
HOW TO MANAGE
PROJECTS CENTRALLY

WITH ZENON

SERIES: EFFICIENT ENGINEERING WITH ZENON

PART 2

Example of a Smar t Objec t Template w ith the motor symbol and it s re leased proper t ies.

Published in

information unlimited
the copa-data magazine
No. 36, November 2020
© Ing. Punzenberger COPA-DATA GmbH
www.copadata.com/iu

The first part of this series focused on the fundamental philosophy of zenon.

It looked at the concepts based on this philosophy and discussed topics such as

 how to manage elements centrally. We will now use a practical example to show

you how centralized management can be optimized with the aid of data types,

symbols, links and – with the new zenon version 8.20 – Smart Objects and

 Smart Object Templates.

Let’s imagine you want to visualize three motors of the
same type – used for conveyor belts in a production facility
– in your zenon project. These motors are switched on and
off via an HMI and supply the system with information
about the operating status, speed and temperature. To map
the motors in zenon, you will need variables, functions
and one or more screens. This is where zenon data types
and symbols come into play, since they offer numerous
possibilities when it comes to engineering.

WHAT ARE DATA TYPES?
Data types allow you to centrally define the properties
of variables – for example, measuring ranges or limit
values. In this example, you create multiple simple data
types: “MotorTemperature” (BYTE), “MotorState” (BOOL),
“MotorSpeed” (UINT). For “MotorTemperature”, you
enter “°C” as the measuring unit and create a limit value
for “critical” at 80°C and “overheating” at 100°C. You
then create a structure data type called “Motor” with the
structure elements “Temperature”, “Speed” and “State”,
which are each based on the simple data types you’ve just
created. Make sure that “Link data type” is selected under
“Structure options” so that changes made to the data type
later will automatically apply to the structure elements.

The next step is to create the variables for the three
motors with the names “Motor_Band1” (..2, ..3); each of these
is based on the “Motor” data type. A total of nine variables
have now been created and activated automatically with
your specifications.

USING SYMBOLS SENSIBLY
A centrally defined symbol is used for the graphical
visualization of the motor. In this case, it is a good idea to use
a button with labeling and value displays for temperature
and speed. These are to be linked to the corresponding
variables from the “Motor_Band1” structure data type.

Drag the symbol you have just created into a screen
where it can be used directly for “Motor_Band1”. For

“Motor_Band2”, drag the symbol into the screen again
and replace the variables and functions via a linking rule
in the dialog that opens automatically. Alternatively, you
can open this dialog under the linking rule in the property
window. In this example, it is sufficient to use “*1*” as the
source and “2” as the target for the replacement function.
You can check the result of this linking rule immediately
using the Preview button.

CUSTOMIZING SYMBOL PROPERTIES
Properties such as the color or text of the motor are not
taken into account by the linking rule, however. To enable
individual customization of these properties directly in
the screen and whenever a symbol is used, you can release
individual properties of elements within a symbol.

To do this, open the symbol, highlight the element and
release the desired property (e.g. Text) using one of the
three options below. You must always be guided by how
the property is labeled in the property window.

 – Drag the property into the area below the the symbol’s
drawing area

 – Open the context menu by right clicking and select
Release ‘Text’

 – Highlight the property and select Release Property in
the toolbar

If you select the symbol that is now on the screen, you will
see a new node – “$_<Elementname>” – in the tree view in
the property window, which contains the property that has
just been released. This allows you to overwrite individual
definitions locally whenever the symbol is used. At the
same time, it reduces complexity for the engineer, as only
the properties that are relevant to them are displayed.

If you want to switch the motor on and off directly from
this symbol, you need to create two buttons and two Write
set value functions with the names “Motor_Band1.Start”
and “.Stop” on the “Motor_Band1.State” variable. Saving

37products & services

the symbol automatically updates all points of use in the
screen. If you now open the linking rule dialog again for
“Motor_Band2”, you will see in the target column that the
Start and Stop functions both have a “(?)” at the end. This
means that these functions do not exist in the project. As
the user of this symbol, you therefore need to know which
variables and functions the symbol expects, create them in
the project and adjust the function parameters.

THERE MUST BE AN EASIER WAY!
The new zenon version 8.20 makes life easier in a number
of ways. You can now create Smart Objects and Smart
Object Templates which, alongside displaying symbols and
screens graphically, also bring together data types, reaction
matrices, functions, interlocks, files and other elements.

The zenon Editor features a separate area for the
Smart Object Templates. In the area on the left-hand side,
create a new template called “Band” (belt). A tree will now
appear on the right-hand side of the window showing the
available zenon modules. Here, you should create the same
objects as described above, except that “Band1” can be
omitted from the names in all cases.

In the symbol, you should release the released
property “Label” for the Smart Object Template as well
by highlighting the property in the symbol editor and
releasing it again by clicking on the button in the toolbar.
Now switch back to the project tree, select the Smart
Objects node and create a new Smart Object based on the
template you have just created. In the list, you will see
the Smart Object and, below this, the symbol you have
defined. If you drag this symbol into a screen and then
open the linking rule dialog again, the correct rule will
already be implemented for the replacement and all targets
will be found in the preview.

Thus, when you create a Smart Object, all engineered
variables, functions, etc., are automatically created in the
project and adapted at all points of use.

HOW TO EXPAND SMART OBJECT
TEMPLATES FOR NUMEROUS PURPOSES
If you also need motors in other assembly groups in
your facility, you can add the Smart Object Template as
a reference in other Smart Object Templates and use it as
often as you like. And if you want to add a detail view with
trend curves to the motor later on, for example, you can
easily do so with Smart Object Templates as well. Simply
create a new screen and engineer one trend element for
“Motor.Speed” and another for “Motor.Temperature” along
with a button with the Close Frame function. As soon as
you save the Smart Object Template, all Smart Objects in
the project will be updated and the necessary functions
and screens will be created. The new functionality will be
available throughout the entire project instantly.

DISCOVER THE BENEFITS OF THE NEW
ZENON VERSION 8.20 NOW
The concept of linking, as explained above in relation to
symbols, is also available in the Screen Switch function.
With Smart Objects, linking is automatically adapted when
the Screen Switch function is created so that the correct
variables are always linked in the detail screen.

This part of the series has explained how you can use the
zenon philosophy to create and reuse reusable components
with the help of data types, symbols, linking and – with the
new version – Smart Objects. The next part of the series will
explain the concept of linking in more detail.

GERO GRUBER
Product Manager

As Product Manager and Product
Owner for the zenon Software
Platform, I am particularly
interested in the user interface and
the interaction design of the whole
platform, as well as the graphical
visualization in zenon Runtime.

38 products & services

