© 2020 Ing. Punzenberger COPA-DATA GmbH All rights reserved. Distribution and/or reproduction of this document or parts thereof in any form are permitted solely with the written permission of the company COPA-DATA. Technical data is only used for product description and are not guaranteed properties in the legal sense. Subject to change, technical or otherwise. # Contents | 1 | Welcome to COPA-DATA help | 5 | |----|--|----| | 2 | BACnet32 | 5 | | 3 | BACnet32 - data sheet | 6 | | 4 | Driver history | 7 | | 5 | Requirements | 8 | | | 5.1 PC | 8 | | 6 | Configuration | 8 | | | 6.1 Creating a driver | 9 | | | 6.2 Settings in the driver dialog | | | | 6.2.1 General | | | | 6.2.2 Driver dialog BACnet settings | 17 | | | 6.2.3 Driver dialog diagnosis settings | 18 | | | 6.2.4 Driver dialog IP addresses | 19 | | 7 | Creating variables | 20 | | | 7.1 Creating variables in the Editor | 20 | | | 7.2 Addressing | 23 | | | 7.3 Driver objects and datatypes | 24 | | | 7.3.1 Driver objects | | | | 7.3.2 Mapping of the data types | 27 | | | 7.4 Creating variables by importing | 28 | | | 7.4.1 XML import | | | | 7.4.2 DBF Import/Export | 29 | | | 7.4.3 Online import | 35 | | | 7.5 Communication details (Driver variables) | 36 | | 8 | Driver-specific functions | 41 | | 9 | Driver command function | 45 | | 10 |) Error analysis | 51 | | | 10.1 Error analysis | | | | 10.2 Analysis tool | | | 1 | 10.3 Driver monitoring | . 52 | |------|--|------| | 1 | 10.4Check list | .53 | | 11 [| PICS (Protocol Implementation Conformance Statement) | 5/ | | 11 6 | res (Frotocol Implementation Comormance Statement) | . 54 | # 1 Welcome to COPA-DATA help ### ZENON VIDEO TUTORIALS You can find practical examples for project configuration with zenon in our YouTube channel (https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an initial insight into working with different zenon modules. All tutorials are available in English. ### **GENERAL HELP** If you cannot find any information you require in this help chapter or can think of anything that you would like added, please send an email to documentation@copadata.com. ### **PROJECT SUPPORT** You can receive support for any real project you may have from our customer service team, which you can contact via email at support@copadata.com. ### LICENSES AND MODULES If you find that you need other modules or licenses, our staff will be happy to help you. Email sales@copadata.com. # 2 BACnet32 The BACnet driver is used for communication between one or more devices supporting BACnet (BACnet automation stations) and the zenon Runtime. This requires that the connected BACnet devices run as servers. Only client functionality is implemented in the driver. # 3 BACnet32 - data sheet | General: | | |------------------|--| | Driver file name | BACnet32.exe | | Driver name | Bacnet and DDC4000 Driver | | PLC types | All Bacnet "BACnet over IP, Annex J" compliant PLCs; Kieback + Peter DDC4000 controllers | | PLC manufacturer | Kieback + Peter; BACnet | | Driver supports: | | |----------------------------|------------| | Protocol | BACnet/IP | | Addressing: Address-based | Name based | | Addressing: Name-based | | | Spontaneous communication | X | | Polling communication | X | | Online browsing | X | | Offline browsing | | | Real-time capable | X | | Blockwrite | | | Modem capable | | | RDA numerical | | | RDA String | | | Hysteresis | | | extended API | | | Supports status bit WR-SUC | | | alternative IP address | | | Requirements: | | |----------------|-----------------------| | Hardware PC | Standard network card | | Software PC | WinPcap.dll | | Hardware PLC | | | Software PLC | | | Requires v-dll | | | Platforms: | | |-------------------|---| | Operating systems | Windows 10; Windows 7; Windows 8; Windows 8.1; Windows Server 2008 R2; Windows Server 2012; Windows Server 2012 R2; Windows Server 2016 | # 4 Driver history | Date | Driver version | Change | |----------------|----------------|---| | 07.07.08 | 3600 | Created driver documentation | | 10/27/20
08 | 3800 | New functionality: configurable priority and read delay | | 11/17/200 | 4000 | Corrected errors in documentation links | ### **DRIVER VERSIONING** The versioning of the drivers was changed with zenon 7.10. There is a cross-version build number as of this version. This is the number in the 4th position of the file version, For example: **7.10.0.4228** means: The driver is for version **7.10** service pack **0**, and has the build number **4228**. Expansions or error rectifications will be incorporated into a build in the future and are then available from the next consecutive build number. ## Example A driver extension was implemented in build **4228**. The driver that you are using is build number **8322**. Because the build number of your driver is higher than the build number of the extension, the extension is included. The version number of the driver (the first three digits of the file version) do not have any significance in relation to this. The drivers are version-agnostic # 5 Requirements This chapter contains information on the requirements that are necessary for use of this driver. ### 5.1 PC Driver files: Copy BACnet32.exe, PTP.dll, nb_link_settings.dll to the program directory, if they are not already there. WinPcap.dll; installation set available for free in the Internet, e.g. at http://www.winpcap.org/install/default.htm Copy the file WinPcap.dll to the directory system32. We recommend version 3.0 or higher. # 6 Configuration In this chapter you will learn how to use the driver in a project and which settings you can change. ## Information Find out more about further settings for zenon variables in the chapter Variables of the online manual. # 6.1 Creating a driver In the Create driver dialog, you create a list of the new drivers that you want to create. | Parameter | Description | |-------------------|--| | Available drivers | List of all available drivers. | | | The display is in a tree structure: [+] expands the folder structure and shows the drivers contained therein. [-] reduces the folder structure | | | Default: No selection | | Driver name | Unique Identification of the driver. | | | Default: <i>empty</i> The input field is pre-filled with the pre-defined | | Parameter | Description | |--------------------|---| | | Identification after selecting a driver from the list of available drivers. | | Driver information | Further information on the selected driver. Default: <i>empty</i> The information on the selected driver is shown in this area after selecting a driver. | ### **CLOSE DIALOG** | Option | Description | |--------|--| | ОК | Accepts all settings and opens the driver configuration dialog of the selected driver. | | Cancel | Discards all changes and closes the dialog. | | Help | Opens online help. | ## Information The content of this dialog is saved in the file called Treiber_[Language].xml. You can find this file in the following folder: C:\ProgramData\COPA-DATA\zenon[version number]. ### **CREATE NEW DRIVER** In order to create a new driver: 1. Right-click on **Driver** in the Project Manager and select **New driver** in the context menu. Optional: Select the **New driver** button from the toolbar of the detail view of the **Variables**. The Create driver dialog is opened. The Create simple data type dialog is opened. 2. The dialog offers a list of all available drivers. 3. Select the desired driver and name it in the **Driver name** input field. This input field corresponds to the **Identification** property. The name of the selected driver is automatically inserted into this input field by default. The following is applicable for the **Driver name**: ▶ The **Driver name** must be unique. If a driver is used more than once in a project, a new name has to be given each time. This is evaluated by clicking on the **OK** button. If the driver is already present in the project, this is shown with a warning dialog. - The **Driver name** is part of the file name. Therefore it may only contain characters which are supported by the operating system. Invalid characters are replaced by an underscore (_). - **Attention:** This name cannot be changed later on. - Confirm the dialog by clicking on the OK button. The configuration dialog for the selected driver is opened. **Note:** The language of driver names cannot be switched. They are always shown in the language in which they have been created, regardless of the language of the Editor. This also applies to driver object types. ### **DRIVER NAME DIALOG ALREADY EXISTS** If there is already a driver in the project, this is shown in a dialog. The warning dialog is closed by clicking on the **OK** button. The driver can be named correctly. ### **ZENON PROJECT** The following drivers are created automatically for newly-created projects: - Intern - MathDr32 - SysDrv Only the required drivers need to be present in a zenon project. Drivers can be added at a later time if required. # 6.2 Settings in the driver dialog You can change the following settings of the driver: ## 6.2.1 General The configuration dialog is opened when a driver is created. In order to be able to open the dialog later for
editing, double click on the driver in the list or click on the **Configuration** property. | Option | Description | |--------|---| | Mode | Allows to switch between hardware mode and simulation mode | | | Hardware:A connection to the control is established. | | | No communication between to the control is established, the values are simulated by the driver. In this modus the values remain constant or the variables keep the values which were set by zenon Logic. Each variable has its own memory area. E.g. two variables of the type marker with offset 79 can have different values in the Runtime and do not influence each other. Exception: The simulator driver. | | | Simulation - counting: No communication between to the control is established, the values are simulated by the driver. In this modus the driver increments the values within a value range automatically. | | | Simulation - programmed: No communication is established to the PLC. The | | Option | Description | |--------------------------------|---| | | values are calculated by a freely programmable simulation project. The simulation project is created with the help of the zenon Logic Workbench and runs in a zenon Logic Runtime which is integrated in the driver. For details see chapter Driver simulation. | | Keep update list in the memory | Variables which were requested once are still requested from the control even if they are currently not needed. This has the advantage that e.g. multiple screen switches after the screen was opened for the first time are executed faster because the variables need not be requested again. The disadvantage is a higher load for the communication to the control. | | Output can be written | Active:Outputs can be written. | | | Inactive:
Writing of outputs is prevented. | | | Note: Not available for every driver. | | Variable image remanent | This option saves and restores the current value, time stamp and the states of a data point. | | | Fundamental requirement: The variable must have a valid value and time stamp. | | | The variable image is saved in hardware mode if one of these statuses is active: | | | ▶ User status <i>M1</i> (0) to <i>M8</i> (7) | | | ► REVISION(9) | | | ► AUS(20) | | | ► ERSATZWERT(27) | | | The variable image is always saved if: | | | the variable is of the Communication details
object type | | | the driver runs in simulation mode. (not
programmed simulation) | | | The following states are not restored at the start of the Runtime: | | Option | Description | |------------------------|---| | | ► SELECT(8) | | | ▶ WR-ACK(40) | | | ► WR-SUC(41) | | | The mode Simulation - programmed at the driver start is not a criterion in order to restore the remanent variable image. | | Stop on Standby Server | Setting for redundancy at drivers which allow only one communication connection. For this the driver is stopped at the Standby Server and only started at the upgrade. | | | Attention: If this option is active, the gapless archiving is no longer guaranteed. | | | Active:
Sets the driver at the not-process-leading Server
automatically in a stop-like state. In contrast to
stopping via driver command, the variable does
not receive status switched off but an empty value.
This prevents that at the upgrade to the Server
irrelevant values are created in the AML, CEL and
Historian. | | | Default: inactive | | | Note: Not available if the CE terminal serves as a data server. You can find further information in the zenon Operator manual in the CE terminal as a data server chapter. | | Global Update time | Setting for the global update times in milliseconds: | | | Active: The set Global update time is used for all variables in the project. The priority set at the variables is not used. | | | Inactive: The set priorities are used for the individual variables. | | | Exceptions: Spontaneous drivers ignore this option. They generally use the shortest possible update time. For details, see the Spontaneous driver update time section. | | Option | Description | |----------|---| | Priority | The polling times for the individual priority classes are set here. All variables with the according priority are polled in the set time. | | | The variables are allocated separately in the settings of the variable properties. The communication of the individual variables can be graded according to importance or required topicality using the priority classes. Thus the communication load is distributed better. | | | Attention: Priority classes are not supported by each driver, e.g. spontaneously communicating zenon drivers. | ### **CLOSE DIALOG** | Option | Description | |--------|---| | ОК | Applies all changes in all tabs and closes the dialog. | | Cancel | Discards all changes in all tabs and closes the dialog. | | Help | Opens online help. | ### **UPDATE TIME FOR SPONTANEOUS DRIVERS** With spontaneous drivers, for **Set value**, **advising** of variables and **Requests**, a read cycle is triggered immediately - regardless of the set update time. This ensures that the value is immediately available for visualization after writing. The update time is generally 100 ms. Spontaneous drivers are ArchDrv, BiffiDCM, BrTcp32, DNP3, Esser32, FipDrv32, FpcDrv32, IEC850, IEC870, IEC870_103, Otis, RTK9000, S7DCOS, SAIA_Slave, STRATON32 and Trend32. # 6.2.2 Driver dialog BACnet settings | Parameter | Description | |----------------------------------|---| | Who-Is cycle [s] | Cycle time for sending the "Who-Is" service | | Time synchronization cycle [min] | Cycle time for time synchronization [min], Default: 0 (no synchronization) | | Command output time [ms] | Command output time for sending strategy 1 (pulse command) [ms] | | Number of retries | max. number for sending out the "Who-Has" service per object | | Port | Configuration of the UDP port in the decimal format. (Default for BACNet: 47808) | | Separator for property names | | | Number of simultaneous queries | Maximum number of simultaneous COV subscription packets. Used for BACNet devices that can only buffer and process a certain number of packets. | | COV lifetime [sec] | After this time, registered COV subscriptions will become invalid and will then be requested from the driver again (see BACnet standard). | | Write priority | Defines the write priority for variables. (see BACnet standard). The lower the value, the higher the priority ATTENTION: Values under "8" are often used by the PLC itself and should therefore be used with caution. | | Parameter | Description | |-----------------|---| | Read delay [ms] | Configurable delay between 2 polling queries. This is required for devices with performance problems. | # 6.2.3 Driver dialog diagnosis settings | Parameters | Description | |-----------------------|--| | Plain text | Logging of the BACnet telegram in plain text | | Hex format | Logging of the BACnet telegram in hexadecimal format | | Max file size [kByte] | Max. size of the log file | | Shortening [kByte] | Shortening of the log file, if max. file length is reached | Data is stored in the file <runtimepath>\RT\FILES\zenon\custom\drivers\BACnet.log For Editor communication (browsing), the following file is used: <SQLpath>\<ProjektGUID>\FILES\zenon\custom\drivers\BACnet.log. # 6.2.4 Driver dialog IP addresses | Parameters | Description | |--------------------------|--| | No broadcast for 'Whols' | If this option is active, 'Whols' messages will only be sent to the BACNet stations in the list below. | | | ATTENTION: This function is not a part of the BACNet standard. We cannot guarantee that it works with all BACNet PLCs. | | New | Create a new station: | | | Device: Specify the device name (e.g. device name in BACNet) | | | IP address: IP address of the target device | | Edit | Edits the selected address | | Delete | Deletes the selected
address | ### DIALOG FOR CREATING AND MODIFYING CONNECTIONS | Device | Freely definable name of the connection | |------------|---| | IP address | IP address of the BACnet device | # 7 Creating variables This is how you can create variables in the zenon Editor: # 7.1 Creating variables in the Editor Variables can be created: - as simple variables - in arrays - as structure variables ### **VARIABLE DIALOG** To create a new variable, regardless of which type: 1. Select the **New variable** command in the **Variables** node in the context menu The dialog for configuring variables is opened - 2. Configure the variable - 3. The settings that are possible depend on the type of variables ### **CREATE VARIABLE DIALOG** | Property | Description | |--------------------|---| | Name | Distinct name of the variable. If a variable with the same name already exists in the project, no additional variable can be created with this name. | | | Maximum length: 128 characters | | | Attention: the characters # and @ are not permitted in variable names. If non-permitted characters are used, creation of variables cannot be completed and the Finish button remains inactive. Note: Some drivers also allow addressing using the Symbolic address property. | | Driver | Select the desired driver from the drop-down list. | | | Note: If no driver has been opened in the project, the driver for internal variables (Intern.exe) is automatically loaded. | | Driver Object Type | Select the appropriate driver object type from the drop-down list. | | Data Type | Select the desired data type. Click on the button to open the selection dialog. | | Array settings | Expanded settings for array variables. You can find details in the | | Property | Description | |------------------------------|---| | | Arrays chapter. | | Addressing options | Expanded settings for arrays and structure variables. You can find details in the respective section. | | Automatic element activation | Expanded settings for arrays and structure variables. You can find details in the respective section. | ### **SYMBOLIC ADDRESS** The **Symbolic address** property can be used for addressing as an alternative to the **Name** or **Identification** of the variables. Selection is made in the driver dialog; configuration is carried out in the variable property. When importing variables of supported drivers, the property is entered automatically. Maximum length: 1024 characters. The following drivers support the **Symbolic address**: - ▶ 3S_V3 - AzureDrv - BACnetNG - ▶ IEC850 - KabaDPServer - POPCUA32 - Phoenix32 - POZYTON - RemoteRT - > S7TIA - SEL - SnmpNg32 - ▶ PA_Drv - **EUROMAP63** ### **INHERITANCE FROM DATA TYPE** Measuring range, Signal range and Set value are always: - derived from the datatype - Automatically adapted if the data type is changed **Note for signal range:** If a change is made to a data type that does not support the set **signal range**, the **signal range** is amended automatically. For example, for a change from **INT** to **SINT**, the **signal range** is changed to *127*. The amendment is also carried out if the **signal range** was not inherited from the data type. In this case, the **measuring range** must be adapted manually. ## 7.2 Addressing Addressing the variables of the BACnet driver is done with the unique names of the variables. The datapoints of the BACnet driver are uniquely referenced by the object names. The object name of the device object is placed before the object name of the BACnet object; the names are separated by a dot (e.g. BPS10.d10a002); for schedule objects, the name of the property is attached, again separated by a dot. The virtual datapoints of the type BACnet component status represent the status of the connection. They are uniquely identified by the object name of the device object. ### SETTINGS FOR THE UNIQUE ADDRESSING OF VARIABLES | Property | Description | |--|---| | Name | Used for the uniqe addressing. Format: device-name.object-name[.property] | | Identification | Freely definable identification. E.g. for Resources label, comments, Can be used for unique addressing. Format: device-name.object-name[.property] | | Net address | not used for this driver | | Data block | not used for this driver | | Offset | not used for this driver | | Alignment | not used for this driver | | Bit number | not used for this driver | | String length | Only available for String variables. Maximum number of characters that the variable can take. | | Driver
connection/Driver
Object Type | Object type of the variables. Depending on the driver used, is selected when the variable is created and can be changed here. | | Driver connection/Data Type | Data type of the variable. Is selected during the creation of the variable; the type can be changed here. | | | Attention: If you change the data type later, all other properties of the | | Property | Description | |----------------------------|--| | | variable must be checked and adjusted, if necessary. | | Driver connection/Priority | Assigns a variable a priority for the update time. | # 7.3 Driver objects and datatypes Driver objects are areas available in the PLC, such as markers, data blocks etc. Here you can find out which driver objects are provided by the driver and which IEC data types can be assigned to the respective driver objects. # 7.3.1 Driver objects The following object types are available in this driver: | Driver Object
Type | Channel
type | Read | Write | Supported data types | Comment | |--------------------------|-----------------|------|-------|---|---| | Output | 11 | X | X | BOOL, REAL,
SINT, USINT | | | Input | 10 | X | X | BOOL, REAL,
SINT, USINT | | | PLC marker | 8 | X | X | BOOL, REAL,
SINT, USINT | | | Communication
details | 35 | X | X | BOOL, SINT,
USINT, INT,
UINT, DINT,
UDINT, REAL,
STRING | Variables for the static analysis of the communication; Values are transferred between driver and Runtime (not to the PLC). | | | | | | | Note : The addressing and the behavior is the same for most zenon drivers. | | | | | | | You can find detailed information on this in | | Driver Object
Type | Channel
type | Read | Write | Supported data types | Comment | |-----------------------|-----------------|------|-------|----------------------|--| | | | | | | the Communication
details (Driver variables)
(on page 36) chapter. | # Key: **X**: supported --: not supported # DRIVER OBJECT TYPES AND SUPPORTED IEC DATA TYPES FOR PROCESS VARIABLES IN ZENON | Driver object types | Supported datatypes | Read | Write | BACnet Object Type | |---------------------|---------------------|------|-------|----------------------------------| | Input | BOOL | X | | Binary Input | | | REAL | X | | Analog Input | | | SINT, USINT | X | | Multistate Input | | Output | BOOL | | X | Binary Output | | | REAL | | X | Analog Output | | | SINT, USINT | | X | Multistate Output | | SPS marker | BOOL | X | X | Binary Value | | | REAL | X | X | Analog Value | | | | | | Schedule - Present
Value | | | USINT | X | X | Component state | | | STRING * | X | X | Schedule - Effective
Period | | | | | | Schedule - Weekly
Schedule | | | | | | Schedule - Exception
Schedule | * The individual properties of schedule objects have a complex and variable structure (See BACnet standard). That is why you can only hand them over as Strings to zenon. Depending on the property, these Strings have different formats (you can leave out spaces when setting values): ### **EFFECTIVE PERIOD** | Parameter | Description | |----------------------|--| | Effective
Period: | <start date=""> - <end date=""> }</end></start> | | Date: | <year 1900="" –="">.<month (112)="">.<day (131)="">.<weekday (17,="" 1="Monday)"></weekday></day></month></year> | ### **WEEKLY SCHEDULE** | Parameter | Descri | ption | | |------------------|---|---|--| | Weekly Schedule: | { Array [17] of <daily schedule=""> }</daily> | | | | Daily Schedule: | { List o | f <time value=""> }</time> | | | Time Value: | { <tim< th=""><th>e>, [<type>] <value> }</value></type></th></tim<> | e>, [<type>] <value> }</value></type> | | | Time: | <hour< th=""><th>>:<minute>:<second>:<1/100 sec.></second></minute></th></hour<> | >: <minute>:<second>:<1/100 sec.></second></minute> | | | Туре: | 1 | BOOLEAN | | | | 2 | UNSIGNED | | | | 3 | SIGNED | | | | 4 REAL | | | | | 5 DOUBLE | | | | | 6 OCTET_STRING | | | | | 7 | CHARACTER_STRING | | | | 8 | BIT_STRING | | | | 9 | enumerated | | | | 10 | DATE | | | | 11 | TIME | | | | 12 | OBJECT_IDENTIFIER | | ### **EXCEPTION SCHEDULE** | Parameter | Description | | | |---------------------|---|--|--| | Exception Schedule: | { Array [1n]
of <special event=""> }</special> | | | | Special Event: | <period> { List of <time value="">* } <event priority=""> }</event></time></period> | | | | Period: | { [0] <calendar entry=""> } or</calendar> | | | | | { [1] <calendar reference=""> }</calendar> | | | | Calendar Reference: | Instance no. of the referenced calendar object | | | | Calendar Entry: | [0] <date>** or</date> | | | | | [1] <start date="">** - <end date="">** or</end></start> | | | | | [2] <weeknday></weeknday> | | | | WeekNDay: | <month (112)="">.<week (16)="" month="" of="">.<weekday (17)=""></weekday></week></month> | | | | Event Priority: | 116, 1 = highest priority, 16 = lowest priority | | | ^{*} see Weekly Schedule, ** see Effective Period ### **CHANNEL TYPE** The term **Kanaltyp** is the internal numerical name of the driver object type. It is also used for the extended DBF import/export of the variables. "Kanaltyp" is used for advanced CSV import/export of variables in the "HWObjectType" column. # 7.3.2 Mapping of the data types All variables in zenon are derived from IEC data types. The following table compares the IEC datatypes with the datatypes of the PLC. ### **EXAMPLES FOR ALL POSSIBLE IEC DATA TYPES** | PLC | zenon | Range of values | |-----------------------|-------|-----------------| | 8 Bit signed | SINT | -128 to 127 | | 8 Bit unsigned | USINT | 0 to 255 | | 32 bit floating point | REAL | ± 3.4E ± 38 | | PLC | zenon | Range of values | |---------|-------|-----------------| | Boolean | BOOL | 0, 1 | #### **DATA TYPE** The term **data type** is the internal numerical identification of the data type. It is also used for the extended DBF import/export of the variables. # 7.4 Creating variables by importing Variables can also be imported by importing them. The XML and DBF import is available for every driver. ### Information You can find details on the import and export of variables in the Import-Export manual in the Variables section. ## 7.4.1 XML import During XML import of variables or data types, these are first assigned to a driver and then analyzed. Before import, the user decides whether and how the respective element (variable or data type) is to be imported: - Import: - The element is imported as a new element. - Overwrite: - The element is imported and overwrites a pre-existing element. - Do not import: - The element is not imported. **Note:** The actions and their durations are shown in a progress bar during import. The import of variables is described in the following documentation. Data types are imported along the same lines. ### **REQUIREMENTS** The following conditions are applicable during import: Backward compatibility At the XML import/export there is no backward compatibility. Data from older zenon versions can be taken over. The handover of data from newer to older versions is not supported. ### Consistency The XML file to be imported has to be consistent. There is no plausibility check on importing the file. If there are errors in the import file, this can lead to undesirable effects in the project. Particular attention must be paid to this, primarily if not all properties exist in the XML file and these are then filled with default values. E.g.: A binary variable has a limit value of 300. ### Structure data types Structure data types must have the same number of structure elements. Example: A structure data type in the project has 3 structure elements. A data type with the same name in the XML file has 4 structure elements. Then none of the variables based on this data type in the file are imported into the project. ### Hint You can find further information on XML import in the **Import - Export** manual, in the **XML import** chapter. ## 7.4.2 DBF Import/Export Data can be exported to and imported from dBase. ## Information Import and Export via CSV or dBase supported; no driver specific variable settings, such as formulas. Use export/import via XML for this. ### **IMPORT DBF FILE** To start the import: - 1. right-click on the variable list. - 2. In the drop-down list of Extended export/import... select the Import dBase command. - 3. Follow the instructions of the import assistant. The format of the file is described in the chapter File structure. ### Information ### Note: - Driver object type and data type must be amended to the target driver in the DBF file in order for variables to be imported. - ▶ dBase does not support structures or arrays (complex variables) at import. ### **EXPORT DBF FILE** To start the export: - 1. right-click on the variable list. - 2. In the drop-down list of Extended export/import... select the Export dBase... command . - 3. Follow the instructions of the import assistant. ### **A**Attention ### DBF files: - must correspond to the 8.3 DOS format for filenames (8 alphanumeric characters for name, 3 character suffix, no spaces) - must not have dots (.) in the path name. e.g. the path C:\users\John.Smith\test.dbf is invalid. Valid: C:\users\JohnSmith\test.dbf - must be stored close to the root directory in order to fulfill the limit for file name length including path: maximum 255 characters The format of the file is described in the chapter File structure. ## Information dBase does not support structures or arrays (complex variables) at export. ### FILE STRUCTURE OF THE DBASE EXPORT FILE The dBaseIV file must have the following structure and contents for variable import and export: # **▲**Attention dBase does not support structures or arrays (complex variables) at export. DBF files must: - conform with their name to the 8.3 DOS format (8 alphanumeric characters for name, 3 characters for extension, no space) - ▶ Be stored close to the root directory (Root) ### **STRUCTURE** | Identification | Typ
e | Field size | Comment | |----------------|----------|------------|--| | KANALNAME | Cha
r | 128 | Variable name. | | | 1 | | The length can be limited using the MAX_LAENGE entry in the project.ini file. | | KANAL_R | С | 128 | The original name of a variable that is to be replaced by the new name entered under "VARIABLENNAME" (variable name) (field/column must be entered manually). The length can be limited using the MAX_LAENGE entry in the project.ini file. | | KANAL_D | Log | 1 | The variable is deleted with the 1 entry (field/column has to be created by hand). | | TAGNR | С | 128 | Identification. The length can be limited using the MAX_LAENGE entry in the project.ini file. | | EINHEIT | С | 11 | Technical unit | | DATENART | С | 3 | Data type (e.g. bit, byte, word,) corresponds to the data type. | | KANALTYP | С | 3 | Memory area in the PLC (e.g. marker area, data area,) corresponds to the driver object type. | | HWKANAL | Nu
m | 3 | Net address | | BAUSTEIN | N | 3 | Datablock address (only for variables from the data area | | Identification | Typ
e | Field size | Comment | |----------------|-----------|------------|---| | | | | of the PLC) | | ADRESSE | N | 5 | Offset | | BITADR | N | 2 | For bit variables: bit address For byte variables: 0=lower, 8=higher byte For string variables: Length of string (max. 63 characters) | | ARRAYSIZE | N | 16 | Number of variables in the array for index variables
ATTENTION: Only the first variable is fully available. All
others are only available for VBA or the Recipegroup
Manager | | LES_SCHR | L | 1 | Write-Read-Authorization 0: Not allowed to set value. 1: Allowed to set value. | | MIT_ZEIT | R | 1 | time stamp in zenon (only if supported by the driver) | | ОВЈЕКТ | N | 2 | Driver-specific ID number of the primitive object comprises TREIBER-OBJEKTTYP and DATENTYP | | SIGMIN | Floa
t | 16 | Non-linearized signal - minimum (signal resolution) | | SIGMAX | F | 16 | Non-linearized signal - maximum (signal resolution) | | ANZMIN | F | 16 | Technical value - minimum (measuring range) | | ANZMAX | F | 16 | Technical value - maximum (measuring range) | | ANZKOMMA | N | 1 | Number of decimal places for the display of the values (measuring range) | | UPDATERATE | F | 19 | Update rate for mathematics variables (in sec, one decimal possible) not used for all other variables | | MEMTIEFE | N | 7 | Only for compatibility reasons | | HDRATE | F | 19 | HD update rate for historical values (in sec, one decimal possible) | | HDTIEFE | N | 7 | HD entry depth for historical values (number) | | NACHSORT | R | 1 | HD data as postsorted values | | Identification | Typ
e | Field size | Comment | |----------------|----------|------------|---| | DRRATE | F | 19 | Updating to the output (for zenon DDE server, in [s], one decimal possible) | | HYST_PLUS | F | 16 | Positive hysteresis, from measuring range | | HYST_MINUS | F | 16 | Negative hysteresis, from measuring range | | PRIOR | N | 16 | Priority of the variable | | REAMATRIZE | С | 32 | Allocated reaction matrix | | ERSATZWERT | F | 16 | Substitute value, from measuring range | | SOLLMIN | F | 16 | Minimum for set value actions, from measuring range | | SOLLMAX | F | 16 | Maximum for set value actions, from measuring range | | VOMSTANDBY | R | 1 | Get value from standby server; the value of the variable is not requested from the server but from the Standby Server in redundant networks | | RESOURCE | С | 128 | Resources label. Free string for export and display in lists. The length can be limited using the MAX_LAENGE entry in project.ini. | | ADJWVBA | R | 1 | Non-linear value adaption: 0: Non-linear value adaption is used 1:
Non-linear value adaption is not used | | ADJZENON | С | 128 | Linked VBA macro for reading the variable value for non-linear value adjustment. | | ADJWVBA | С | 128 | ed VBA macro for writing the variable value for non-linear value adjustment. | | ZWREMA | N | 16 | Linked counter REMA. | | MAXGRAD | N | 16 | Gradient overflow for counter REMA. | # **▲**Attention When importing, the driver object type and data type must be amended to the target driver in the DBF file in order for variables to be imported. ## **LIMIT VALUE DEFINITION** Limit definition for limit values 1 to 4, or status 1 to 4: | Identification | Туре | Field size | Comment | |----------------|------|------------|---| | AKTIV1 | R | 1 | Limit value active (per limit value available) | | GRENZWERT1 | F | 20 | technical value or ID number of a linked variable for a dynamic limit value (see VARIABLEx) (if VARIABLEx is 1 and here it is -1, the existing variable linkage is not overwritten) | | SCHWWERT1 | F | 16 | Threshold value for limit value | | HYSTERESE1 | F | 14 | Is not used | | BLINKEN1 | R | 1 | Set blink attribute | | BTB1 | R | 1 | Logging in CEL | | ALARM1 | R | 1 | Alarm | | DRUCKEN1 | R | 1 | Printer output (for CEL or Alarm) | | QUITTIER1 | R | 1 | Must be acknowledged | | LOESCHE1 | R | 1 | Must be deleted | | VARIABLE1 | R | 1 | Dyn. limit value linking the limit is defined by an absolute value (see field GRENZWERTx). | | FUNC1 | R | 1 | Functions linking | | ASK_FUNC1 | R | 1 | Execution via Alarm Message List | | FUNC_NR1 | N | 10 | ID number of the linked function (if "-1" is entered here, the existing function is not overwritten during import) | | A_GRUPPE1 | N | 10 | Alarm/Event Group | | A_KLASSE1 | N | 10 | Alarm/Event Class | | MIN_MAX1 | С | 3 | Minimum, Maximum | | FARBE1 | N | 10 | Color as Windows coding | | GRENZTXT1 | С | 66 | Limit value text | | A_DELAY1 | N | 10 | Time delay | | Identification | Туре | Field size | Comment | |----------------|------|------------|-----------| | INVISIBLE1 | R | 1 | Invisible | Expressions in the column "Comment" refer to the expressions used in the dialog boxes for the definition of variables. For more information, see chapter Variable definition. ## 7.4.3 Online import Variables are created with the driver online import. You can find the command in the context menu of the driver in the driver list. | Parameter | Description | |-----------------|--| | Device | Select the device to be browsed | | Button "Browse" | Reads out the variables of the device | | Button "Add" | Adds the selected variable to the selection | | Button "Remove" | Removes the selected variable from the selection | | Button "OK" | Adds the selected variables to the variable list | | Button "Cancel" | Cancel the import | ## 7.5 Communication details (Driver variables) The driver kit implements a number of driver variables. This variables are part of the driver object type *Communication details*. These are divided into: - Information - Configuration - Statistics and - Error message The definitions of the variables implemented in the driver kit are available in the import file **DRVVAR.DBF** and can be imported from there. Path to file: %ProgramData%\COPA-DATA\zenon<Versionsnummer>\PredefinedVariables **Note:** Variable names must be unique in zenon. If driver variables of the driver object type *Communication details* are to be imported from **DRVVAR.DBF** again, the variables that were imported beforehand must be renamed. ### Information Not every driver supports all driver variables of the driver object type *Communication details*. For example: - Variables for modem information are only supported by modem-compatible drivers. - Driver variables for the polling cycle are only available for pure polling drivers. - ▶ Connection-related information such as **ErrorMSG** is only supported for drivers that only edit one connection at a a time. ### **INFORMATION** | Name from import | Туре | Offset | Description | |------------------|------|--------|-------------------------------------| | MainVersion | UINT | 0 | Main version number of the driver. | | SubVersion | UINT | 1 | Sub version number of the driver. | | BuildVersion | UINT | 29 | Build version number of the driver. | | RTMajor | UINT | 49 | zenon main version number | | RTMinor | UINT | 50 | zenon sub version number | | RTSp | UINT | 51 | zenon Service Pack number | | Name from import | Туре | Offset | Description | |---------------------------------|--------|--------|---| | RTBuild | UINT | 52 | zenon build number | | LineStateIdle | BOOL | 24.0 | TRUE, if the modem connection is idle | | LineStateOffering | BOOL | 24.1 | TRUE, if a call is received | | LineStateAccepted | BOOL | 24.2 | The call is accepted | | LineStateDialtone | BOOL | 24.3 | Dialtone recognized | | LineStateDialing | BOOL | 24.4 | Dialing active | | LineStateRingBack | BOOL | 24.5 | While establishing the connection | | LineStateBusy | BOOL | 24.6 | Target station is busy | | LineStateSpecialInfo | BOOL | 24.7 | Special status information received | | LineStateConnected | BOOL | 24.8 | Connection established | | LineStateProceeding | BOOL | 24.9 | Dialing completed | | LineStateOnHold | BOOL | 24.10 | Connection in hold | | LineStateConferenced | BOOL | 24.11 | Connection in conference mode. | | LineStateOnHoldPendConf | BOOL | 24.12 | Connection in hold for conference | | LineStateOnHoldPendTransfe
r | BOOL | 24.13 | Connection in hold for transfer | | LineStateDisconnected | BOOL | 24.14 | Connection terminated. | | LineStateUnknow | BOOL | 24.15 | Connection status unknown | | ModemStatus | UDINT | 24 | Current modem status | | TreiberStop | BOOL | 28 | Driver stopped | | | | | For <i>driver stop</i> , the variable has the value <i>TRUE</i> and an OFF bit. After the driver has started, the variable has the value <i>FALSE</i> and no OFF bit. | | SimulRTState | UDINT | 60 | Informs the state of Runtime for driver simulation. | | ConnectionStates | STRING | 61 | Internal connection status of the driver to the PLC. | | Name from import | Туре | Offset | Description | |------------------|------|--------|---| | | | | Connection statuses: | | | | | • 0: Connection OK | | | | | ► 1: Connection failure | | | | | ▶ 2: Connection simulated | | | | | Formating: | | | | | <net address="">:<connection status="">;;;</connection></net> | | | | | A connection is only known after a variable has first signed in. In order for a connection to be contained in a string, a variable of this connection must be signed in once. | | | | | The status of a connection is only updated if a variable of the connection is signed in. Otherwise there is no communication with the corresponding controller. | ## **CONFIGURATION** | Name from import | Туре | Offset | Description | |------------------|--------|--------|---| | ReconnectInRead | BOOL | 27 | If TRUE, the modem is automatically reconnected for reading | | ApplyCom | BOOL | 36 | Apply changes in the settings of the serial interface. Writing to this variable immediately results in the method SrvDrvVarApplyCom being called (which currently has no further function). | | ApplyModem | BOOL | 37 | Apply changes in the settings of the modem. Writing this variable immediately calls the method SrvDrvVarApplyModem. This closes the current connection and opens a new one according to the settings PhoneNumberSet and ModemHwAdrSet . | | PhoneNumberSet | STRING | 38 | Telephone number, that should be used | | ModemHwAdrSet | DINT | 39 | Hardware address for the telephone number | | GlobalUpdate | UDINT | 3 | Update time in milliseconds (ms). | | Name from import | Туре | Offset | Description | |------------------|--------|--------|---| | BGlobalUpdaten | BOOL | 4 | TRUE, if update time is global | | TreiberSimul | BOOL | 5 | TRUE, if driver in sin simulation mode | | TreiberProzab | BOOL | 6 | TRUE, if the variables update list should be kept in the memory | | ModemActive | BOOL | 7 | TRUE, if the modem is active for the driver | | Device | STRING | 8 | Name of the serial interface or name of the modem | | ComPort | UINT | 9 | Number of the serial interface. | | Baudrate | UDINT | 10 | Baud rate of the serial interface. | | Parity | SINT | 11 | Parity of the serial interface | | ByteSize | USINT | 14 | Number of bits per character of the serial interface | | | | | Value = 0 if the driver cannot establish any serial connection. | | StopBit | USINT | 13 | Number of stop bits of the serial interface. | | Autoconnect | BOOL | 16 | TRUE, if the modem connection should be established automatically for reading/writing | | PhoneNumber | STRING | 17 | Current telephone number | | ModemHwAdr | DINT | 21 | Hardware address of current telephone number | | RxIdleTime | UINT | 18 | Modem is disconnected, if no data transfer occurs for this time in seconds (s) | | WriteTimeout | UDINT | 19 | Maximum write duration for a modem connection in milliseconds (ms). | | RingCountSet | UDINT | 20 | Number of ringing tones before a call is accepted | | ReCallIdleTime | UINT | 53 | Waiting
time between calls in seconds (s). | | ConnectTimeout | UINT | 54 | Time in seconds (s) to establish a connection. | ## **STATISTICS** | Name from import | Туре | Offset | Description | |-------------------------|-------|--------|---| | MaxWriteTime | UDINT | 31 | The longest time in milliseconds (ms) that is required for writing. | | MinWriteTime | UDINT | 32 | The shortest time in milliseconds (ms) that is required for writing. | | MaxBlkReadTime | UDINT | 40 | Longest time in milliseconds (ms) that is required to read a data block. | | MinBlkReadTime | UDINT | 41 | Shortest time in milliseconds (ms) that is required to read a data block. | | WriteErrorCount | UDINT | 33 | Number of writing errors | | ReadSucceedCount | UDINT | 35 | Number of successful reading attempts | | MaxCycleTime | UDINT | 22 | Longest time in milliseconds (ms) required to read all requested data. | | MinCycleTime | UDINT | 23 | Shortest time in milliseconds (ms) required to read all requested data. | | WriteCount | UDINT | 26 | Number of writing attempts | | ReadErrorCount | UDINT | 34 | Number of reading errors | | MaxUpdateTimeNor
mal | UDINT | 56 | Time since the last update of the priority group Normal in milliseconds (ms). | | MaxUpdateTimeHigh er | UDINT | 57 | Time since the last update of the priority group Higher in milliseconds (ms). | | MaxUpdateTimeHigh | UDINT | 58 | Time since the last update of the priority group High in milliseconds (ms). | | MaxUpdateTimeHigh est | UDINT | 59 | Time since the last update of the priority group Highest in milliseconds (ms). | | PokeFinish | BOOL | 55 | Goes to 1 for a query, if all current pokes were executed | ## **ERROR MESSAGE** | Name from import | Туре | Offset | Description | |------------------|-------|--------|---| | ErrorTimeDW | UDINT | 2 | Time (in seconds since 1.1.1970), when the last error | | Name from import | Туре | Offset | Description | |-------------------|--------|--------|---| | | | | occurred. | | ErrorTimeS | STRING | 2 | Time (in seconds since 1.1.1970), when the last error occurred. | | RdErrPrimObj | UDINT | 42 | Number of the PrimObject, when the last reading error occurred. | | RdErrStationsName | STRING | 43 | Name of the station, when the last reading error occurred. | | RdErrBlockCount | UINT | 44 | Number of blocks to read when the last reading error occurred. | | RdErrHwAdresse | DINT | 45 | Hardware address when the last reading error occurred. | | RdErrDatablockNo | UDINT | 46 | Block number when the last reading error occurred. | | RdErrMarkerNo | UDINT | 47 | Marker number when the last reading error occurred. | | RdErrSize | UDINT | 48 | Block size when the last reading error occurred. | | DrvError | USINT | 25 | Error message as number | | DrvErrorMsg | STRING | 30 | Error message as text | | ErrorFile | STRING | 15 | Name of error log file | ## 8 Driver-specific functions The driver supports the following functions: #### **PROTOCOL** The protocol was defined by the ASHRAE (American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.) and is described extensively in the ASHRAE standard 135-2001 + Appendix A – L "A Data Communication Protocol for Building Automation and Control Networks". #### CONNECTION The BACnet standard offers five options on the data link and physical layers of the OSI layer model (which is reduced to four layers). The driver only supports the option ISO 8802-3, known as "Ethernet". This option (together with the other layers of the BACnet protocol) is also called "BACnet/IP, Annex J". | BACnet Layers | | | | | |-----------------------------|--------|-----------------|-----------------|-------| | BACnet Application
Layer | | | | | | BACnet Network Layer | | | | | | ISO 8802-2 Type1 | | MS/TP | PTP | LonTa | | ISO 8802-3 | ARCNET | EIA-485 (RS485) | EIA-232 (RS232) | | The communication of this option is based on ISO 8802-2 Type1 (Ethernet) in the data link layer. This means that the PC requires an Ethernet card with connection to a TCP/IP network. #### **DEFINITION** | Term | Description | | |------|--------------------------------|--| | BAS | BACnet automation station | | | BAZ | Command output time | | | COV | Change of Value | | | DA | Data type | | | DCS | Double Command State for TK 46 | | | КТ | Channel type | | | ОВ | Object | | | RPM | ReadPropertyMultiple | | #### **GENERAL FUNCTION DESCRIPTION** The BACnet automation station (BAS) is represented as a Device-Object in the BACnet driver. The BAS behaves as a server. For the peer-to-peer data exchange the BACnet driver connects as a client. Each datapoint of the BAS is modeled as a BACnet object. For the data update the COV Subscription as well as the ReadPropertyMultiple (RPM) service can be used. The cycle time for the resubscription as well as the polling interval for the RPM service can be defined in four priority groups (see Configuration of the BACnet driver). A time synchronization from the BACnet driver in the direction of BAS can be defined. #### ESTABLISHING CONNECTION AND EXCHANGING DATA As a client the BACnet driver sends the "Who-Is" service to the subnet mask as a broadcast. The existing BAS answers with an "I-Am". The driver variable of the type "Component status" resembling the name of the device object is set to 0 (OK). With the service "Who-Has(object_name)" the client gets the BACnet objects of the according server. With the service "I-Have" the server sends the objects (incl. the properties "object_instance" and "object_type") to the client. Unanswered "Who-Has" services are repeated according to the defined number of retries. If there are BACnet objects that still do not answer with the "I-Have" service, the component status of the according BAS is set to 1 (initializing error). The corresponding object names are written into the log file. The client then starts the COV subscriptions or RPM services for the existing objects. If the value (present_value) or the status (status_flags) of a COV object changes, the client is informed with a COV notification. Then it requests the time stamp (event_time_stamps) for the according object from the server with the ReadProperty service. With the RPM services the properties Present_Value, Status_Flags and Event_Time_Stamps are cyclically requested from the server. Send data (Present_Value, Status_Flags, Event_Time_Stamps) are sent to the server with the WritePropertyMultiple service. If one of these properties cannot be written on the server, the server acknowledges this with an error message ("Rec_error: WritePropertyMultiple"). #### **SAVING VALUE AND STATUS** Values, stati and time stamps of the output variables are saved spontaneously. So a data loss in the case of a computer breakdown is avoided. The saved information is read on a restart. #### **BREAKDOWN MONITORING** In order to check the presence of the server the client cyclically sends "Who-Is" telegrams. The cycle time is defined in the driver configuration dialog under BACnet settings. If the server does not answer with an "I-Am" within a certain time, the interface will be considered as not operative. The corresponding virtual datapoint of the type BACnet component status is set to 64 (NOK). All process datapoints of this BAS are set to disturbed (invalid). The server announces the reestablishment of the connection with an "I-Am". The further procedure is the same as the one with the connection establishment. #### **ACCESS METHODS** The values of the variables can be read spontaneous or by polling. The type of polling can be selected via the property "priority" of the individual variables If the hardware allows the reading of time stamps, the variables get these time stamps, otherwise the variables get the time stamps from the driver. | Polling | If the variable property "Priority" is set to "Higher", "High" or "Highest", the variable values will be polled in the interval defined for the according priority in the driver configuration (page "General"). For this, the BACnet service ReadPropertyMulti (reads the object properties "present_value", "status_flags" and "event_time_stamps") is used. | |-------------|--| | Spontaneous | If the variable property "Priority" is set to "Normal", the variable values will be read with the BACnet service COV ("change of value"). After the first request of the variable value, a so-called "COV subscription" will be executed, i.e. the according object will be asked to send a COV notification telegram each time the value changes. | | | The COV subscription is valid for the time defined for the priority "Normal" in the driver configuration. After that time the device will stop sending value changes. If in this case the variable value is still needed, the driver will execute another COV subscription. | After receiving the COV notification of BACnet objects, the properties "present_value" and "status_flags" (FAULT <=> IBit) are read and "event_time_stamps" is requested with the service ReadProperty. If the received time is invalid (0 or 255), the BACnet driver will use the current computer time. #### TAKING BACK VALUES FROM THE PRIORITY ARRAY: For some object types, you can remove values set by zenon from the BACnet priority array of the variable on the PLC. However, this cannot be achieved directly via the driver; you will need a VBA script for this. Example for a VBA script: Sub ResetPrioArray() Dim Var As Variable Set Var =
Variables.ltem("TestVar 0") Var.SetValueWithStatus 0, 262144, 0, 0 '262144 = Hex 40000, corresponds to the set INVALID bit End Sub #### **LIMITATIONS** If you launch the driver several times, you will need different UDP ports for every driver. These ports also have to be configurable on the PLCs (BACNet Server). Priority: The driver sends set values with priority 8 ## 9 Driver command function The zenon **Driver commands** function is to influence drivers using zenon. You can do the following with a driver command: - Start - Stop - Shift a certain driver mode - Instigate certain actions **Note:** This chapter describes standard functions that are valid for most zenon drivers. Not all functions described here are available for every driver. For example, a driver that does not, according to the data sheet, support a modem connection also does not have any modem functions. ## **▲**Attention The zenon **Driver commands** function is not identical to driver commands that can be executed in the Runtime with Energy drivers! #### **CONFIGURATION OF THE FUNCTION** Configuration is carried out using the **Driver commands** function. To configure the function: 1. Create a new function in the zenon Editor. The dialog for selecting a function is opened - 2. Navigate to the node Variable. - 3. Select the **Driver commands** entry. The dialog for configuration is opened - 4. Select the desired driver and the required command. - 5. Close the dialog by clicking on **OK** and ensure that the function is executed in the Runtime. Heed the notices in the **Driver command function in the network** section. #### **DRIVER COMMAND DIALOG** | Option | Description | |---------------------------------|--| | Driver | Selection of the driver from the drop-down list. It contains all drivers loaded in the project. | | Current condition | Fixed entry that is set by the system. no function in the current version. | | Driver command | no function in the current version. | | | For details on the configurable driver commands, see the available driver commands section. | | Driver-specific command | Entry of a command specific to the selected driver. | | | Note: Only available if, for the driver command option, the <i>driver-specific command</i> has been selected. | | Show this dialog in the Runtime | Configuration of whether the configuration can be changed in the Runtime: | | | Active: This dialog is opened in the Runtime
before executing the function. The configuration
can thus still be changed in the Runtime before
execution. | | | Inactive: The Editor configuration is applied in the
Runtime when executing the function. | | | Default: inactive | #### **CLOSE DIALOG** | Options | Description | |---------|---| | ОК | Applies settings and closes the dialog. | | Cancel | Discards all changes and closes the dialog. | | Help | Opens online help. | #### **AVAILABLE DRIVER COMMANDS** These driver commands are available - depending on the selected driver: | Driver command | Description | |----------------|---| | No command | No command is sent. A command that already exists can thus be removed | | | from a configured function. | | Driver command | Description | |--|--| | Start driver (online mode) | Driver is reinitialized and started. Note: If the driver has already been started, it must be stopped. Only then can the driver be re-initialized and started. | | Stop driver (offline mode) | Driver is stopped. No new data is accepted. | | | Note: If the driver is in offline mode, all variables that were created for this driver receive the status <i>switched off</i> (<i>OFF</i> ; Bit <i>20</i>). | | Driver in simulation mode | Driver is set into simulation mode. The values of all variables of the driver are simulated by the driver. No values from the connected hardware (e.g. PLC, bus system,) are displayed. | | Driver in hardware mode | Driver is set into hardware mode. For the variables of the driver the values from the connected hardware (e.g. PLC, bus system,) are displayed. | | Driver-specific command | Entry of a driver-specific command. Opens input field in order to enter a command. | | Driver - activate set setpoint value | Write set value to a driver is possible. | | Driver - deactivate set setpoint value | Write set value to a driver is prohibited. | | Establish connecton with modem | Establish connection (for modem drivers) | | | Opens the input fields for the hardware address and for the telephone number. | | Disconnect from modem | Terminate connection (for modem drivers) | | Driver in counting simulation mode | Driver is set into counting simulation mode. All values are initialized with 0 and incremented in the set update time by 1 each time up to the maximum value and then start at 0 again. | | Driver in static simulation mode | No communication to the controller is established. All values are initialized with 0. | | Driver in programmed simulation mode | The values are calculated by a freely-programmable simulation project. The simulation project is created with the help of the zenon Logic Workbench and runs in the zenon Logic Runtime. | #### DRIVER COMMAND FUNCTION IN THE NETWORK If the computer on which the **Driver commands** function is executed is part of the zenon network, further actions are also carried out: - A special network command is sent from the computer to the project server. It then executes the desired action on its driver. - In addition, the Server sends the same driver command to the project standby. The standby also carries out the action on its driver. This makes sure that Server and Standby are synchronized. This only works if the Server and the Standby both have a working and independent connection to the hardware. ## 10 Error analysis Should there be communication problems, this chapter will assist you in finding out the error. ## 10.1 Error analysis #### **LOGGING** You can choose to log the entire telegram traffic between the BACnet driver and the BAS (see BACnet32_DiagnosticSetting (on page 18)). Data is stored in the file <runtimepath>\RT\FILES\zenon\custom\drivers\BACnet.log For Editor communication (browsing), the following file is used: <SQLpath>\<ProjektGUID>\FILES\zenon\custom\drivers\BACnet.log. ## 10.2 Analysis tool All zenon modules such as Editor, Runtime, drivers, etc. write messages to a joint log file. To display them correctly and clearly, use the Diagnosis Viewer program that was also installed with zenon. You can find it under **Start/All programs/zenon/Tools 8.20 -> Diagviewer.** zenon driver log all errors in the LOG files.LOG files are text files with a special structure. The default folder for the LOG files is subfolder **LOG** in the folder **ProgramData**. For example: #### $\label{log:copa-data} $$\operatorname{COPA-DATA}LOG. $$$ **Attention:** With the default settings, a driver only logs error information. With the Diagnosis Viewer you can enhance the diagnosis level for most of the drivers to "Debug" and "Deep Debug". With this the driver also logs all other important tasks and events. In the Diagnosis Viewer you can also: - ▶ Follow newly-created entries in real time - customize the logging settings - change the folder in which the LOG files are saved #### Note: - 1. The Diagnosis Viewer displays all entries in UTC (coordinated world time) and not in local time - 2. The Diagnosis Viewer does not display all columns of a LOG file per default. To display more columns activate property **Add all columns with entry** in the context menu of the column header. - 3. If you only use **Error-Logging**, the problem description is in the column **Error text**. For other diagnosis level the description is in the column **General text**. - 4. For communication problems many drivers also log error numbers which the PLC assigns to them. They are displayed in **Error text** or **Error code** or **Driver error parameter** (1 and 2). Hints on the meaning of error codes can be found in the driver documentation and the protocol/PLC description. - 5. At the end of your test set back the diagnosis level from **Debug** or **Deep Debug**. At **Debug** and **Deep Debug** there are a great deal of data for logging which are saved to the hard drive and which can influence your system performance. They are still logged even after you close the Diagnosis Viewer. #### Attention In Windows CE errors are not logged per default due to performance reasons. You can find further information on the Diagnosis Viewer in the Diagnose Viewer manual. ## 10.3 Driver monitoring Runtime monitors the availability of the driver by means of a watchdog. If a driver is no longer available, the *INVALID* status bit is also set for all checked-in variables. Possible causes for a triggering of the watchdog: - The driver process is no longer running. Check whether the driver EXE file is still running in the Task Manager. - Operating system is busy with processes that have a higher priority. Check the configuration of your system to see whether there is sufficient memory and CPU power. In this case, the driver only resets the INVALID status bit if there is a value change on the connected party. Static values retain the *INVALID* status bit until the next time the Runtime or the driver is started. #### **CONFIGURATION OF WATCHDOG** For the monitoring of communication in the Runtime, the connection to the driver is checked in a fixed, prescribed time
period of 60 seconds. This process is repeated several times. If, within 5 attempts (= within 5 minutes), no valid connection to the driver is detected, the *INVALID* bit is set for the checked-in (*advised*) variables. In addition, the *INVALID* bit is also set when new variables are advised. The *INVALID* bit will no longer be reset. Corresponding LOG entries are created for this. #### **LOG ENTRY** An error message is logged in the LOG when the watchdog is triggered: | Parameter | Description | | |--|---|--| | Communication with driver: <drvexe>/<drvdesc>(id:<drvid>) timed out. No communication for <time> ms.</time></drvid></drvdesc></drvexe> | No communication with driver within the given time. • <time>: Time (in milliseconds) • <drvdesc>: Driver name • <drvexe>: Driver EXE name • <drvid>: Driver ID in the zenon project</drvid></drvexe></drvdesc></time> | | | Communication with %s timed out. Invalid-Bit will be set. | Communication to the %s driver could not be established after 5 attempts within 60 seconds. The <i>INVALID</i> bit is set for the variable. | | | Communication with %s timed out. Timeout happened %d times | Communication to the %s driver could not be established after %d times within 60 seconds. | | ### 10.4 Check list | Is the PLC connected to the power supply | |--| | Are the participants available in the TCP/IP network | | Can the PLC be reached via the PING command | | Can the PLC be reached at the respective port via TELNET | | Are the PLC and the PLC connected with the right cable | #### Is the PLC connected to the power supply Did you select the right COM port Do the communication parameters match (Baud rate, parity, start/stop bits,...) Is the COM port blocked by another application Did you configure the net address correctly, both in the driver dialog and in the address properties of the variable Did you use the right object type for the variable Does the offset addressing of the variable match the one in the PLC Use the DiagViewer for further analysis -> Which messages does it show # 11 PICS (Protocol Implementation Conformance Statement) | Date | September 21, 2005 | |-------------------------------|--| | Vendor Name | COPA-DATA GmbH | | Product Name | BACnet-driver for process control system (HMI/SCADA) | | Product Model Number: | Version 6.20 SP1 | | Applications Software Version | 6.20.1 | | BACnet protocol Revision | 2 | #### PRODUCT DESCRIPTION The BACnet driver allows communication and data exchange between one or more BACnet-capable devices and the SCADA-Runtime. Therefore it's required that the connected BACnet devices are operating as servers. In the BACnet driver only the Client functionality is implemented. #### BACNET STANDARDIZED DEVICE PROFILE (ANNEX L): | Х | BACnet Operator Workstation (B-OWS) | |---|-------------------------------------| | | BACnet Building Controller (B-BC) | | Х | BACnet Operator Workstation (B-OWS) | |---|--| | | BACnet Advanced Application Controller (B-AAC) | | | BACnet Application Specific Controller (B-ASC) | | | BACnet Smart Sensor (B-SS) | | | BACnet Smart Actuator (B-SA) | ## ADDITIONAL BACNET INTEROPERABILITY BUILDING BLOCKS SUPPORTED (ANNEX K): DS-RP-A, DS-RPM-A, DS-WP-A, DS-WPM-A, DS-COV-A, DM-DDB-A, DM-DOB-A, DM-TS-A, DM-UTC-A, SCHED-A #### **SEGMENTATION CAPABILITY:** | Segmented requests supported | Window Size | |-------------------------------|-------------| | Segmented responses supported | Window Size | #### STANDARD OBJECT TYPES SUPPORTED: Analog-Input, Analog-Output, Binary-Input, Binary-Output, Multi-State-Input, Multi-State-Output, Schedule, Device #### **OBJECT DEFINITIONS** #### 1. ANALOG INPUT | Property | Client uses | |-------------------|-------------| | Present_Value | R | | Status_Flags | R | | Event_Time_Stamps | R | #### 2. ANALOG OUTPUT | Property | Client uses | |---------------|-------------| | Present_Value | W | | Status_Flags | W | | Property | Client uses | |-------------------|-------------| | Event_Time_Stamps | W | #### 3. ANALOG VALUE | Property | Client uses | |-------------------|-------------| | Present_Value | R/W | | Status_Flags | R/W | | Event_Time_Stamps | R/W | #### 4. BINARY INPUT | Property | Client uses | |-------------------|-------------| | Present_Value | R | | Status_Flags | R | | Event_Time_Stamps | R | #### 5. BINARY OUTPUT | Property | Client uses | |-------------------|-------------| | Present_Value | W | | Status_Flags | W | | Event_Time_Stamps | W | #### 6. BINARY VALUE | Property | Client uses | |-------------------|-------------| | Present_Value | R/W | | Status_Flags | R/W | | Event_Time_Stamps | R/W | #### 7. MULTI STATE INPUT | Property | Client uses | |---------------|-------------| | Present_Value | R | | Property | Client uses | |-------------------|-------------| | Status_Flags | R | | Event_Time_Stamps | R | #### 8. MULTI STATE OUTPUT | Property | Client uses | |-------------------|-------------| | Present_Value | R | | Status_Flags | R | | Event_Time_Stamps | R | #### 9. MULTI STATE VALUE | Property | Client uses | |-------------------|-------------| | Present_Value | R/W | | Status_Flags | R/W | | Event_Time_Stamps | R/W | ## 10. SCHEDULE | Property | Client uses | |--------------------|----------------------| | Effective_Period | R / W (as
String) | | Weekly_Schedule | R / W (as
String) | | Exception_Schedule | R / W (as
String) | ## 11. DEVICE | Property | Client uses | |------------|-------------| | Local_Date | W | | Local_Time | W | #### **DATA LINK LAYER** | Х | BACnet/IP, (Annex J) | | |---|--|--| | | BACnet/IP, (Annex J), Foreign Device | | | | ISO 8802-2, Ethernet (Clause 7) | | | | ASTM 878.1, 2.5Mb. ARCNET (Clause 8) | | | | ASTM 878.1, RS485 ARCNET (Clause 8), baud rate(s): | | | | MS/TP master (Clause 9), baud rate(s): | | | | MS/TP slave (Clause 9), baud rate(s): | | | | Point-To-Point, EIA 232 (Clause 10), baud rate(s): | | | | Point-To-Point, modem (Clause 10), baud rate(s): | | | | LonTalk, (Clause 11), medium: | | | | Other | | #### **NETWORKING OPTIONS** | | Router, Clause 6 - Routing configurations: | |--|--| | | Annex H, BACnet Tunneling Router over IP | | | BACnet/IP Broadcast Management Device (BBMD) | #### **CHARACTER SETS SUPPORTED** | Х | ANSI X3.4 | |---|---------------------| | | IBM /Microsoft DBCS | | | ISO 8859-1 | | | ISO 10646 (ICS-4) | | | ISO 10646 (UCS2) | | | JIS C 6226 | #### **OPTIONAL SERVICE-PARAMETERS SUPPORTED** ReadProperty, ReadPropertyMultiple, WriteProperty, WritePropertyMultiple, SubscribeCOV, COVNotification, Who-Is, I-Am, Who-Has, I-Have, TimeSynchronization, TimeUTCSynchronization