic documentation.

6.5.4.1 View in Runtime

The COMTRADE WPF element offers two views in the Runtime:

 Configuration view

 Selection of a COMTRADE configuration file

 Selection of the elements to be displayed

 Graph view

 Zoom in and zoom out

 Display of values at a selected cursor position.

 Export of the selected elements as an CSV file

 Information

The switch between the views is integrated in the WPF element. Additional

project configuration of a screen switching function is not necessary.

6.5.4.2 Installation

Requirements:

 You must be a registered COPA-DATA Partner.

 You need to have access to the COPA-DATA Partner Community already granted.

Engineering in zenon

69 | 131

TO DOWNLOAD A WPF ELEMENT:

1. Open the COPA-DATA Partner Community

(https://www.copadata.com/en-us/partner-community/).

2. Log in in the area called MY AREA.

3. Enter "Partner" as a search term by the microscope.

COPA-DATA Partner Community appears with a link in the results.

4. Click on the link.

5. In the Partner Login Area, click on MORE.

The Overview tab is opened.

6. Switch to the Documents & Downloads tab.

7. Under SELECT CATEGORY, activate the WPF element checkbox.

8. Click on Search.

The labeling is hidden.

An orange frame surrounds the search field.

9. Click in the frame and enter COMTRADE.

10. The COMTRADE Viewer is shown.

11. Under Actions, click on the orange symbol to download the COMTRADE Viewer.

12. Save the folder locally.

13. Unzip the file.

14. Open the COMTRADE folder that contains the Comtrade.cdwpf file.

6.5.4.3 Installation

To create a WPF element

1. Open the zenon Editor

2. In the project manager, go to Files and Graphics.

3. Go to Import file....

4. Select the file Comtrade.cdwpf for importing.

5. Confirm the selection by clicking on Open.

6. Open the screen in which the WPF element is to be inserted.

7. In the vertical menu bar, select the WPF element (WPF).

8. Drag the WPF element in the screen with the left mouse button.

The File selection window is opened.

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

70 | 131

9. Select the file Comtrade.cdwpf and confirm the input by clicking on OK.

The WPF element is added.

6.5.4.4 Configurable control properties - color display

ENGINEERING IN THE EDITOR

The element with the name COMTRADE.CDWPF can be configured and placed in each zenon screen

type.

The project configuration of Width [pixels] and Height [pixels] of the element depend on the

proportions. This prevents the COMTRADE-Viewer being displayed as distorted in Runtime.

Note: When configuring the project, ensure that there is sufficient size to guarantee a clear overview.

GRAPHICAL AMENDMENTS

You configure the graphic design in the properties of the WPF element.

You can find further information in the configuration of the linking (on page 49) chapter in this

manual.

Possible color values:

 Hexadecimal color values in the following formats can be used:

#RRGGBB and #AARRGGBB

Transparency values are permitted.

 Example color values:

#000000 = black

#FFFFFF = white

#FF0000 = red

 Color values by name

Reference: https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx

(https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx)

 Hint

The properties for the COMTRADE-Viewer WPF element have a "z" as a starting

color. Use name filtering for a clear display when configuring the linking.

CONFIGURATION PAGE

Text and background color of the configuration page.

https://msdn.microsoft.com/en-us/library/system.drawing.color.aspx

Engineering in zenon

71 | 131

Parameter Description Value

zConfiguratinPageTextColor Text color of the configuration

page

String

zConfigurationPageBackground

Color

Background color of the

configuration page

String

BUTTONS

Text and background color of the button.

Parameter Description Value

zButtonTextColor Text color of the button String

zButtonBackgroundColor Background color of the button String

CHART

Text color of the axis labeling or key and background color.

Parameter Description Value

zChartTextColor Text color of the axis labeling. String

zChartBackgroundColor Background color of the axis

labeling

String

LABEL

Text and background color of the display of a selected cursor position.

Parameter Description Value

zChartLabelTextColor Text color of the value display String

zChartLabelBackgroundColor Background color of the value

display

String

Engineering in zenon

72 | 131

CHART

Color palette of the graph view and the attendant keys.

Parameter Description Value

zChartPalette Color palette of the colors for

graphs and keys.

Referencing with color palette

name (see overview).

Default: if no color palette is

configured, the color palette of

the computer's operating system

is used.

String

POSSIBLE COLOR PALETTES - OVERVIEW

6.5.4.5 Configurable control properties - language and display settings

You can define the following using the following settings:

 whether the standard dialog or a user-defined dialog should be used to open Windows files.

 Whether the user interface is to be displayed in Polish.

 Whether the CSV Export button is to be displayed in the Runtime.

Parameter Description

zLimitFileOpenAccessTo If the parameter for another value is set to empty,

a user-defined file opening dialog to open

Engineering in zenon

73 | 131

Parameter Description

Windows files is opened.

This dialog shows all *.CFG files for which a

corresponding *.DAT files exists in the folder

through which the parameter is addressed.

Default: empty

zUiLanguage If the parameter is set to one of the following

values, the COMTRADE-Viewer user interface and

the user-defined file opening dialog are displayed

in Polish:

 pl

 pL

 Pl

 PL

Note: With the standard dialog, only the title is

displayed in Polish to open files. The other entries

relate to the Windows language settings.

Default: en

zButtonCSVExportVisibility Defines the display of the CSV Export button in the

Runtime:

 True: Button is displayed

 False: Button is not displayed

Default: True

6.5.4.6 Runtime view - configuration page

If a screen with a configured COMTRADE-Viewer WPF element is called up, the display of the

respective configuration page is empty.

Engineering in zenon

74 | 131

Note: This also applies if, in zenon Runtime, there is a switch from one screen to another screen with

the screen switching function.

COMTRADE VIEWER CONFIGURATION

The COMTRADE Viewer Configuration switching, arranged vertically on the side, switches the display

of the configuration to graphic view and vice versa.

SELECT FILE

The Open... button opens the file selection dialog to select a file.

There is a pre-selection for display in the file selection:

 In doing so, file pairs of *.cfg- and *.dat files are detected.

Note: Optional *.hdr or *.inf files are not taken into account.

 Only the corresponding *.dat files are displayed.

 All attendant files (*.dat, *.cfg) are loaded by clicking on the desired file and the OK button.

 One file can be loaded.

 After loading the file, the contents of the file are shown in the Analog Channels and Digital

Channels columns.

The labels and units of the elements originate from the COMTRADE configuration and cannot

be changed.

Engineering in zenon

75 | 131

FURTHER INFORMATION ON THE EDITING OF _*.CFG- AND *.DAT FILES

The information from the *.cfg file allows the evaluation of the *.dat file. It contains the data from

various analog and digital series of measurements of currents and voltages. The data is broken down

into individual data sets and shown in hex format.

*.cfg files

 The last entry of a file of this data type is a time multiplier. This entry is multiplied by the time

stamp of one of each entry from the *.dat file when a disturbance is read in. If there is no

time multiplier, a factor with the value of 1 is assumed internally. The *.cfg file is not changed

in the process.

 Certain standards apply for the entries of the digital measured values. Example of a

standard-compliant entry of a digital measured value: 1,LOPHC,,,0. However, if there is no

zero at the end of the entry, the COMTRADE-Viewer adds this internally. The *.cfg file is not

changed in the process.

*.dat files

 The COMTRADE-Viewer is in a position to read in files of this data type that start with the

index 0 or >1. In doing so, a check is constantly carried out to see whether these data sets

are numbered continually in discrete steps from 1. If there are data sets that are not correctly

numbered, the file cannot be read in.

ANALOG CHANNELS

Parameter Description

[Liste der verfügbaren Kanäle]

Selection of the elements to be visualized.

Multiple selection by clicking on the desired entry

in the list. Selected elements are shown with a

colored background. Another mouse click undoes

the selection of the entry.

Select All Selects all elements from the list.

Deselect All Deactivates the existing selection of elements.

DIGITAL CHANNELS

Parameter Description

[Liste der verfügbaren Kanäle] Selection of the elements to be visualized

Multiple selection by clicking on the desired entry

in the list. Selected elements are shown with a

colored background. Another mouse click undoes

Engineering in zenon

76 | 131

Parameter Description

the selection of the entry.

Select All Selects all elements from the list.

Deselect All Deactivates the existing selection of elements.

SHOW SELECTION

To show your selection in the graphic view, click on the Apply button.

Note: Clicking on the vertically-arranged COMTRADE Viewer Configuration switching only changes

the view. An amended selection of the channels is not taken into account in the process.

6.5.4.7 Runtime view - visualization of COMTRADE data

The selected channels are visualized in the graph view of the COMTRADE-Viewer WPF element. The

coloring can be configured in the zenon Editor.

Files that are compliant with the IEEE C37.111-2013 (or IEC 60255-24:2013) standard can be read in.

X-values are necessary for the display, which represent the time stamps of the respective recorded

data points.

The X-values can be saved in the *.dat file directly.

If this is not the case, there is a calculation of the time stamp using the following entries of the *.cfg

file:

 Start time of recording the disturbance (date and time of the first data point)

 Number of recorded data points (Samplerate)

 Number of data points for each query (Rate)

EXPORT OF THE SELECTED DATA

The selected analog and digital channels can be exported to a CSV file with the CSV-Export button.

GRAPH VIEW

The graph view of the COMTRADE-Viewer is divided into three sections:

 Current amperage

Upper area

 Voltage

Mid area

Engineering in zenon

77 | 131

 Digital channels

Lower area

AXIS LABELING

 Horizontal axis

The horizontal axis represents the complete time period as illustrated in the COMTRADE file

(*.dat).

The scaling of this time axis depends on the enlargement level. The higher the enlargement

selected, the more detailed the time display.

 Vertical axis

The vertical axis represents the values.

 The scaling of the value axis depends on the enlargement level. The greater the

enlargement selected, the more detailed the display of values.

 The labeling of the analog channels is shown vertically next to the values and

corresponds to the measuring unit as defined in the COMTRADE file (*.cfg).

 The digital channels are displayed in the sequence as defined in the COMTRADE file

(*.cfg).

The Channel identifier of the COMTRADE file serves as an identifier.

KEY

The color key of the graphs is shown at the head of the graph.

Engineering in zenon

78 | 131

 The labeling of the digital channels corresponds to the channel description as defined in the

COMTRADE file (*.cfg).

 The colors for each channel are assigned automatically with the configured color palette.

 The time is displayed in a footer under the graph. The start time is displayed as a text.

NAVIGATION AND ZOOM

Navigation (scroll and zoom) is always applied to all three areas of the graphic display.

 You can move the display within the horizontal time line with the scroll bar.

 Zoom in and zoom out

 You can zoom at the current position of the mouse pointer in the graph view or reduce

the enlargement.

 The selected area is displayed by selecting a display area with the mouse button held

down.

Note: The display of the values is always amended to the selected area. As a result, this

can lead to a flattening of the curve in the enlarged graph view.

 Double clicking on the scroll bar resets the enlargement.

ANALYSIS

The precise values at the position of the mouse pointer are visualized with a display in value blocks. A

crosshair offers additional visual support with the exact determination of the reading position.

Engineering in zenon

79 | 131

6.5.5 Energy class diagram

The energy class diagram, WPF element is available to partners of COPA-DATA and is available to

them via the COPA-DATA Partner Community

(https://www.copadata.com/en-us/partner-community/).

A reaction matrix must be used to model an energy class diagram. This reaction matrix must be linked

to the variable whose value is envisaged for display and distribution in energy classes. The name of

the variable must be transferred to the "zVariableName" property.

REACTION MATRIX FOR ENERGY CLASS DIAGRAM

The linked reaction matrix must correspond to the following schematic:

 The first status must be an area, or a "less than" definition

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

80 | 131

 Then as many different areas as desired can be defined.

 The last status must be an area or a "greater than" definition.

The following is applicable for project configuration:

1. If the first status is an area and the value of the variable comes under this area, the first status

in the diagram is shown nevertheless. The same is applicable for the last status the other way

round.

2. The colors that the WPF diagram uses for the classes are the limit value colors that were

defined in the reaction matrix.

3. The letters for the classes are set in alphabetical order starting with "A".

Property Description Value

zenonFontID ID for a font from the first font list (font size is

not taken into account)

Integer

zenonNumberOfDecimalPlaces Number of displayed decimal points Integer

zenonVariableName Name of the variable to be displayed. String

Note: Additional VSTA programming is necessary for the display of the energy class diagram in the

zenon web client. You can find details on this in the display of WPF elements in the zenon web client

(on page 109).

6.5.6 Pareto diagram

The Pareto diagram, WPF element is available to partners of COPA-DATA and is available to them via

the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

An example of a Pareto diagram in Runtime is shown below:

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

81 | 131

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

zenonBarColor1 Color of the first Bar COLOR (STRING)

zenonBarColor2 Color of the second Bar COLOR (STRING)

zenonBarColor3 Color of the third Bar COLOR (STRING)

zenonBarColor4 Color of the fourth Bar COLOR (STRING)

zenonBarColor5 Color of element fifth Bar COLOR (STRING)

zenonBarColor6 Color of element sixth Bar COLOR (STRING)

zenonBarColor7 Color of element seventh Bar COLOR (STRING)

zenonBarColor8 Color of element eighth Bar COLOR (STRING)

zenonBarColor9 Color of element ninth Bar COLOR (STRING)

zenonBarColor10 Color of element tenth Bar COLOR (STRING)

zenonColorPercentageLin

e

Color of the percentage line (relative sum

frequency).

COLOR (STRING)

zenonInitialisationTime Denotes how long the wait for the

initialization of controls is.

INTEGER

Default: 150 ms

zenonLineVisibility Visibility of the percentage line (relative

sum frequency).

BOOLEAN

zenonVariable1_Label Labeling for the 1st Bar STRING

zenonVariable1_Value Value of the 1st Bar DOUBLE

zenonVariable2_Label Labeling for the 2nd Bar STRING

zenonVariable2_Value Value of the 2nd Bar DOUBLE

zenonVariable3_Label Labeling for the 3rd Bar STRING

zenonVariable3_Value Value of the 3rd Bar DOUBLE

zenonVariable4_Label Labeling for the 4th Bar STRING

zenonVariable4_Value Value of the 4th Bar DOUBLE

zenonVariable5_Label Labeling for the 5th Bar STRING

zenonVariable5_Value Value of the 5th Bar DOUBLE

Engineering in zenon

82 | 131

Property Function Value

zenonVariable6_Label Labeling for the 6th Bar STRING

zenonVariable6_Value Value of the 6th Bar DOUBLE

zenonVariable7_Label Labeling for the 7th Bar STRING

zenonVariable7_Value Value of the 7th Bar DOUBLE

zenonVariable8_Label Labeling for the 8th Bar STRING

zenonVariable8_Value Value of the 8th Bar DOUBLE

zenonVariable9_Label Labeling for the 9th Bar STRING

zenonVariable9_Value Value of the 9th Bar DOUBLE

zenonVariable10_Label Labeling for the 10th Bar STRING

zenonVariable10_Value Value of the 10th Bar DOUBLE

The following events can be used and linked to zenon functions:

Event Function Value

zenonBar1Click Function that is executed when the 1st bar

is clicked on.

Function

zenonBar2Click Function that is executed when the 2nd

bar is clicked on.

Function

zenonBar3Click Function that is executed when the 3rd bar

is clicked on.

Function

zenonBar4Click Function that is executed when the 4th bar

is clicked on.

Function

zenonBar5Click Function that is executed when the 5th bar

is clicked on.

Function

zenonBar6Click Function that is executed when the 6th bar

is clicked on.

Function

zenonBar7Click Function that is executed when the 7th bar

is clicked on.

Function

zenonBar8Click Function that is executed when the 8th bar

is clicked on.

Function

zenonBar9Click Function that is executed when the 9th bar Function

Engineering in zenon

83 | 131

Event Function Value

is clicked on.

zenonBar10Click Function that is executed when the 10th

bar is clicked on.

Function

6.5.7 Circular gauge control

Property Function Value

CurrentValue Current value which should be displayed. Double

IsReversed Scale orientation - clockwise or anti-clockwise. Boolean

ElementFontFamily Element font. Font

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

ScaleRadius Radius of the scale. Double

ScaleStartAngle Angle at which the scale starts. Double

ScaleLabelRotationM

ode

Alignment of the scale caption. Enum:

 None

 Automati

c

 Surround

In

 Surround

Out

ScaleSweepAngle Angel area which defines the size of the scale. Double

ScaleLabelFontSize Font size of the scale caption. Double

ScaleLabelColor Font color of the scale caption. Color

ScaleLabelRadius Radius on which the scale caption is orientated. Double

ScaleValuePrecision Accuracy of the scale caption. Integer

PointerStyle Shape of the pointer displaying the value. Enum:

 Arrow

Engineering in zenon

84 | 131

Property Function Value

 Rectangl

e

 TriangleC

ap

 Pentagon

 Triangle

MajorTickColor Color of main ticks on the scale. Color

MinorTickColor Color of sub ticks on the scale. Color

MajorTickSize Size of main ticks on the scale. Size

MinorTickSize Size of sub ticks on the scale. Size

MajorTicksCount Number of main ticks on the scale. Integer

MajorTicksShape Shape/type of main ticks on the scale. Enum:

 Rectangl

e

 Trapezoi

d

 Triangle

MinorTicksShape Shape/type of sub ticks on the scale. Enum:

 Rectangl

e

 Trapezoi

d

 Triangle

MinorTicksCount Number of sub ticks on the scale. Integer

PointerSize Size of the pointer. Size

PointerCapRadius Size of the pointer fastening point. Double

PointerBorderBrush Color of pointer border. Brush

PointerCapStyle Shape/type of pointer fastening point. Enum:

 BackCap

 FrontCap

Engineering in zenon

85 | 131

Property Function Value

 Screw

PointerCapBorderBr

ush

Color of pointer fastening point. Brush

PointerBrush Color of pointer. Brush

GaugeBorderBrush Color of the element border. Brush

GaugeBackgroundBr

ush

Color of element background. Brush

PointerCapColorBrus

h

Color of pointer fastening point. Brush

GaugeMiddlePlate Radius of the element background middle plate. Double

PointerOffset Offset of the pointer (displacement). Double

RangeRadius Radius of the total range display. Double

RangeThickness Thickness of the total range display. Double

RangeStartValue Start value of the total range display. Double

RangexEndValue End value of an area. x stands for the range. The end

value is at the same time the start value of the next

respective range:

 Range1EndValue: End value of the 1st area

and start value of the 2nd range.

 Range2EndValue: End value of the 2nd area

and start value of the 3rd range.

 Range3EndValue: End value of the 3rd area

and start value of the 4th range.

 Range4EndValue: End value of the 4th area

and start value of the 5th range.

 Range5EndValue: End value of the 5th area

and start value of the 6th range.

 Range6EndValue: End value of the 6th range.

Double

RangexColorBrush Color of the respective area. x stands for the range.

Available are:

 Range1ColorBrush: Color of the first range.

Brush

Engineering in zenon

86 | 131

Property Function Value

 Range2ColorBrush: Color of the second

range.

 Range3ColorBrush: Color of the third range.

 Range4ColorBrush: Color of the fourth range.

 Range5ColorBrush: Color of element fifth

range.

 Range6ColorBrush: Color of element sixth

range.

Note: Cannot be set in zenon. You can find

information on the use of CDWPF to change color

values in the chapters Referenced assemblies (on page

8), CDWPF files (on page 48) and Configurable control

properties - color display (on page 70).

ScaleOuterBorderBru

sh

Color of the scale border. Brush

ScaleBackgroundBru

sh

Color of scale background. Brush

ValueTextFrameStyle Shape/type of value display. Enum:

 LargeFra

me

 SmallFra

me

 None

ValueTextContent Content of the value display. Enum:

 Text

 TextValu

e

 Value

ValueTextSize Font size of the value display. Double

ValueTextColor Font size of the value display. Color

IsGlasReflection Activate the glass effect on the element. Boolean

GaugeOffsett Lowering the rotation point of the whole element. Double

Engineering in zenon

87 | 131

6.5.8 Sankey diagram

The Sankey diagram, WPF element is available to partners of COPA-DATA and is available to them

via the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

The Sankey wizard must be used to model a Sankey diagram. The wizard creates an XML file that is

then evaluated by the WPF element. To do this, the zSankeyName property must be given the name

of the XML file. The XML file must be in the Other folder of a project. This is saved there by the

wizard.

An example of a Sankey diagram in Runtime is shown below:

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

FontSize Font size of the texts. Integer

zBackgroundColor Background color of the diagram. Color

(String)

zFontColor Color of the texts. Color

(String)

zFontFamily Font of all texts. Font (String)

zLossDetectionActive Automatic loss detection

activated/deactivated. If true, then losses are

automatically shown at a node points as flows.

Bool

zNoDataText Text that is displayed if there are no values to

display and zPrevireActive is false.

String

zNoValidXMLText Text that is displayed if no valid XML file with

entered name has been found and

zPreviewActive is false.

String

zNumberOfDecimalPlace

s

Denotes how many decimal places are to be

displayed.

Integer

zPreviewActive Display of a preview activated/deactivated.

The preview can be displayed if

There is no data present (the modeled

Bool

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

88 | 131

Property Function Value

diagram is filled with default values) or

the XML file was not found or

this does not contain a valid definition (an

example Sankey diagram is displayed).

zRefreshRate Rate at which the diagram is refreshed in ms. Integer

zSankeyName Name of the XML file with the modeling of

the diagram.

String

zShowRelativeValues Display of the values in absolute false or

relative values true.

Bool

Note: Additional VSTA programming is necessary for the display of the Sankey diagrams in the

zenon Web Client. You can find details on this in the display of WPF elements in the zenon Web

Client (on page 109).

6.5.9 Temperature indicator - TemperatureIndicatorControl

Property Function Value

CurrentValue Current value which should be displayed. Double

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

MajorTicksCount Number of main ticks on the scale. Integer

MinorTicksCount Number of sub ticks on the scale. Integer

TickNegativColor Color of the negative main tick (gradient to

TickPositivColor).

Color

TickPositivColor Color of the positive main tick (gradient to

TickNegativColor).

Color

MinorTickColor Color of the sub ticks. Color

ElementBorderBrush Color of the element border. Brush

ElementBackgroundBru

sh

Color of element background. Brush

ElementGlasReflection Activate the glass effect on the element. Visibility

Engineering in zenon

89 | 131

Property Function Value

ElementFontFamily Element font. Font

IndicatorColor Color of the indicator fill color. Color

IndicatorBorderColor Color of the indicator border. Color

MajorTickSize Size of main ticks on the scale. Size

MinorTickSize Size of sub ticks on the scale. Size

ScaleLetteringDistance Distance of the scale caption (vertical), each x. main

tick should be captioned.

Integer

IndicatorScaleDistance Distance between indicator and scale (horizontal). Double

ScaleFontSize Font size of the scale. Double

ScaleFontColor Font color of the scale. Color

Unit Unit. String

ElementStyle Shape/type of element. Enum:

 SmallFra

me

 Unit

 None

6.5.10 Universal slider - UniversalReglerControl

Property Function Value

CurrentValue Current value which should be displayed. Double

ElementFontFamily Element font. Font

MinValue Minimum value of the scale. Double

MaxValue Maximum value of the scale. Double

Radius Double

ScaleRadius Radius of the scale. Double

ScaleStartAngle Angle at which the scale starts. Double

Engineering in zenon

90 | 131

Property Function Value

ScaleLabelRotationMode Alignment of the scale caption. Enum:

 None

 Automatic

 SurroundIn

 SurroundO

ut

ScaleSweepAngle Angel area which defines the size of the scale. Double

ScaleLabelFontSize Font size of the scale caption. Double

ScaleLabelColor Font color of the scale caption. Color

ScaleLabelRadius Radius on which the scale caption is orientated. Double

ScaleValuePrecision Accuracy of the scale caption. Integer

ElementStyle Display type of the element Enum:

 Knob

 Plate

 None

MajorTickColor Color of main ticks on the scale. Color

MinorTickColor Color of sub ticks on the scale. Color

MajorTickSize Size of main ticks on the scale. Size

MinorTickSize Size of sub ticks on the scale. Size

MajorTicksCount Number of main ticks on the scale. Integer

MajorTicksShape Shape/type of main ticks on the scale. Enum:

 Rectangle

 Trapezoid

 Triangle

MinorTicksShape Shape/type of sub ticks on the scale. Enum:

 Rectangle

 Trapezoid

 Triangle

Engineering in zenon

91 | 131

Property Function Value

MinorTicksCount Number of sub ticks on the scale. Integer

BackgroundBorderBrush Color of the element border. Brush

BackgroundBrush Color of element background. Brush

PointerCapColorBrush Color of pointer fastening point. Brush

GaugeMiddlePlate Radius of the element background middle plate. Double

ValueFontSize Font size of the value display. Double

ValueFontColor Font size of the value display. Color

IsGlasReflection Activate the glass effect on the element. Boolean

KnobBrush Color of the knob. Brush

IndicatorBrush Color of the indicator. Brush

IndicatorBackgroundBrus

h

Background color of the inactive indicator. Brush

KnobSize Diameter of the knob. Double

KnobIndicatorSize Indicator size of the knob. Size

ElementSize Size of the element. Size

VisibilityKnob Activating of the knob. Boolean

ValuePosition Position of the value display. Double

ValueVisibility Activating the value display. Boolean

6.5.11 Waterfall chart

The waterfall diagram WPF element is available to partners of COPA-DATA and is available to them

via the COPA-DATA Partner Community (https://www.copadata.com/en-us/partner-community/).

The Meaning and waterfall chart Wizard must be used to model a waterfall diagram. A waterfall can

be modeled with this wizard. The information is saved directly to the variables in the Parameters for

waterfall diagram property (Analyzer variable properties group).

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

92 | 131

An example of a waterfall diagram in Runtime is shown below:

Note: This screenshot is only available in English.

The following settings can be made in the WPF configuration window under COPADATA-ELEMENT:

Property Function Value

zenonRefreshRate Time between the refreshes of

the diagram in miliseconds.

Integer

zenonWaterfallIdentifie

r

Name of the waterfall diagram. String

zenonZSystemModel Equipment group of the

variables used.

String

Note: Additional VSTA programming is necessary for the display of the waterfall diagram in the

zenon Web Client. You can find details on this in the display of WPF elements in the zenon Web

Client (on page 109).

LINK BARS TO ZENON FUNCTION

The bars of a waterfall diagram can be linked to a function in the Runtime. For display in the Runtime,

the bars, labeling and display of the values for execution with the click of a mouse can be configured

for the waterfall diagram.

Carry out the following configuration to link the columns of your waterfall diagram to a function:

1. Configure the WPF element for the waterfall diagram.

Note: To do this, use the Meaning and Waterfall Chart wizard if possible.

Engineering in zenon

93 | 131

2. Engineer a zenon function.

a) Create a new function:

In the toolbar or in the context menu of the Functions node, select New function.

The dialog to select a function is opened.

b) Select the desired function.

c) Set the parameters for function.

3. Name the function in the Name property.

Note: The function name must contain the variables for the waterfall diagram without color

code!

You can also find these parameters in the Parameters for waterfall diagram variable

property in the Analyzer properties group.

4. Link the function to the exact same equipment group as the variables.

Note: You can find this linking in the Equipment Groups property of the function.

The following is applicable for this project configuration:

 The function and the linked variables must be present in the same zenon project.

 The variables must be linked to an equipment group.

 The function must be linked to the same equipment group as the variables.

 Example

For a bar with the waterfall definition WF= WF1,02,05,#E9ED92; The function

name, for example Function_WF1,02,05, is to be used.

6.5.12 BACnet WPF Control

The BACnet Schedule Control WPF element is available to partners of COPA-DATA and is available to

them via the COPA-DATA Partner Community

(https://www.copadata.com/en-us/partner-community/).

The control offers the possibility to configure BACnet schedule objects in a graphical user interface

and to display these objects.

6.5.12.1 Installation

Requirements:

 You must be a registered COPA-DATA Partner.

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

94 | 131

 You need to have access to the COPA-DATA Partner Community already.

DOWNLOAD WPF ELEMENT FROM THE COPA-DATA PARTNER PORTAL

Carry out the following steps to download the WPF element:

1. Open the COPA-DATA Partner Community

(https://www.copadata.com/en-us/partner-community/).

2. Log in in the area called MY AREA.

3. Enter "Partner" as a search term by the microscope.

COPA-DATA Partner Community appears with a link in the results.

4. Click on the link.

5. In the Partner Login Area, click on MORE.

The Overview tab is opened.

6. Switch to the Documents & Downloads tab.

7. Under SELECT CATEGORY, activate the WPF element checkbox.

8. Click Search.

The labeling is hidden.

An orange frame surrounds the search field.

9. Click in the frame and enter Bacnet.

10. The BACNetWPFScheduler is shown.

11. Under Actions, click on the orange symbol to download the BACnet Schedule Control.

12. Save the folder locally.

13. Unzip the file.

14. Open the folder that contains the files BacnetSchedulerControl.xaml and

BacnetSchedulerWPF.dll.

IMPORT BACNET SCHEDULE CONTROL IN ZENON EDITOR

To create a WPF element

1. Open the zenon Editor

2. Go to the Files node in the project manager.

3. Expand the view of this node by clicking on the [+] button.

The tree view is unfolded and the subnodes are displayed.

4. Go to the Graphics subnode.

https://www.copadata.com/en-us/partner-community/

Engineering in zenon

95 | 131

a) Select the Import file entry in the tool bar of the detail view.

The file selection dialog is opened.

b) Select the file called BacnetSchedulerControl.xaml.

c) Confirm the selection by clicking on the Open button

5. Go to the Miscellaneous subnode.

a) Select the Import file entry in the tool bar of the detail view.

The file selection dialog is opened.

b) Select the file called BacnetSchedulerWPF.dll.

c) Confirm the selection by clicking on the Open button

6.5.12.2 Engineering in the zenon Editor

Carry out the following steps to use the BacnetScheduler in zenon:

1. Create a new screen.

To do this, select the New screen command in the tool bar or in the context menu of the

Screens node.

2. Change the properties of the screen:

a) Name the screen in the Name property.

b) Select a desired screen type in the Screen type property (recommended screen type:

Standard).

c) Select the desired frame in the Frame property.

3. Configure the content of the screen:

a) Open the screen in which the WPF element is to be inserted.

b) In the Elements tool bar, select WPF element (WPF) .

c) Drag the WPF element in the screen with the left mouse button.

d) The File selection window is opened.

e) Select the file BacnetSchedulercontrol.xaml and confirm the input by clicking on OK.

f) The WPF element is added.

4. Amend the size of the WPF element to your zenon screen.

a) Highlight the desired WPF element.

b) Switch to the Position property group.

Engineering in zenon

96 | 131

c) Set the parameters for the element width using the Width [pixels] property and the

height with the Height [pixels] property.

Recommended minimum size: 920 x 920 pixels

6.5.12.3 Configurable control properties

Carry out the following steps to set the parameters for your BACnet WPF control:

1. Highlight the desired WPF element.

2. Switch to the WPF links property group.

3. Click the ... button in the Configuration property

4. The dialog to enter elements is opened.

5. Expand the BacnetControlGrid node in the Existing Elements area.

The BacnetSchedulerControl is visible in the node.

6. Click on the BacnetSchedulerControl entry.

The view in the Action Linkings area is updated.

Engineering in zenon

97 | 131

7. Set the parameters for the WPF content:

a) Click once on the respective line in the Linking Type column.

A drop-down list is opened.

b) Select the corresponding linking type in the drop-down list.

c) Click in the Linking column to open the element input dialog.

It is amended to the configured linking type (such as selection of a variable, entry of a

value ...)

8. Confirm your parameter settings by clicking on OK.

POSSIBLE TYPES OF LINKING

One or more parameters can be linked for this WPF:

 StartDate

 EndDate

 ZenonEffectivePeriod

 ZenonWeeklySchedule

 ZenonExceptionSchedule

 Information

The setting of the parameters of the WPF element are visualized in zenon in the

WPF links properties group of the WPF element. In doing so, each WPF linking

is displayed with a separate subnode or overview of properties.

Engineering in zenon

98 | 131

6.5.12.4 Runtime view

In zenon Runtime, existing BACnet schedule objects can be read by the PLC, modified in the Runtime

and saved back to the PLC.

The user interface in Runtime is divided into three areas:

 Effective Period

 Weekly Schedule

 Exception Schedule

Engineering in zenon

99 | 131

Note: The graphical user interface is only available in English.

6.5.12.4.1 Runtime view

In this area, the value of the variable that has been linked in configuration of the control (on page 96)

in the Editor for the ZenonEffectivePeriod option is displayed.

Parameter Description

Use Timespan The parameters for the Effective Period are set in

Runtime. Input is in the input fields From and To.

 Inactive:

The Effective Period is not used.

 Active:

The Effective Period is entered in Runtime.

Default: inactive

From Start of the Effective Period. Entry of the date.

Manual entry or selection from a calendar. The

calendar is displayed by clicking on the calendar

symbol as a drop-down dialog.

Default: 1. 1. 2018

Note: Only active if the Use Timespan option is

active.

To End of the Effective Period. Entry of the date.

Manual entry or selection from a calendar. The

calendar is displayed by clicking on the calendar

symbol as a drop-down dialog.

Default: 31. 12. 2018

Note: Only active if the Use Timespan option is

active.

Save Writes the current configuration for the Effective

Period to the PLC.

Engineering in zenon

100 | 131

6.5.12.4.2 Runtime view

In this area, the value of the variable that has been linked in configuration of the control (on page 96)

in the Editor for the ZenonWeeklySchedule option is displayed.

Parameters Description

[List of the content of the loaded

Weekly Schedules]

The schedule is displayed in the Weekly Schedule

list as a list entry. The parameters are set for the

respective list entry:

 Day

Selection of the day from a drop-down list.

 Time

Entry of the time

Input format: hh:mm:ss:ms

 Value

Value of the respective schedule. The value

represents that of the data type:

 [0] = NULL

 [1] = BOOLEAN

 [2] = Unsigned

 [3] = REAL

 [5] = Double

 [6] = OctetString

 [7] = CharacterString

Engineering in zenon

101 | 131

Parameters Description

 [8] = BitString

 [9] = Enumerated

[10] = Date

[11] = Time

[12] = BACnetObjectIdentifier

Default: [0]

Note: The data type is required in the Values

parameter when configuring. The data type is

given as a number according to the top list. Note

that this must be given in square brackets [].

Example: [1] for BOOLEAN.

In addition to the data type, the corresponding

value of the data type can also be configured. This

value is entered after the data type.

Examples:

[1] TRUE

For Boolean with value TRUE

[10] 2/3/2021

For data type date with value February 3, 2021

Date entry in BACnet standard format.

Load Reads the current configuration for the Weekly

Schedule from the PLC.

The loaded Weekly Schedule is displayed in the

Weekly Schedule list.

Note: With a Load, all unsaved configurations are

replaced with values from the PLC in Runtime

without a request for confirmation.

New Creates a new Weekly Schedule.

Delete Deletes the selected entry from the Weekly

Schedule list. The entry is deleted immediately

without a request for confirmation.

Multiple selection is possible, but is ignored when

clicking on Delete.

Save Writes the current configuration for the Weekly

Schedules to the PLC.

Engineering in zenon

102 | 131

6.5.12.4.3 Runtime view

In this area, the value of the variable that has been linked in configuration of the control (on page 96)

in the Editor for the ZenonExceptionSchedule option is displayed.

Parameters Description

Type of Exception Schedule Type of schedule for exceptions (Exception

Schedule).

Selection from options box:

 DateRange

The Exception Schedule is defined with a

time period.

The time period is configured with the

options From, Day, To and Day .

 SingleDate

The Exception Schedule is defined with a

precise day.

The day is configured with the options

Single and Day.

 WeekNDay

The Exception Schedule is defined with

Engineering in zenon

103 | 131

Parameters Description

several days.

These days are configured in the

drop-down lists for WeekNDay .

 CalenderRef

The Exception Schedule is defined with a

reference to an existing BACNet calender

object.

From

(for Eventtype DateRange)

Single

(for Eventtype SingleDate)

Start of the Eventtype Exception Schedule. Entry of

the date.

Entry by means of manual entry or selection from a

calendar. The calendar is shown by clicking on the

calendar symbol as a drop-down dialog.

Default: empty (Select a date)

Note: Only active if the options DateRange or

SingleDate are active.

Day

(in From line)

Weekday of the start of the Eventtype Exception

Schedule.

If a date is configured in the From option, the

corresponding weekday is automatically set for the

option.

Selection of the weekday from a drop-down list:

 Mon

Monday

 Tue

Tuesday

 Wed

Wednesday

 Thu

Thursday

 Fri

Friday

 Sat

Saturday

 Sun

Sunday

Engineering in zenon

104 | 131

Parameters Description

Default: empty

Note: Only active if the options DateRange or

SingleDate are active.

To End of the Eventtype Exception Schedule. Entry of

the date.

Manual entry or selection from a calendar. The

calendar is displayed by clicking on the calendar

symbol as a drop-down dialog.

Default: empty(Select a date)

Note: Only active if the DataRange option is

active.

Day

(in To line)

Weekday of the end of the Eventtype Exception

Schedule.

If a date is configured in the To option, the

corresponding weekday is automatically set for the

option.

Selection of the weekday from a drop-down list:

 Mon

Monday

 Tue

Tuesday

 Wed

Wednesday

 Thu

Thursday

 Fri

Friday

 Sat

Saturday

 Sun

Sunday

Note: Only active if the DataRange option is

active.

Engineering in zenon

105 | 131

Parameters Description

Priority Priority for the Eventtype in accordance with

BACnet standard. Selection from drop-down list:

Values 1 - 16

WeekNDay Selection of the date for the Eventtype Exception

Schedule from drop-down lists.

 Drop-down list 1:

Selection of the month

Note: The any month of year entry

corresponds to each month.

 Drop-down list 2:

Selection of the day in accordance with

prescribed criteria.

Drop-down list 3:

Selection of the weekday

Note: The any day of week entry

corresponds to each weekday of a week.

Note: Only active if the WeekNDay option is

active.

CalenderRef Reference to an existing BACnet CalendarObject

object.

Entry of the numerical Object Instance of the

BACnet object. This is always a seven-digit bit

number in accordance with the BACnet standard.

Valid input range (in accordance with BACnet

standard):

0 - 4194302

Note:

To achieve this, the Object Instance number

entered in the control must be filled with a 0 in

front.

Example:

CalendarObject Instance Nummer = 1

Input in control = 0000001

[List of the content of the loaded

Exception Schedules]

 The schedule is displayed in the Expeption

Schedule list as a list entry. The parameters

are set with the listed options:

Engineering in zenon

106 | 131

Parameters Description

 Event Type:

Corresponds to the selection of the event

types from the option box.

 Period:

Display of the date. The display can vary

depending on the selected event type:

[Date] - [Date]

 Priority:

Configured priority

Load Reads the current configuration for the Exception

Schedules on the PLC.

The loaded Exception Schedule is shown in the list.

Note: With a Load, all unsaved configurations are

replaced with values from the PLC in Runtime

without a request for confirmation.

New Applies the configuration from the Exception

Schedule area and creates a new entry in the list.

Delete Deletes the selected entry from the Exception

Schedule list. The entry is deleted immediately

without a request for confirmation.

Multiple selection is possible, but is ignored when

clicking on Delete.

Save Writes the current configuration for the Exception

Schedules to the PLC.

TIME VALUES

Time values for a configured Exception Schedule Event.

Parameters Description

[List of the configured Time values for the

selected Exception Schedule Event]

 Time

Entry of the time

Input format: hh:mm:ss:ms

 Value

Value of the respective schedule. The value

represents that of the data type:

Engineering in zenon

107 | 131

Parameters Description

 [0] = NULL

 [1] = BOOLEAN

 [2] = Unsigned

 [3] = REAL

 [5] = Double

 [6] = OctetString

 [7] = CharacterString

 [8] = BitString

 [9] = Enumerated

[10] = Date

[11] = Time

[12] = BACnetObjectIdentifier

Default: [0]

Note: Mandatory in the Values parameter when

configuring the data type. The data type is given as

a number according to the top list. Note that this

must be given in square brackets [].

Example: [1] for BOOLEAN.

In addition to the data type, the corresponding

value of the data type can also be configured. This

value is entered after the data type.

Examples:

[1] TRUE

For Boolean with value TRUE

[10] 2/3/2021

For data type date with value February 3, 2021

Date entry in BACnet standard format.

New Creates a new Time value entry for the selected

Exception Schedule Event.

Delete Deletes the selected Time value entry. The entry is

deleted immediately without a request for

confirmation.

Multiple selection is possible, but is ignored when

clicking on Delete.

Engineering in zenon

108 | 131

6.5.12.5 Operation in zenon Runtime

Possibilities of the BACnet Schedule Control in zenon Runtime:

 Time period for validity of the schedule (Effective Period)

 Configurable period of validity in days

 Reading of the existing Effective Period from the PLC.

 Saving of the modified Effective Period on the PLC.

 Configuration of weekly schedules:

 Reading existing Weekly Schedules from the PLC.

 Configuration of new entries for the Weekly Schedule

 Deletion of existing entries

 Saving of the modified Weekly Schedules to the PLC

 Configuration possibility per entry:

- day (Day of the Week)

- time per day (local and UTC, depending on the PLC)

- data type and value

 Configuration of exceptions (Exception Schedule)

 Reading of existing exception schedule from the PLC.

 Configuration of new entries for the Exception Schedule.

 Deletion of existing entries.

 Saving of the modified Exception Schedule to the PLC.

 Configuration possibility per entry:

- Event Type (DateRange, SingleDate, WeekNDay, CalenderRef)

- Period

- Priority

- Time

- data type and value

Engineering in zenon

109 | 131

6.6 Display of WPF elements in the zenon web client

In order to also be able to also use the pre-made WPF elements "energy class diagram", "Sankey

diagram" and "waterfall chart" for the display in a zenon web client, amendments are necessary in the

project:

 Engineering in the zenon Editor (on page 109)

 Adapt VSTA code (on page 109)

6.6.1 Engineering in the zenon Editor

Carry out the following project configuration steps in the zenon Editor, in order to also be able to

display certain WPF elements in the zenon web client:

PLACE WPF IN THE ZENON SCREEN:

 Place the WPF element in a zenon screen.

 Give it a unique name in the Element ID property.

You can find this property in the General properties group.

Note: A warning dialog appears if the name for an element has already been issued in

another screen.

 Use the element name issued here in the VSTA code.

6.6.2 VSTA code (complex)

In order to add the programmer code for the display of WPF elements in the zenon web client, carry

out the following steps:

1. In the zenon Editor, switch to the programmer interfaces node.

2. Select the VSTA node and select the Open VSTA Editor with project add-in... with a right

mouse click

3. The dialog to create a VSTA project is opened.

4. Select the C# entry in the Create new VSTA project dialog.

5. Create (copy) the code below.

6. Enter the name of the WPF element in the code.

Note: When opening the VSTA editor, note whether the content of the following code is already

present in the project configuration. For the display of the WPF element in the web client, compare

Engineering in zenon

110 | 131

the existing code and undertake the necessary additions. Please note the comments in relation to this

in the sample code.

VSTA CODE

//As member:

zenOn.IDynPictures zScreens = null;

string[] WPFElements ={"WPF_Control", "WPFWebclient_1", "WPFWebclient_2" }; //Names of the WPF screen elements that

appear in the zenon project and that need access to the API (as many/few as you want)

//Add the following three lines of code in the project archive function:

void ThisProject_Active()

{

zScreens = this.DynPictures();

zScreens.Open += new zenOn.DDynPicturesEvents_OpenEventHandler(zScreens_Open);

zScreens.Close += new zenOn.DDynPicturesEvents_CloseEventHandler(zScreens_Close);

}

//Add the following two lines of code in the project inactive function:

void ThisProject_Inactive()

{

zScreens.Open -= new zenOn.DDynPicturesEvents_OpenEventHandler(zScreens_Open);

zScreens.Close -= new zenOn.DDynPicturesEvents_CloseEventHandler(zScreens_Close);

//Final release and garbage collection of any API-Objects.

FreeObjects();

}

//Add two new event handlers:

void zScreens_Open(zenOn.IDynPicture obDynPicture)

{

foreach (string element in WPFElements)

{

if (obDynPicture.Elements().Item(element) != null)

{

obDynPicture.Elements().Item(element).set_WPFProperty("ELEMENT", "zenonVariableLink",

this.Variables().Item(0));

}

}

}

void zScreens_Close(zenOn.IDynPicture obDynPicture)

Engineering in zenon

111 | 131

{

foreach (string element in WPFElements)

{

if (obDynPicture.Elements().Item(element) != null)

{

zenOn.IElement zWPFElement= obDynPicture.Elements().Item(element);

zWPFElement.set_WPFProperty("ELEMENT", "zenonTrigger", true);

zWPFElement = null;

}

}

}

6.6.3 VSTA code (simplified)

If only one WPF element is used in a zenon screen, the following more streamlined code can be used

as an alternative. To do this, the names of the WPF element, and the screen in which the element is

used, must be entered. This code is then recommended if, for each project, only one of the pre-made

WPF elements is used.

VSTA CODE

zenOn.IDynPicture zScreen = zero;

string wpfElement = "WPF_Control"; //Name of the WPF element in the screen

string wpfPicture = "@Details_Overview_Online"; //Name of the zenon screen

//Add to the project active function:

void ThisProject_Active()

{

zScreen = this.DynPictures().Item(wpfPicture);

zScreen.Open += new zenOn.OpenEventHandler(zScreen_Open);

zScreen.Close += new zenOn.CloseEventHandler(zScreen_Close);

}

//Add to the project inactive function:

void ThisProject_Inactive()

{

zScreen.Open -= new zenOn.OpenEventHandler(zScreen_Open);

zScreen.Close -= new zenOn.CloseEventHandler(zScreen_Close);

Engineering in zenon

112 | 131

//Final release and garbage collection of any API-Objects.

FreeObjects();

}

void zScreen_Open()

{

if (zScreen.Elements().Item(wpfElement) != null)

{

zScreen.Elements().Item(wpfElement).set_WPFProperty("ELEMENT", "zenonVariableLink",

this.Variables().Item(0));

}

}

void zScreen_Close()

{

if (zScreen.Elements().Item(wpfElement) != null)

{

zenOn.IElement zWPFElement = zScreen.Elements().Item(wpfElement);

zWPFElement.set_WPFProperty("ELEMENT", "zenonTrigger", true);

zWPFElement = null;

}

}

6.7 Examples: Integration of WPF in zenon

You can see how XAML files are created and integrated as WPF elements in zenon from the following

examples:

 Integrate button as WPF XAML in zenon (on page 117)

 Integrate bar graph as WPF XAML in zenon (on page 112)

 Integrate DataGrid Control in zenon (on page 123)

6.7.1 Integrate bar graph as WPF XAML in zenon

Example structure:

 Creating a bar graph (on page 16) in Adobe Illustrator and converting it to WPF

Engineering in zenon

113 | 131

 Integrate into zenon

 Linking with variables

 Adapting the bar graph WPF element

CREATE BAR GRAPH

The first step is to generate a bar graph as described in the Workflow with Adobe Illustrator (on page

16) chapter. To be able to use the XAML file in zenon, insert this in the project tree in the

Files/graphics folder.

INTEGRATE BAR GRAPH

Note: A zenon project with the following content is used for the following description:

 An empty screen as a start screen

 Four variables from the internal driver for

 Scale 0

 Scale central

 Scale high

 Current value

 A variable from the mathematics driver for displaying the current value (255)

To integrate the bar graph:

1. open the empty screen

2. place a WPF element (on page 49) in the screen

3. select XAML file in the properties window

4. Select the desired XAML file (for example bar graph_vertical.xaml) and close the dialog

Engineering in zenon

114 | 131

ADJUST BAR GRAPH

Before configuration, the scale of the XAML file is adapted if necessary:

To do this:

 Create a new mathematics variable that calculates the new value in relation to the

scaling, for example:

 Variable: 0-1000

 Mathematic variable {value created in xaml file}*Variable/1000

Engineering in zenon

115 | 131

The XAML file is then configured.

CONFIGURE BAR GRAPH

1. Click on the WPF element and select the Configuration property

2. The configuration dialog shows a preview of the selected XAML file.

Engineering in zenon

116 | 131

3. Select the minimum value, the average value and the maximum value and link each of these

to the corresponding variable in the Content property

4. Select the Slider and link the Value property to the mathematics variables (in our example:

calculation)

Engineering in zenon

117 | 131

5. Check the project planning in Runtime:

6.7.2 Integrate button as WPF XAML in zenon

Example structure:

 Creating a button (on page 12) in Microsoft Expression Blend

 Integrate into zenon

 Link to a variable and a function

 adjust the button to the size of the element

 Create button

As a first step, create a button as described in the Create button as XAML file with Microsoft

Expression Blend (on page 12) chapter. To be able to use the XAML file in zenon, insert this in the

project tree in the Files/Graphics folder.

INTEGRATE BUTTON

Note: A zenon project with the following content is used for the following description:

 An empty screen as a start screen

 an internal variable int of type Int

Engineering in zenon

118 | 131

 A function Function_0 of type Write/modify set value with:

 Direct to hardware option activated

 The target values should be configured with the value 45.

To integrate the button:

1. open the empty screen

2. place a WPF element (on page 49) in the screen

3. select XAML file in the properties window

4. select the XAML file (e. g. MyButton.xaml and close the dialog

5. select the Configuration property

CONFIGURE THE BUTTON

The configuration dialog shows a preview of the selected XAML file. All elements named in the XAML

file are listed in the tree:

1. select the WPF button, which is in LayoutRoot->MyViewBox->MyButton

2. Look in the Properties EntryContent tab; this contains the button's text

3. Click the Link type column

4. Select Variable from the drop down list

Engineering in zenon

119 | 131

5. Click in the Link column

6. the variable selection dialog is opened

7. select the int variable to link this variable with the Content property

EVENTS

To also assign events:

1. select the tab Events

2. look for the 'Click' entry, this event is triggered by the WPF element, as soon as the button is

clicked

3. Click in the Link type column

4. Select Function from the drop down list

5. Click in the Link column

6. the function selection dialog is opened

7. select Function_0

8. Confirm the changes with OK

9. Insert a numerical value element into the screen

10. Link this numerical value element to the int variables too.

11. Compile the Runtime files and start Runtime.

Engineering in zenon

120 | 131

The WPF element is displayed in Runtime, the button text is 0. As soon as you click on the button,

the click event is triggered and the set value function is carried out. The value 45 is sent directly to

the hardware and both numerical value and button display the value 45 .

Define a set value of 30 via the numerical value element; this value is then also assumed by the

WPF element.

OPERATING AUTHORIZATION

Similar to a numerical value, a WPF element can be locked according to authorizations (lock

symbol) or switched to be operable. Set the user authorization level to 1 for the WPF element and

create a user called Test with authorization level 1. In addition, set up the functions Login with

dialog and Logout. You link these two functions with 2 new text buttons on the screen.

In the WPF element configuration dialog, select the MyButton WPF button and select the Properties:

tab

Engineering in zenon

121 | 131

1. Select the IsEnabled element

2. Click in the Link type column

3. Select Authorizations/interlocking from the drop down list

4. Click in the Link column

5. In the drop-down list, select the Authorized option

6. Close the dialog with OK

Compile the Runtime file and note that Authorizations to be Transferred must also be selected. After

Runtime has been started, the WPF button is displayed as deactivated on the screen and cannot be

operated. If you now log in as the user Test, the button is activated and can be operated. The button

is locked again as soon as you log out.

TRANSFORMATION

The XAML files must still be adapted to use transformations:

1. switch to the Expression Blend program

2. select MyButton, so that the properties of the element are visible in the events window

3. Under Transform at RenderTransform select the Apply relative transform option

Engineering in zenon

122 | 131

As a result of this, a block is inserted into the XAML file, which save the transformation

settings in runtime.

4. Save the file and replace the old version in zenon with this new file.

5. Open the WPF element configuration dialog again:

a) select the MyButton button

b) select the Transformations tab

c) select the element RotateTransform.Angle

d) Click in the Link type column

e) Select Transformations from the drop down list

f) Click in the Link column

g) the variable selection dialog is opened

h) select the int variable to link this variable with the RotateTransform.Angle property

Engineering in zenon

123 | 131

Compile the Runtime files and start Runtime. Log in as the Test user and click on the button. The

button has the value 45 and the WPF element rotates by 45°.

6.7.3 Integrate DataGrid Control in zenon

To create DataGrid control for zenon, you need:

 Visual Studio (Visual Studio 2015 in this example)

CREATE WPF USER CONTROL

1. In Visual Studio, create a new Solution and a WPF User Control Library project in .NET

Framework version 4.6.2 or higher therein.

Info: If the corresponding project template does not appear in the list of available templates,

this can be added by means of the search (field at the top right of the dialog).

Engineering in zenon

124 | 131

In our example, the project is given the name DataGridControlLibrary.

2. Create a new data connection in the Server Explorer.

In our example, the database Northwind is used, which is provided by Microsoft as an

example database that can be downloaded for free.

Te set up the database connection:

a) Right-click on Data Connections.

b) Select Add connection….

c) Select Microsoft SQL Server (SQLClient) as Data source.

d) Select the corresponding server and database name.

Engineering in zenon

125 | 131

After adding the connection, the Server Explorer window should look a little like this:

A new DataSet is created in the next step.

CREATING A DATASET

1. Right-click on the project

2. Select Add – New Item… in the context menu

3. Create a new DataSet with the name DataSet1.

4. Double click on the DataSet in order to open it in the Designer.

5. Drag the tables that you need (Customersand Orders in this example) to the DataSet design

window.

The XAML file is modified in the next step.

Engineering in zenon

126 | 131

CONFIGURATION OF THE XAML FILE

1. If not already there, add the Namespace as a reference to the class in the XAML file:

2. Define the resources and the DataGrid that is to be used in the WPF:

<UserControl.Resources>

<local:DataSet1 x:Key="DataSet1"/>

<CollectionViewSource x:Key="CustomersViewSource" Source="{Binding Path=Customers,

Source={StaticResource DataSet1}}"/>

</UserControl.Resources>

<Grid DataContext="{StaticResource CustomersViewSource}">

<DataGrid Name="DataGrid1" DisplayMemberPath="CompanyName" ItemsSource="{Binding}"

SelectedValuePath="CustomerID" HorizontalAlignment="Stretch" VerticalAlignment="Stretch"/>

</Grid>

3. Open the code-behind file (UserControl1.xaml.cs) and insert the following lines in the

constructor:

public UserControl1()

{

InitializeComponent();

DataSet1 ds = ((DataSet1)(FindResource("DataSet1")));

DataSet1TableAdapters.CustomersTableAdapter ta = new

DataSet1TableAdapters.CustomersTableAdapter();

ta.Fill(ds.Customers);

CollectionViewSource CustomersViewSource =

((CollectionViewSource)(this.FindResource("CustomersViewSource")));

CustomersViewSource.View.MoveCurrentToFirst();

}

In doing so, the following happens:

 The DataSet is obtained

 A new TableAdapter is created

 The DataSet is filled

Engineering in zenon

127 | 131

 The information is provided to the DataGrid control

The solution can now be built.

BUILD

Now build the solution. The corresponding DLL (DataGridControlLibrary.dll) is created in the output

folder of the project.

Now you have a DLL with the necessary functionality available.

However zenon can only display XAML files that cannot be linked to the code behind file, which is

why an additional XAML file is needed that references the DLL that has just been created.

To do this:

1. Create a further project, again as a WPF User Control Library

2. It was called DataGridControl in our example.

3. Insert a reference to the project that has just been built into this new project.

4. The XAML files (UserControl1.xaml) looks as follows:

5. Because all necessary content is contained in the DLL that has been created and no

code-behind is necessary, delete the following lines:

x:Class="DataGridControl.UserControl1"

xmlns:local="clr-namespace:DataGridControl"

6. Also delete (for the positioning) the following lines:

mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="300"

Engineering in zenon

128 | 131

7. Delete the code-behind file (UserControl1.xaml.cs) in this project.

8. Define what is to be displayed in the XAML file.

To do this, modify the XAML file as follows:

<UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:dataGridLibrary="clr-namespace:DataGridControlLibrary;assembly=DataGridControlLibrary">

<Grid x:Name="Grid1">

<dataGridLibrary:UserControl1 Name="DataGridControl" HorizontalAlignment="Left"

VerticalAlignment="Top"/>

</Grid>

</UserControl>

The linexmlns:dataGridLibrary="clr-namespace:DataGridControlLibrary;assembly=DataGridControlLibrary"

defines the namespace dataGridLibrary and stipulates that this should use the assembly that

has been created.

9. Assign a name for the grid.

10. Insert the control dataGridLibrary:UserControl1 from our library and give it a name, because

zenon can only modify objects that have a name.

11. Build the solution.

In the next step, how the DLL and XAML file are added to zenon is explained.

STEPS IN ZENON

1. Open the zenon Editor

2. Go to File -> Graphics.

3. Select Add file... in the context menu

Engineering in zenon

129 | 131

4. Select the XAML file at the save location (UserControl1.xaml from the DataGridControl

project) and add this:

5. Insert the DLL with the functionality for the XAML file.

To do this:

a) Select, in the context menu, File -> OtherAdd file....

b) Select the file DataGridControlLibrary.dll of the first project (DataGridControlLibrary).

6. Create a zenon screen.

7. Add a WPF element and select the previously-incorporated XAML file.

You should now see the following in the zenon Editor:

8. Start zenon Runtime in order to also test the control there.

Engineering in zenon

130 | 131

 Hint

DLLs that are part of a WPF element can also be replaced during ongoing

operation. In doing so, the referencing is via linking in the XAML file.

To replace a DLL:

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In Explorer, replace the DLL in the \wpfache folder of the Editor files.

You can find this folder in the SQL directory under

...\PROJECT-GUID\FILES\zenon\custom\wpfcache

As an alternative to replacement using Explorer, you can also replace the file in

the zenon Editor directly. To do this, carry out the following steps:

 In the Visual Studio project settings, increase the file version of the DLL.

 Create the new DLL.

 Close all zenon screens in which the WPF element is used.

 Close all symbols that use a desired WPF element.

 In the zenon Editor, delete the DLL from the \Files\Other folder and add the

file with the higher version number.

6.8 Error handling

ENTRIES IN LOG FILES

Entry Level Meaning

Xaml file found in %s

with different name,

using default!

Warning The name of the collective file and the name of the XAML

file contained therein do not correspond. To avoid internal

conflicts, the file with the name of the collective file and the

suffix .xaml is used.

no preview image

found in %s
Warning The collective file does not contain a valid preview graphic

(preview.png or [names of the XAML file].png). Thus no

preview can be displayed.

Xaml file in %s not

found or not unique!
Error The collective file does not contain an XAML file or several

files with the suffix .xaml. It cannot be used.

Could not remove old Warning There is an assembly that is to be replaced with a newer

Engineering in zenon

131 | 131

Entry Level Meaning

assembly %s version, but cannot be deleted.

Could not copy new

assembly %s
Error A new version is available for an assembly in the work folder,

but it cannot be copied there. Possible reason: The old

example is still loaded, for example. The old version

continues to be used, the new version cannot be used,

file exception in %s Error A file error occurred when accessing a collective file.

Generic exception in %s Error A general error occurred when accessing a collective file.

	1 Welcome to COPA-DATA help
	2 WPF element
	3 Basics
	3.1 WPF in process visualization
	3.2 Referenced assemblies
	3.3 Workflows
	3.3.1 Workflow with Microsoft Expression Blend
	3.3.2 Workflow with Adobe Illustrator

	4 Guidelines for designers
	4.1 Workflow with Microsoft Expression Blend
	4.1.1 Create button as an XAML file with Microsoft Expression Blend

	4.2 Workflow with Adobe Illustrator
	4.2.1 Bar graph illustration
	4.2.2 WPF export
	4.2.3 Animation in Blend

	5 Guidelines for developers
	5.1 Creation of a simple WPF user control with code behind function
	5.2 Debugging the WPF user control in the Runtime
	5.3 Data exchange between zenon and WPF user controls
	5.3.1 Data exchange using dependency properties
	5.3.2 Data replacement via VSTA

	5.4 Access to the zenon (Runtime) object model from a WPF user control
	5.4.1 Access via VSTA "variable link"
	5.4.2 Access via marshaling

	6 Engineering in zenon
	6.1 CDWPF files (collective files)
	6.2 create WPF element
	6.3 Configuration of the linking
	6.3.1 Properties
	6.3.1.1 Link variable
	6.3.1.2 Link values
	6.3.1.3 Link authorization or interlocking

	6.3.2 Events
	6.3.3 Transformation

	6.4 Validity of XAML Files
	6.5 Pre-built elements
	6.5.1 Analog clock - AnalogClockControl
	6.5.2 Bar graph vertical - VerticalBargraphControl
	6.5.3 Progress bar - ProgressBarControl
	6.5.4 COMTRADE-Viewer
	6.5.4.1 View in Runtime
	6.5.4.2 Installation
	6.5.4.3 Installation
	6.5.4.4 Configurable control properties - color display
	6.5.4.5 Configurable control properties - language and display settings
	6.5.4.6 Runtime view - configuration page
	6.5.4.7 Runtime view - visualization of COMTRADE data

	6.5.5 Energy class diagram
	6.5.6 Pareto diagram
	6.5.7 Circular gauge control
	6.5.8 Sankey diagram
	6.5.9 Temperature indicator - TemperatureIndicatorControl
	6.5.10 Universal slider - UniversalReglerControl
	6.5.11 Waterfall chart
	6.5.12 BACnet WPF Control
	6.5.12.1 Installation
	6.5.12.2 Engineering in the zenon Editor
	6.5.12.3 Configurable control properties
	6.5.12.4 Runtime view
	6.5.12.4.1 Runtime view
	6.5.12.4.2 Runtime view
	6.5.12.4.3 Runtime view

	6.5.12.5 Operation in zenon Runtime

	6.6 Display of WPF elements in the zenon web client
	6.6.1 Engineering in the zenon Editor
	6.6.2 VSTA code (complex)
	6.6.3 VSTA code (simplified)

	6.7 Examples: Integration of WPF in zenon
	6.7.1 Integrate bar graph as WPF XAML in zenon
	6.7.2 Integrate button as WPF XAML in zenon
	6.7.3 Integrate DataGrid Control in zenon

	6.8 Error handling

